黄河流域植被时空变化及其与土壤湿度的相关性分析

高萌萌, 李小磊, 杨楠, 王轶, 刘琼, 赵子鑫. 黄河流域植被时空变化及其与土壤湿度的相关性分析[J]. 水文地质工程地质, 2023, 50(3): 172-181. doi: 10.16030/j.cnki.issn.1000-3665.202108051
引用本文: 高萌萌, 李小磊, 杨楠, 王轶, 刘琼, 赵子鑫. 黄河流域植被时空变化及其与土壤湿度的相关性分析[J]. 水文地质工程地质, 2023, 50(3): 172-181. doi: 10.16030/j.cnki.issn.1000-3665.202108051
GAO Mengmeng, LI Xiaolei, YANG Nan, WANG Yi, LIU Qiong, ZHAO Zixin. Spatio-temporal variation of vegetation and its correlation with soil moisture in the Yellow River Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 172-181. doi: 10.16030/j.cnki.issn.1000-3665.202108051
Citation: GAO Mengmeng, LI Xiaolei, YANG Nan, WANG Yi, LIU Qiong, ZHAO Zixin. Spatio-temporal variation of vegetation and its correlation with soil moisture in the Yellow River Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 172-181. doi: 10.16030/j.cnki.issn.1000-3665.202108051

黄河流域植被时空变化及其与土壤湿度的相关性分析

  • 基金项目: 中国地质调查局地质调查项目(DD20190506;DD20221726);国家自然科学基金项目(41702386)
详细信息
    作者简介: 高萌萌(1989-),女,硕士,工程师,主要从事生态水文地质研究工作。E-mail:gaomm@mail.cgs.gov.cn
    通讯作者: 李小磊(1985-),男,硕士,高级工程师,主要从事环境地质、国土空间规划研究工作。E-mail:lixiaolei@mail.cgs.gov.cn
  • 中图分类号: Q948

Spatio-temporal variation of vegetation and its correlation with soil moisture in the Yellow River Basin

More Information
  • 黄河流域连接了青藏高原、黄土高原、内蒙古高原、华北平原,是我国重要的生态屏障。开展黄河流域植被时空变化及其与土壤湿度相关性分析,定量揭示土壤湿度对植被生长的影响,有利于干旱监测及生态环境保护。利用MOD13Q1 NDVI产品和全球陆面数据同化系统(global land data assimilation system,GLDAS)土壤湿度数据,采用Sen+Mann-Kendall趋势检验法和相关性分析法,分析了2000—2020年黄河流域植被时空变化特征及土地利用变化对植被生长的影响,并在流域尺度探索了生长季植被归一化植被指数(NDVI)与不同深度土壤湿度的相关性。结果表明:(1)研究区植被NDVI在空间上呈现“南高北低”的特征,沿黄河径流方向,上游右岸区域植被生长状况明显好于左岸,中下游两岸区域植被生长状况无明显差异。2000—2020年NDVI整体呈增加趋势,从2000年的0.356增加到2020年的0.435。(2)不同用地类型的NDVI由大到小依次为:林地>耕地>草地>未利用地,不同季节NDVI由大到小依次为:夏季>秋季>春季>冬季。(3)研究区大部分区域植被生长状况处于改善和稳定的状态,小部分区域处于退化状态,退化区域的主要原因是草地退化、城市扩张导致耕地退化及耕地转为建设用地。(4)NDVI与不同深度的土壤湿度(0~10 cm、10~40 cm、40~100 cm、100~200 cm)整体呈正相关趋势,相关系数分别为0.535,0.647,0.681,0.619;不同土地利用类型的NDVI与不同深度土壤湿度的相关性有差异,耕地、草地和未利用地NDVI与10~40 cm处的土壤湿度正相关面积最大,而林地NDVI与40~100 cm处的土壤湿度正相关面积最大。相关研究成果可为黄河流域高质量发展提供科学依据。

  • 加载中
  • 图 1  研究区地理位置和高程图

    Figure 1. 

    图 2  研究区2000年和2020年土地利用分布图

    Figure 2. 

    图 3  研究区2020年生长季NDVI分布图

    Figure 3. 

    图 4  研究区2020年不同土地利用类型NDVI统计图

    Figure 4. 

