3种因素影响下固化废弃淤泥的微观特性研究

杨浩, 朱剑锋, 陶燕丽. 3种因素影响下固化废弃淤泥的微观特性研究[J]. 水文地质工程地质, 2022, 49(4): 91-99. doi: 10.16030/j.cnki.issn.1000-3665.202108041
引用本文: 杨浩, 朱剑锋, 陶燕丽. 3种因素影响下固化废弃淤泥的微观特性研究[J]. 水文地质工程地质, 2022, 49(4): 91-99. doi: 10.16030/j.cnki.issn.1000-3665.202108041
YANG Hao, ZHU Jianfeng, TAO Yanli. Research on the micro-characteristics of solidified waste sludge under the effect of three factors[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 91-99. doi: 10.16030/j.cnki.issn.1000-3665.202108041
Citation: YANG Hao, ZHU Jianfeng, TAO Yanli. Research on the micro-characteristics of solidified waste sludge under the effect of three factors[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 91-99. doi: 10.16030/j.cnki.issn.1000-3665.202108041

3种因素影响下固化废弃淤泥的微观特性研究

  • 基金项目: 浙江省公益项目(LGG22E090002);国家自然科学基金资助项目(51879133);浙江省自然科学基金项目(LY17E080006)
详细信息
    作者简介: 杨浩(1997-),男,硕士研究生,主要从事软土固化研究工作。E-mail:212002814020@zust.edu.cn
    通讯作者: 朱剑锋(1982-),男,博士,教授,主要从事软土加固机制及固化土微观结构研究工作。E-mail:zhujianfeng0811@163.com
  • 中图分类号: TU411.92

Research on the micro-characteristics of solidified waste sludge under the effect of three factors

More Information
  • 为揭示初始含水率、固化剂掺量和龄期3种因素对固化废弃淤泥力学性质影响的本质,以硫氧镁水泥固化废弃淤泥为研究对象,开展了不同含水率(w)、固化剂掺量(Wg)和龄期(T)条件下固化淤泥的电镜扫描试验,利用图像处理软件研究了固化淤泥的微观接触面积率(RCA)、平均丰度(Cm)和分形维数(D)受含水率固化剂掺量和龄期的影响规律。结果发现:含水率的增加会抑制硫氧镁水泥的水化,增加固化淤泥结构的分散性,进而减小固化淤泥的接触面积率、平均丰度,提高其分形维数。而固化剂掺量和龄期有利于固化反应的发展,促进扁圆状固化产物的生成,提高固化淤泥结构的紧密性,从而增加固化淤泥的接触面积率、平均丰度,降低其分形维数。3种因素中,龄期对固化淤泥的接触面积率和分形维数影响最为显著。

  • 加载中
  • 图 1  废弃淤泥和固化淤泥的SEM图

    Figure 1. 

    图 2  不同含水率下固化淤泥的SEM图

    Figure 2. 

    图 3  不同固化剂掺量下固化淤泥的SEM图

    Figure 3. 

    图 4  不同龄期下固化淤泥的SEM图

    Figure 4. 

    图 5  不同含水率下固化淤泥丰度

    Figure 5. 

    图 6  不同含水率下固化淤泥的形态分布分形维数

    Figure 6. 

    图 7  不同固化剂掺量下固化淤泥的丰度

    Figure 7. 

    图 8  不同固化剂掺量下固化淤泥的分形维数

    Figure 8. 

    图 9  不同龄期下固化淤泥的丰度

    Figure 9. 

    图 10  不同龄期下固化淤泥的分形维数

    Figure 10. 

