Spatio-temporal variation of vegetation and its correlation with soil moisture in the Yellow River Basin
-
摘要:
黄河流域连接了青藏高原、黄土高原、内蒙古高原、华北平原,是我国重要的生态屏障。开展黄河流域植被时空变化及其与土壤湿度相关性分析,定量揭示土壤湿度对植被生长的影响,有利于干旱监测及生态环境保护。利用MOD13Q1 NDVI产品和全球陆面数据同化系统(global land data assimilation system,GLDAS)土壤湿度数据,采用Sen+Mann-Kendall趋势检验法和相关性分析法,分析了2000—2020年黄河流域植被时空变化特征及土地利用变化对植被生长的影响,并在流域尺度探索了生长季植被归一化植被指数(NDVI)与不同深度土壤湿度的相关性。结果表明:(1)研究区植被NDVI在空间上呈现“南高北低”的特征,沿黄河径流方向,上游右岸区域植被生长状况明显好于左岸,中下游两岸区域植被生长状况无明显差异。2000—2020年NDVI整体呈增加趋势,从2000年的0.356增加到2020年的0.435。(2)不同用地类型的NDVI由大到小依次为:林地>耕地>草地>未利用地,不同季节NDVI由大到小依次为:夏季>秋季>春季>冬季。(3)研究区大部分区域植被生长状况处于改善和稳定的状态,小部分区域处于退化状态,退化区域的主要原因是草地退化、城市扩张导致耕地退化及耕地转为建设用地。(4)NDVI与不同深度的土壤湿度(0~10 cm、10~40 cm、40~100 cm、100~200 cm)整体呈正相关趋势,相关系数分别为0.535,0.647,0.681,0.619;不同土地利用类型的NDVI与不同深度土壤湿度的相关性有差异,耕地、草地和未利用地NDVI与10~40 cm处的土壤湿度正相关面积最大,而林地NDVI与40~100 cm处的土壤湿度正相关面积最大。相关研究成果可为黄河流域高质量发展提供科学依据。
Abstract:Analyzing the temporal and spatial changes of vegetation and its correlation with soil moisture and quantitatively revealing the impact of soil moisture on vegetation growth are of certain significance for drought monitoring and ecological protection. However, previous quantitative researches on soil moisture and vegetation growth are not enough. Based on MOD13Q1 NDVI products and global land data assimilation system (GLDAS) soil moisture data, Sen + Mann Kendall trend test and correlation analysis are used to analyze the temporal and spatial variation characteristics of vegetation and the impact of land use change on vegetation growth in the Yellow River Basin from 2000 to 2020. The correlation between vegetation and soil moisture at different depths in growing season is explored. The results show that (1) the vegetation growth is characterized by “high in the south and low in the north”. Along the runoff direction of the Yellow River, the vegetation growth on the right bank of the upper reaches is significantly better than that on the left bank, and there is no significant difference in the vegetation growth on the two banks of the middle and lower reaches. The NDVI increases by 22.19% from 2000 to 2020, with the highest value of 0.435 and the lowest value of 0.356. (2) The order of NDVI value of different land use types from large to small is woodland>cultivated land>grassland>unused land. The order of NDVI value of different seasons from large to small is summer>autumn>spring>winter. (3) Most of the vegetation is in the state of improvement and stability, and a small part is in the state of degradation. The main reason for the degradation is grassland degradation, and urban expansion leads to the degradation of cultivated land and the conversion of cultivated land to construction land. (4) NDVI is positively correlated with soil moisture at different depths (0−10 cm, 10−40 cm, 40−100 cm, 100−200 cm), with the correlation coefficients of 0.535, 0.647, 0.681 and 0.619, respectively. The correlation between NDVI of different land use types and soil moisture of different depths is different. The positive correlation area between NDVI and soil moisture of cultivated land, grassland and unused land is the largest at the depth of 10−40 cm, while the positive correlation area between NDVI and soil moisture of forest land is the largest at the depth of 40−100 cm.