    图 5  研究区2000—2020年NDVI年际变化和四季变化图

    Figure 5. 

    图 6  研究区2000—2020年NDVI变化趋势图

    Figure 6. 

    图 7  研究区2000—2020年植被显著改善和显著退化区域的土地利用转换类型

    Figure 7. 

    图 8  研究区植被显著改善和显著退化区域的主要用地转换类型

    Figure 8. 

    图 9  研究区生长季NDVI与不同深度土壤湿度的相关性空间分布图

    Figure 9. 

    图 10  研究区不同土地利用类型NDVI与土壤湿度相关性面积统计图

    Figure 10. 

    图 11  研究区生长季NDVI与不同深度土壤湿度的相关性拟合图

    Figure 11. 

    表 1  Sen+Mann-Kendall 趋势检验法分类标准

    Table 1.  Classification standard of Sen + Mann Kendall trend test

    指标|Z|>1.96|Z|≤1.96
    >0.001显著改善轻微改善
    −0.001≤≤0.001基本稳定基本稳定
    <−0.001显著退化轻微退化
    下载: 导出CSV

    表 2  研究区2000—2020年植被生长变化趋势面积统计表

    Table 2.  Statistics of the change trend area from 2000 to 2020

    序号变化趋势面积/(104 km2面积占比/%
    1显著改善101.9547.42
    2轻微改善35.9916.74
    3基本稳定63.2529.42
    4轻微退化10.755.00
    5显著退化3.031.41
    下载: 导出CSV

    表 3  研究区NDVI与不同深度土壤湿度相关性面积统计表

    Table 3.  Statistics of the correlation area between NDVI and soil moisture at different depths

    相关性面积占比/%
    0~10 cm10~40 cm40~100 cm100~200 cm平均
    强负相关0.000.040.070.260.09
    中负相关3.634.044.7810.875.83
    弱负相关20.8913.8114.0920.3917.30
    弱正相关38.7728.3427.8929.2031.05
    中正相关36.5951.7051.4638.5844.58
    强正相关0.132.051.720.711.15
    负相关之和24.5217.8918.9431.5223.22
    正相关之和75.4982.0981.0068.4976.79
    下载: 导出CSV
  • [1]

    JIN X M,GUO R H,ZHANG Q,et al. Response of vegetation pattern to different landform and water-table depth in Hailiutu River Basin,Northwestern China[J]. Environmental Earth Sciences,2014,71(11):4889 − 4898. doi: 10.1007/s12665-013-2882-1

    [2]

    FOLEY J A,LEVIS S,COSTA M H,et al. Incorporating dynamic vegetation cover within global climate models[J]. Ecological Applications,2000,10(6):1620 − 1632. doi: 10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2

    [3]

    DUVEILLER G,HOOKER J,CESCATTI A. The mark of vegetation change on Earth’s surface energy balance[J]. Nature Communications,2018,9(1):1 − 12. doi: 10.1038/s41467-017-02088-w

    [4]

    刘明霞,刘友存,陈明,等. 2000—2018年赣江上游植被覆盖度时空演化及其对气候变化的响应[J]. 水土保持通报,2020,40(5):284 − 290. [LIU Mingxia,LIU Youcun,CHEN Ming,et al. Spatiotemporal evolution of vegetation coverage and its response to climate change in upper reaches of Ganjiang River Basin during 2000−2018[J]. Bulletin of Soil and Water Conservation,2020,40(5):284 − 290. (in Chinese with English abstract)

    [5]

    BROCCA L,MELONE F,MORAMARCO T,et al. Soil moisture temporal stability over experimental areas in Central Italy[J]. Geoderma,2009,148(3/4):364 − 374.