    表 1  SEM试验方案

    Table 1.  Test plan of the SEM

    试验编号Wg/%w/%T/d
    SS00507
    S015507
    S1—S41540, 45, 55, 607
    S5—S85, 10, 20, 25507
    S9—S1315503, 5, 9, 11, 14
    下载: 导出CSV

    表 2  不同含水率下固化淤泥的接触面积比

    Table 2.  Contact area ratio of the solidified sludge under different moisture content

    试验编号w/%STnn3DZSCARCA/%
    S14011739910.4480.43112317024614.5
    S24511739910.4810.47210315643913.3
    S05011739910.4870.4791681120269.5
    S35511739910.5120.5131091018428.7
    S46011739910.5210.525119961278.2
      注:ST为总像素;n为实测孔隙率;n3D为三维孔隙率; SCA为接触像素。
    下载: 导出CSV

    表 3  不同固化剂掺量下固化土的接触面积率

    Table 3.  Contact area ratio of the solidified soil under different dosage of the curing agent

    试验编号Wg/%STnn3DZSCARCA/%
    S5511739910.5480.539169888407.6
    S61011739910.5050.5111621008798.6
    S01511739910.4870.4791671120269.5
    S72011739910.4810.48215714144612.0
    S82511739910.4590.46116116456514.0
    下载: 导出CSV

    表 4  不同龄期下固化淤泥的接触面积率

    Table 4.  Contact area ratio of the solidified sludge at different ages

    试验编号T/dSTnn3DZSCARCA/%
    S9311739910.5480.538167856457.3
    S10511739910.5240.512156914127.8
    S0711739910.4870.4791671120269.5
    S11911739910.4380.4311361170399.9
    S121111739910.4680.45212213224512.5
    S131411739910.4350.43310313553215.4
    下载: 导出CSV
  • [1]

    浙江宁波创造淤泥新墙材资源化利用新模式[Z]. 北方建筑, 2017, 2(1): 75

    A new model of resource utilization of sludge wall materials set up by Ningbo city, Zhejiang Province[Z]. Northern Architecture, 2017, 2(1): 75. (in Chinese)

    [2]

    LORENZO G A, BERGADO D T. Fundamental parameters of cement-admixed clay—new approach[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(10):1042 − 1050. doi: 10.1061/(ASCE)1090-0241(2004)130:10(1042)

    [3]

    LEE F H, LEE Y, CHEW S H, et al. Strength and modulus of marine clay-cement mixes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(2):178 − 186. doi: 10.1061/(ASCE)1090-0241(2005)131:2(178)

    [4]

    李朝辉, 程谦恭, 王艳涛, 等. 干湿循环下石灰改良膨胀土离心模型试验研究[J]. 水文地质工程地质,2017,44(4):111 − 117. [LI Zhaohui, CHENG Qiangong, WANG Yantao, et al. A centrifugal model test study of lime-improved expansive soil under drying and wetting circles[J]. Hydrogeology & Engineering Geology,2017,44(4):111 − 117. (in Chinese with English abstract)

    LI Zhaohui, CHENG Qiangong, WANG Yantao, et al. A centrifugal model test study of lime-improved expansive soil under drying and wetting circles[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 111-117. (in Chinese with English abstract)

    [5]

    黄震, 陈铖. 改良膨胀土胀缩裂隙及与抗剪强度的关系研究[J]. 水文地质工程地质,2016,43(3):87 − 93. [HUANG Zhen, CHEN Cheng. A study of the swelling shrinkage cracks of the modified expansive soil and its relationship with the shear strength[J]. Hydrogeology & Engineering Geology,2016,43(3):87 − 93. (in Chinese with English abstract)

    HUANG Zhen, CHEN Cheng. A study of the swelling shrinkage cracks of the modified expansive soil and its relationship with the shear strength[J]. Hydrogeology & Engineering Geology, 2016, 43(3): 87-93. (in Chinese with English abstract)

    [6]

    董邑宁, 张青娥, 徐日庆, 等. 固化剂对软土强度影响的试验研究[J]. 岩土力学,2008,29(2):475 − 478. [DONG Yining, ZHANG Qinge, XU Riqing, et al. The experimental research of strength with solidifying agent on clay[J]. Rock and Soil Mechanics,2008,29(2):475 − 478. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.02.035