-
Key words:
- NDVI /
- soil moisture /
- trend /
- land use /
- Yellow River Basin
-
-
表 1 Sen+Mann-Kendall 趋势检验法分类标准
Table 1. Classification standard of Sen + Mann Kendall trend test
指标 |Z|>1.96 |Z|≤1.96 >0.001
显著改善 轻微改善 −0.001≤ ≤0.001
基本稳定 基本稳定 <−0.001
显著退化 轻微退化 表 2 研究区2000—2020年植被生长变化趋势面积统计表
Table 2. Statistics of the change trend area from 2000 to 2020
序号 变化趋势 面积/(104 km2) 面积占比/% 1 显著改善 101.95 47.42 2 轻微改善 35.99 16.74 3 基本稳定 63.25 29.42 4 轻微退化 10.75 5.00 5 显著退化 3.03 1.41 表 3 研究区NDVI与不同深度土壤湿度相关性面积统计表
Table 3. Statistics of the correlation area between NDVI and soil moisture at different depths
相关性 面积占比/% 0~10 cm 10~40 cm 40~100 cm 100~200 cm 平均 强负相关 0.00 0.04 0.07 0.26 0.09 中负相关 3.63 4.04 4.78 10.87 5.83 弱负相关 20.89 13.81 14.09 20.39 17.30 弱正相关 38.77 28.34 27.89 29.20 31.05 中正相关 36.59 51.70 51.46 38.58 44.58 强正相关 0.13 2.05 1.72 0.71 1.15 负相关之和 24.52 17.89 18.94 31.52 23.22 正相关之和 75.49 82.09 81.00 68.49 76.79 -
[1] JIN X M,GUO R H,ZHANG Q,et al. Response of vegetation pattern to different landform and water-table depth in Hailiutu River Basin,Northwestern China[J]. Environmental Earth Sciences,2014,71(11):4889 − 4898. doi: 10.1007/s12665-013-2882-1
[2] FOLEY J A,LEVIS S,COSTA M H,et al. Incorporating dynamic vegetation cover within global climate models[J]. Ecological Applications,2000,10(6):1620 − 1632. doi: 10.1890/1051-0761(2000)010[1620:IDVCWG]2.0.CO;2
[3] DUVEILLER G,HOOKER J,CESCATTI A. The mark of vegetation change on Earth’s surface energy balance[J]. Nature Communications,2018,9(1):1 − 12. doi: 10.1038/s41467-017-02088-w
[4] 刘明霞,刘友存,陈明,等. 2000—2018年赣江上游植被覆盖度时空演化及其对气候变化的响应[J]. 水土保持通报,2020,40(5):284 − 290. [LIU Mingxia,LIU Youcun,CHEN Ming,et al. Spatiotemporal evolution of vegetation coverage and its response to climate change in upper reaches of Ganjiang River Basin during 2000−2018[J]. Bulletin of Soil and Water Conservation,2020,40(5):284 − 290. (in Chinese with English abstract)
[5] BROCCA L,MELONE F,MORAMARCO T,et al. Soil moisture temporal stability over experimental areas in Central Italy[J]. Geoderma,2009,148(3/4):364 − 374.