    [6]

    WANG Tiejun,SINGH S K,BÁRDOSSY A. On the use of the critical event concept for quantifying soil moisture dynamics[J]. Geoderma,2019,335:27 − 34. doi: 10.1016/j.geoderma.2018.08.013

    [7]

    PORPORATO A,RODRIGUEZ-ITURBE I. Ecohydrology:A challenging multidisciplinary research perspective[J]. Hydrological Sciences Journal,2002,47(5):811 − 822. doi: 10.1080/02626660209492985

    [8]

    王尧,陈睿山,郭迟辉,等. 近40年黄河流域资源环境格局变化分析与地质工作建议[J]. 中国地质,2021,48(1):1 − 20. [WANG Yao,CHEN Ruishan,GUO Chihui,et al. Changes of resource and environmental pattern of the Yellow River Basin in the past 40 years and suggestions on geological work[J]. Geology in China,2021,48(1):1 − 20. (in Chinese with English abstract)

    [9]

    张京,金晓媚,张绪财,等. 格尔木河流域土壤湿度时空变化及其影响因素研究[J]. 水文地质工程地质,2019,46(2):66 − 73. [ZHANG Jing,JIN Xiaomei,ZHANG Xucai,et al. Spatial and temporal variations of soil moisture and its impact factors in the Golmud River Basin[J]. Hydrogeology & Engineering Geology,2019,46(2):66 − 73. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.02.10

    [10]

    金晓媚,张强,杨春杰. 海流兔河流域植被分布与地形地貌及地下水位关系研究[J]. 地学前缘,2013,20(3):227 − 233. [JIN Xiaomei,ZHANG Qiang,YANG Chunjie. Research on vegetation distribution and its relationship with topography and groundwater depth in the Hailiutu River Basin[J]. Earth Science Frontiers,2013,20(3):227 − 233. (in Chinese with English abstract)

    [11]

    PIEDALLU C,CHÉRET V,DENUX J P,et al. Soil and climate differently impact NDVI patterns according to the season and the stand type[J]. Science of the Total Environment,2019,651:2874 − 2885. doi: 10.1016/j.scitotenv.2018.10.052

    [12]

    HONG W Y,PARK M J,PARK J Y,et al. The spatial and temporal correlation analysis between MODIS NDVI and SWAT predicted soil moisture during forest NDVI increasing and decreasing periods[J]. KSCE Journal of Civil Engineering,2010,14(6):931 − 939. doi: 10.1007/s12205-010-0851-8

    [13]

    AHMED M,ELSE B,EKLUNDH L,et al. Dynamic response of NDVI to soil moisture variations during different hydrological regimes in the Sahel region[J]. International Journal of Remote Sensing,2017,38(19):5408 − 5429. doi: 10.1080/01431161.2017.1339920

    [14]

    刘庚,牛俊杰,朱炜歆,等. 黄土丘陵区不同植被土壤水分的分异性特征[J]. 水土保持通报,2014,34(6):83 − 88. [LIU Geng,NIU Junjie,ZHU Weixin,et al. Heterogeneous characteristics of soil moisture of different vegetation types in loess hilly regions[J]. Bulletin of Soil and Water Conservation,2014,34(6):83 − 88. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2014.06.023

    [15]

    FARRAR T J,NICHOLSON S E,LARE A R. The influence of soil type on the relationships between NDVI,rainfall,and soil moisture in semiarid Botswana. II. NDVI response to soil oisture[J]. Remote Sensing of Environment,1994,50(2):121 − 133. doi: 10.1016/0034-4257(94)90039-6

    [16]

    WANG Xianwei,XIE Hongjie,GUAN Huade,et al. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions[J]. Journal of Hydrology,2007,340(1/2):12 − 24.

    [17]

    ZHANG Hongxue,CHANG Jianxia,ZHANG Lianpeng,et al. NDVI dynamic changes and their relationship with meteorological factors and soil moisture[J]. Environmental Earth Sciences,2018,77(16):582. doi: 10.1007/s12665-018-7759-x

    [18]

    张翀,雷田旺,宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报,2018,38(6):2128 − 2138. [ZHANG Chong,LEI Tianwang,SONG Dianxing. Analysis of temporal and spatial characteristics of time lag correlation between the vegetation cover and soil moisture in the Loess Plateau[J]. Acta Ecologica Sinica,2018,38(6):2128 − 2138. (in Chinese with English abstract)

    [19]

    翟雅倩,张翀,周旗,等. 秦巴山区植被覆盖与土壤湿度时空变化特征及其相互关系[J]. 地球信息科学学报,2018,20(7):967 − 977. [ZHAI Yaqian,ZHANG Chong,ZHOU Qi,et al. Spatio-temporal variation and interrelationship of vegetation cover and soil moisture in Qinling-Daba Mountains[J]. Journal of Geo-Information Science,2018,20(7):967 − 977. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2018.170597