    DONG Yining, ZHANG Qinge, XU Riqing, et al. The experimental research of strength with solidifying agent on clay[J]. Rock and Soil Mechanics, 2008, 29(2): 475-478. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.02.035

    [7]

    徐日庆, 王旭, 文嘉毅, 等. 浅层淤泥质土固化剂[J]. 上海交通大学学报,2019,53(7):805 − 811. [XU Riqing, WANG Xu, WEN Jiayi, et al. Curing agent for shallow mucky soil[J]. Journal of Shanghai Jiao Tong University,2019,53(7):805 − 811. (in Chinese with English abstract)

    XU Riqing, WANG Xu, WEN Jiayi, et al. Curing agent for shallow mucky soil[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7): 805-811. (in Chinese with English abstract)

    [8]

    VICHAN S, RACHAN R. Chemical stabilization of soft Bangkok clay using the blend of calcium carbide residue and biomass ash[J]. Soils and Foundations,2013,53(2):272 − 281. doi: 10.1016/j.sandf.2013.02.007

    [9]

    王宏伟, 王东星, 贺扬. MgO改性淤泥固化土压缩特性试验[J]. 中南大学学报(自然科学版),2017,48(8):2133 − 2141. [WANG Hongwei, WANG Dongxing, HE Yang. Experimental study on compressibility behavior of solidified dredged sludge with reactive MgO[J]. Journal of Central South University (Science and Technology),2017,48(8):2133 − 2141. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2017.08.022

    WANG Hongwei, WANG Dongxing, HE Yang. Experimental study on compressibility behavior of solidified dredged sludge with reactive MgO[J]. Journal of Central South University (Science and Technology), 2017, 48(8): 2133-2141. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2017.08.022

    [10]

    朱剑锋, 饶春义, 庹秋水, 等. 硫氧镁水泥复合固化剂加固淤泥质土的试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3206 − 3214

    ZHU Jianfeng, RAO Chunyi, TUO Qiushui, et al. Experimental study on the properties of the organic soil solidified by the composite magnesium oxysulfate cement-curing agent[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Sup 1): 3206 − 3214. (in Chinese with English abstract)

    [11]

    ZHU J F, XU R Q, ZHAO H Y, et al. Fundamental mechanical behavior of CMMOSC-S-C composite stabilized marine soft clay[J]. Applied Clay Science,2020,192:105635. doi: 10.1016/j.clay.2020.105635

    [12]

    朱剑锋, 庹秋水, 邓温妮, 等. 镁质水泥复合固化剂固化有机质土的抗压强度模型[J]. 浙江大学学报(工学版),2019,53(11):2168 − 2174. [ZHU Jianfeng, TUO Qiushui, DENG Wenni, et al. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent[J]. Journal of Zhejiang University (Engineering Science),2019,53(11):2168 − 2174. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2019.11.015

    ZHU Jianfeng, TUO Qiushui, DENG Wenni, et al. Model of compressive strength of cured organic soil solidified by magnesium cement complex curing agent[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(11): 2168-2174. (in Chinese with English abstract) doi: 10.3785/j.issn.1008-973X.2019.11.015

    [13]

    饶春义, 朱剑锋, 庹秋水, 等. 镁质水泥固化淤泥一维压缩特性研究[J]. 水文地质工程地质,2018,45(4):94 − 99. [RAO Chunyi, ZHU Jianfeng, TUO Qiushui, et al. A study of the 1D compression characteristics of magnesia cement silt[J]. Hydrogeology & Engineering Geology,2018,45(4):94 − 99. (in Chinese with English abstract)

    RAO Chunyi, ZHU Jianfeng, TUO Qiushui, et al. A study of the 1D compression characteristics of magnesia cement silt[J]. Hydrogeology & Engineering Geology, 2018, 45(4): 94-99. (in Chinese with English abstract)