[6] WANG Tiejun,SINGH S K,BÁRDOSSY A. On the use of the critical event concept for quantifying soil moisture dynamics[J]. Geoderma,2019,335:27 − 34. doi: 10.1016/j.geoderma.2018.08.013
[7] PORPORATO A,RODRIGUEZ-ITURBE I. Ecohydrology:A challenging multidisciplinary research perspective[J]. Hydrological Sciences Journal,2002,47(5):811 − 822. doi: 10.1080/02626660209492985
[8] 王尧,陈睿山,郭迟辉,等. 近40年黄河流域资源环境格局变化分析与地质工作建议[J]. 中国地质,2021,48(1):1 − 20. [WANG Yao,CHEN Ruishan,GUO Chihui,et al. Changes of resource and environmental pattern of the Yellow River Basin in the past 40 years and suggestions on geological work[J]. Geology in China,2021,48(1):1 − 20. (in Chinese with English abstract)
[9] 张京,金晓媚,张绪财,等. 格尔木河流域土壤湿度时空变化及其影响因素研究[J]. 水文地质工程地质,2019,46(2):66 − 73. [ZHANG Jing,JIN Xiaomei,ZHANG Xucai,et al. Spatial and temporal variations of soil moisture and its impact factors in the Golmud River Basin[J]. Hydrogeology & Engineering Geology,2019,46(2):66 − 73. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.02.10
[10] 金晓媚,张强,杨春杰. 海流兔河流域植被分布与地形地貌及地下水位关系研究[J]. 地学前缘,2013,20(3):227 − 233. [JIN Xiaomei,ZHANG Qiang,YANG Chunjie. Research on vegetation distribution and its relationship with topography and groundwater depth in the Hailiutu River Basin[J]. Earth Science Frontiers,2013,20(3):227 − 233. (in Chinese with English abstract)
[11] PIEDALLU C,CHÉRET V,DENUX J P,et al. Soil and climate differently impact NDVI patterns according to the season and the stand type[J]. Science of the Total Environment,2019,651:2874 − 2885. doi: 10.1016/j.scitotenv.2018.10.052
[12] HONG W Y,PARK M J,PARK J Y,et al. The spatial and temporal correlation analysis between MODIS NDVI and SWAT predicted soil moisture during forest NDVI increasing and decreasing periods[J]. KSCE Journal of Civil Engineering,2010,14(6):931 − 939. doi: 10.1007/s12205-010-0851-8
[13] AHMED M,ELSE B,EKLUNDH L,et al. Dynamic response of NDVI to soil moisture variations during different hydrological regimes in the Sahel region[J]. International Journal of Remote Sensing,2017,38(19):5408 − 5429. doi: 10.1080/01431161.2017.1339920
[14] 刘庚,牛俊杰,朱炜歆,等. 黄土丘陵区不同植被土壤水分的分异性特征[J]. 水土保持通报,2014,34(6):83 − 88. [LIU Geng,NIU Junjie,ZHU Weixin,et al. Heterogeneous characteristics of soil moisture of different vegetation types in loess hilly regions[J]. Bulletin of Soil and Water Conservation,2014,34(6):83 − 88. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2014.06.023
[15] FARRAR T J,NICHOLSON S E,LARE A R. The influence of soil type on the relationships between NDVI,rainfall,and soil moisture in semiarid Botswana. II. NDVI response to soil oisture[J]. Remote Sensing of Environment,1994,50(2):121 − 133. doi: 10.1016/0034-4257(94)90039-6
[16] WANG Xianwei,XIE Hongjie,GUAN Huade,et al. Different responses of MODIS-derived NDVI to root-zone soil moisture in semi-arid and humid regions[J]. Journal of Hydrology,2007,340(1/2):12 − 24.