    [20]

    郭帅,裴艳茜,胡胜,等. 黄河流域植被指数对气候变化的响应及其与水沙变化的关系[J]. 水土保持通报,2020,40(3):1 − 7. [GUO Shuai,PEI Yanqian,HU Sheng,et al. Response of vegetation index to climate change and their relationship with runoff-sediment change in Yellow River Basin[J]. Bulletin of Soil and Water Conservation,2020,40(3):1 − 7. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2020.03.001

    [21]

    谷佳贺,薛华柱,董国涛,等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理,2021,44(1):158 − 167. [GU Jiahe,XUE Huazhu,DONG Guotao,et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography,2021,44(1):158 − 167. (in Chinese with English abstract) doi: 10.12118/j.issn.10006060.2021.01.17

    [22]

    颜明,贺莉,王随继,等. 基于NDVI的1982—2012年黄河流域多时间尺度植被覆盖变化[J]. 中国水土保持科学,2018,16(3):86 − 94. [YAN Ming,HE Li,WANG Suiji,et al. Changing trends of NDVI in the Yellow River Basin from 1982 to 2012 at different temporal scales[J]. Science of Soil and Water Conservation,2018,16(3):86 − 94. (in Chinese with English abstract) doi: 10.16843/j.sswc.2018.03.011

    [23]

    刘绿柳,肖风劲. 黄河流域植被NDVI与温度、降水关系的时空变化[J]. 生态学杂志,2006,25(5):477 − 481. [LIU Lvliu,XIAO Fengjin. Spatial-temporal correlations of NDVI with precipitation and temperature in Yellow River Basin[J]. Chinese Journal of Ecology,2006,25(5):477 − 481. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4890.2006.05.002

    [24]

    JIN Xiaomei,LIU Jintao,WANG Songtao,et al. Vegetation dynamics and their response to groundwater and climate variables in Qaidam Basin,China[J]. International Journal of Remote Sensing,2016,37(3):710 − 728. doi: 10.1080/01431161.2015.1137648

    [25]

    BIANCHI E,VILLALBA R,SOLARTE A. NDVI spatio-temporal patterns and climatic controls over northern Patagonia[J]. Ecosystems,2020,23(1):84 − 97. doi: 10.1007/s10021-019-00389-3

    [26]

    贺军亮,韦锐,李丽,等. 基于时间序列植被指数资料的承德市植被覆盖时空演变分析[J]. 水文地质工程地质,2020,47(6):91 − 98. [HE Junliang,WEI Rui,LI Li,et al. Temporal and spatial evolution of vegetation cover in Chengde based on time series NDVI data[J]. Hydrogeology & Engineering Geology,2020,47(6):91 − 98. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008019

    [27]

    王家录,李维杰,王勇,等. 2005—2014年重庆石漠化地区NDVI的时空变化及其与气候因子相关性分析[J]. 水土保持研究,2021,28(2):217 − 223. [WANG Jialu,LI Weijie,WANG Yong,et al. Spatial-temporal variation of NDVI and its responses to hydrothermal condition in rocky desertification area of Chongqing City from 2005 to 2014[J]. Research of Soil and Water Conservation,2021,28(2):217 − 223. (in Chinese with English abstract)

    [28]

    RODELL M,HOUSER P R,JAMBOR U,et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society,2004,85(3):381 − 394. doi: 10.1175/BAMS-85-3-381

    [29]

    沈润平,张悦,师春香,等. 长时间序列多源土壤湿度产品在中国地区的比较分析[J]. 气象科技,2016,44(6):867 − 874. [SHEN Runping,ZHANG Yue,SHI Chunxiang,et al. Inter-comparison of various long-time soil moisture datasets in China[J]. Meteorological Science and Technology,2016,44(6):867 − 874. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-6345.2016.06.003

  • 加载中

(11)

(3)

计量
  • 文章访问数:  1617
  • PDF下载数:  58
  • 施引文献:  0
出版历程
收稿日期:  2021-08-24
修回日期:  2021-11-04
刊出日期:  2023-05-15

目录