    [14]

    张亭亭, 李江山, 王平, 等. 磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J]. 岩土力学, 2016, 37(增刊2): 279 − 286

    ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Experimental study of mechanical and microstructure properties of magnesium phosphate cement treated lead contaminated soils[J]. Rock and Soil Mechanics, 2016, 37(Sup 2): 279 − 286. (in Chinese with English abstract)

    [15]

    刘松玉, 曹菁菁, 蔡光华. 活性氧化镁碳化固化粉质黏土微观机制[J]. 岩土力学,2018,39(5):1543 − 1552. [LIU Songyu, CAO Jingjing, CAI Guanghua. Microstructural mechanism of reactive magnesia carbonated and stabilized silty clays[J]. Rock and Soil Mechanics,2018,39(5):1543 − 1552. (in Chinese with English abstract)

    LIU Songyu, CAO Jingjing, CAI Guanghua. Microstructural mechanism of reactive magnesia carbonated and stabilized silty clays[J]. Rock and Soil Mechanics, 2018, 39(5): 1543-1552. (in Chinese with English abstract)

    [16]

    杨爱武, 胡垚, 杨少坤. 城市污泥新型固化技术及其力学特性[J]. 岩土力学,2019,40(11):4439 − 4449. [YANG Aiwu, HU Yao, YANG Shaokun. New solidification technology and mechanical properties of municipal sludge[J]. Rock and Soil Mechanics,2019,40(11):4439 − 4449. (in Chinese with English abstract)

    YANG Aiwu, HU Yao, YANG Shaokun. New solidification technology and mechanical properties of municipal sludge[J]. Rock and Soil Mechanics, 2019, 40(11): 4439-4449. (in Chinese with English abstract)

    [17]

    朱利君, 裴向军, 张晓超, 等. 双聚材料改良黄土持水性及生态效应研究[J]. 水文地质工程地质,2020,47(4):158 − 166. [ZHU Lijun, PEI Xiangjun, ZHANG Xiaochao, et al. A study of water retention and ecological effects of loess improved by double polymers[J]. Hydrogeology & Engineering Geology,2020,47(4):158 − 166. (in Chinese with English abstract)

    ZHU Lijun, PEI Xiangjun, ZHANG Xiaochao, et al. A study of water retention and ecological effects of loess improved by double polymers[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 158-166. (in Chinese with English abstract)

    [18]

    熊路, 申向东, 薛慧君, 等. 水泥固化六价铬污染土力学性能及微观结构研究[J]. 生态与农村环境学报,2018,34(10):946 − 954. [XIONG Lu, SHEN Xiangdong, XUE Huijun, et al. Experimental research of mechanical properties and microstructure of cement solidified hexavalent chromium-contaminated soils[J]. Journal of Ecology and Rural Environment,2018,34(10):946 − 954. (in Chinese with English abstract) doi: 10.11934/j.issn.1673-4831.2018.10.012

    XIONG Lu, SHEN Xiangdong, XUE Huijun, et al. Experimental research of mechanical properties and microstructure of cement solidified hexavalent chromium-contaminated soils[J]. Journal of Ecology and Rural Environment, 2018, 34(10): 946-954. (in Chinese with English abstract) doi: 10.11934/j.issn.1673-4831.2018.10.012

    [19]

    徐日庆, 邓祎文, 徐波, 等. 基于SEM图像的软土三维孔隙率计算及影响因素分析[J]. 岩石力学与工程学报,2015,34(7):1497 − 1502. [XU Riqing, DENG Yiwen, XU Bo, et al. Calculation of three-dimensional porosity of soft soil based on sem image[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(7):1497 − 1502. (in Chinese with English abstract)

    XU Riqing, DENG Yiwen, XU Bo, et al. Calculation of three-dimensional porosity of soft soil based on sem image[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1497-1502. (in Chinese with English abstract)

    [20]