[17] ZHANG Hongxue,CHANG Jianxia,ZHANG Lianpeng,et al. NDVI dynamic changes and their relationship with meteorological factors and soil moisture[J]. Environmental Earth Sciences,2018,77(16):582. doi: 10.1007/s12665-018-7759-x
[18] 张翀,雷田旺,宋佃星. 黄土高原植被覆盖与土壤湿度的时滞关联及时空特征分析[J]. 生态学报,2018,38(6):2128 − 2138. [ZHANG Chong,LEI Tianwang,SONG Dianxing. Analysis of temporal and spatial characteristics of time lag correlation between the vegetation cover and soil moisture in the Loess Plateau[J]. Acta Ecologica Sinica,2018,38(6):2128 − 2138. (in Chinese with English abstract)
[19] 翟雅倩,张翀,周旗,等. 秦巴山区植被覆盖与土壤湿度时空变化特征及其相互关系[J]. 地球信息科学学报,2018,20(7):967 − 977. [ZHAI Yaqian,ZHANG Chong,ZHOU Qi,et al. Spatio-temporal variation and interrelationship of vegetation cover and soil moisture in Qinling-Daba Mountains[J]. Journal of Geo-Information Science,2018,20(7):967 − 977. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2018.170597
[20] 郭帅,裴艳茜,胡胜,等. 黄河流域植被指数对气候变化的响应及其与水沙变化的关系[J]. 水土保持通报,2020,40(3):1 − 7. [GUO Shuai,PEI Yanqian,HU Sheng,et al. Response of vegetation index to climate change and their relationship with runoff-sediment change in Yellow River Basin[J]. Bulletin of Soil and Water Conservation,2020,40(3):1 − 7. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2020.03.001
[21] 谷佳贺,薛华柱,董国涛,等. 黄河流域NDVI/土地利用对蒸散发时空变化的影响[J]. 干旱区地理,2021,44(1):158 − 167. [GU Jiahe,XUE Huazhu,DONG Guotao,et al. Effects of NDVI/land-use on spatiotemporal changes of evapotranspiration in the Yellow River Basin[J]. Arid Land Geography,2021,44(1):158 − 167. (in Chinese with English abstract) doi: 10.12118/j.issn.10006060.2021.01.17
[22] 颜明,贺莉,王随继,等. 基于NDVI的1982—2012年黄河流域多时间尺度植被覆盖变化[J]. 中国水土保持科学,2018,16(3):86 − 94. [YAN Ming,HE Li,WANG Suiji,et al. Changing trends of NDVI in the Yellow River Basin from 1982 to 2012 at different temporal scales[J]. Science of Soil and Water Conservation,2018,16(3):86 − 94. (in Chinese with English abstract) doi: 10.16843/j.sswc.2018.03.011
[23] 刘绿柳,肖风劲. 黄河流域植被NDVI与温度、降水关系的时空变化[J]. 生态学杂志,2006,25(5):477 − 481. [LIU Lvliu,XIAO Fengjin. Spatial-temporal correlations of NDVI with precipitation and temperature in Yellow River Basin[J]. Chinese Journal of Ecology,2006,25(5):477 − 481. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4890.2006.05.002
[24] JIN Xiaomei,LIU Jintao,WANG Songtao,et al. Vegetation dynamics and their response to groundwater and climate variables in Qaidam Basin,China[J]. International Journal of Remote Sensing,2016,37(3):710 − 728. doi: 10.1080/01431161.2015.1137648
[25] BIANCHI E,VILLALBA R,SOLARTE A. NDVI spatio-temporal patterns and climatic controls over northern Patagonia[J]. Ecosystems,2020,23(1):84 − 97. doi: 10.1007/s10021-019-00389-3
[26] 贺军亮,韦锐,李丽,等. 基于时间序列植被指数资料的承德市植被覆盖时空演变分析[J]. 水文地质工程地质,2020,47(6):91 − 98. [HE Junliang,WEI Rui,LI Li,et al. Temporal and spatial evolution of vegetation cover in Chengde based on time series NDVI data[J]. Hydrogeology & Engineering Geology,2020,47(6):91 − 98. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202008019
[27] 王家录,李维杰,王勇,等. 2005—2014年重庆石漠化地区NDVI的时空变化及其与气候因子相关性分析[J]. 水土保持研究,2021,28(2):217 − 223. [WANG Jialu,LI Weijie,WANG Yong,et al. Spatial-temporal variation of NDVI and its responses to hydrothermal condition in rocky desertification area of Chongqing City from 2005 to 2014[J]. Research of Soil and Water Conservation,2021,28(2):217 − 223. (in Chinese with English abstract)
[28] RODELL M,HOUSER P R,JAMBOR U,et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society,2004,85(3):381 − 394. doi: 10.1175/BAMS-85-3-381
[29] 沈润平,张悦,师春香,等. 长时间序列多源土壤湿度产品在中国地区的比较分析[J]. 气象科技,2016,44(6):867 − 874. [SHEN Runping,ZHANG Yue,SHI Chunxiang,et al. Inter-comparison of various long-time soil moisture datasets in China[J]. Meteorological Science and Technology,2016,44(6):867 − 874. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-6345.2016.06.003
-