    徐日庆, 邓祎文, 徐波, 等. 基于SEM图像的软土接触面积定量研究[J]. 应用基础与工程科学学报,2016,24(2):295 − 303. [XU Riqing, DENG Yiwen, XU Bo, et al. Soft clay contact area quantitative research based on SEM images[J]. Journal of Basic Science and Engineering,2016,24(2):295 − 303. (in Chinese with English abstract)

    XU Riqing, DENG Yiwen, XU Bo, et al. Soft clay contact area quantitative research based on SEM images[J]. Journal of Basic Science and Engineering, 2016, 24(2): 295-303. (in Chinese with English abstract)

    [21]

    徐日庆, 徐丽阳, 段景川, 等. 软黏土微观结构形貌与定量分析影响因子优化[J]. 中南大学学报(自然科学版),2016,47(8):2723 − 2729. [XU Riqing, XU Liyang, DUAN Jingchuan, et al. Microstructure morphology and optimization of influencing factors in quantitative analysis of soft clay[J]. Journal of Central South University (Science and Technology),2016,47(8):2723 − 2729. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2016.08.025

    XU Riqing, XU Liyang, DUAN Jingchuan, et al. Microstructure morphology and optimization of influencing factors in quantitative analysis of soft clay[J]. Journal of Central South University (Science and Technology), 2016, 47(8): 2723-2729. (in Chinese with English abstract) doi: 10.11817/j.issn.1672-7207.2016.08.025

    [22]

    张先伟, 王常明, 马栋和. 软土微观结构表面起伏的三维可视化及分形维数的计算[J]. 应用基础与工程科学学报,2012,20(1):103 − 112. [ZHANG Xianwei, WANG Changming, MA Donghe. 3D visualization and fractal dimension of soft clay's microstructure surface undulation[J]. Journal of Basic Science and Engineering,2012,20(1):103 − 112. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-0930.2012.01.012

    ZHANG Xianwei, WANG Changming, MA Donghe. 3D visualization and fractal dimension of soft clay's microstructure surface undulation[J]. Journal of Basic Science and Engineering, 2012, 20(1): 103-112. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-0930.2012.01.012

    [23]

    中华人民共和国水利部. 土工试验规程: SL 237—1999[S]. 北京: 中国水利水电出版社, 1999

    Ministry of Water Resources of the People’s Republic of China. Specification of soil test: SL 237—1999[S]. Beijing: China Water Power Press, 1999. (in Chinese)

    [24]

    胡瑞林, 李向全, 官国琳. 粘性土微结构定量模型及其工程地质特征研究[M]. 北京: 地质出版社, 1995

    HU Ruilin, LI Xiangquan, GUAN Guolin. Quantitative microstructure models of clayey soils and their engineering behaviors[M]. Beijing: Geological Publishing House, 1995. (in Chinese)

    [25]

    BURN R P. The fractal geometry of nature[J]. The Mathematical Gazette,1984,68(443):71 − 72.

    [26]

    徐晓鹏, 彭瑞东, 谢和平, 等. 基于SEM图像分维估算的脆性材料细观结构演化方法研究[J]. 岩石力学与工程学报,2004,23(21):3600 − 3603. [XU Xiaopeng, PENG Ruidong, XIE Heping, et al. Analysis on meso-structure evolution of brittle materials based on estimation of fractal demensions of sem images[J]. Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3600 − 3603. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.21.007

    XU Xiaopeng, PENG Ruidong, XIE Heping, et al. Analysis on meso-structure evolution of brittle materials based on estimation of fractal demensions of sem images[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3600-3603. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2004.21.007

    [27]

    MOORE C A, DONALDSON C F. Quantifying soil microstructure using fractals[J]. Géotechnique,1995,45(1):105 − 116.

  • 加载中

(10)

(4)

计量
  • 文章访问数:  1186
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2021-08-19
修回日期:  2021-11-12
刊出日期:  2022-07-25

目录