An analysis of non-penetration cracks in anti-dip rock slope based on centrifugal test
-
摘要:
坡体内不同部位结构面间岩桥断裂扩展导致了反倾层状岩坡的破坏。为研究坡体内非贯通性裂缝断裂扩展对坡体演化的控制作用,以苗尾水电站右坝肩倾倒变形体为地质原型,开展含多组非贯通性裂缝的反倾层状岩质边坡离心模型试验,分析反倾层状岩质边坡内非贯通性裂缝变形特性。结果表明:(1)坡体内含非贯通性裂缝的岩层断裂最终呈现为裂缝间岩桥贯通、缓倾裂缝与上岩层贯通、陡倾裂缝与下岩层贯通、陡倾裂缝与缓倾裂缝端口处贯通及非裂缝处岩层发生断裂等5类裂缝断裂模式,并以裂缝间岩桥贯通为主要断裂模式;(2)基于断裂力学并结合裂缝断裂叠加原理,主折断面处岩层的不稳定系数在坡高1/3处最小,并向坡脚和坡顶两侧逐渐变大,而应力强度因子由坡高1/3处向坡脚和坡顶处逐渐变小;(3)裂缝的断裂扩展控制着坡体演化,并受裂纹率及裂缝周围的尖端应力场影响较大。在坡体演化初期,以坡体后缘压缩沉降和局部岩层裂缝压剪破坏为主,岩层倾角发生较大变化,呈现由坡体上部往下逐级变大的趋势;演化中期,坡体后缘裂缝扩展形成主折断面,坡体中上部岩层角度变化较大,裂缝断裂数目的继续增加;演化末期,裂缝断裂数目保持平稳,主要以断裂岩层的位置重分布为主要变形特征,次级折断面形成,破碎岩层之间进一步被压缩,坡体进一步发生失稳破坏。
Abstract:The fracture extension of rock bridges between structural surfaces in different parts of the slope leads to the damage of the anti-dipping laminated rock slope. In order to study the controlling effect of fracture extension of non-penetrating fractures in the slope on the evolution of the slope, the centrifugal model test of the anti-dipping laminated rock slope containing multiple groups of non-penetrating fractures is carried out with the right shoulder of the Miaowei Hydropower Station as the geological prototype to analyze the deformation characteristics of non-penetrating fractures in the anti-dipping laminated rock slope. The results show that the fractures of rock formations containing non-penetrating fractures within the slope finally show five types of fracture patterns, including inter-fracture bridge penetration, penetration between gently dipping fractures and the upper rock layer, penetration between steeply dipping fractures and the lower rock layer, penetration between steeply dipping fractures and the port of gently dipping fractures, and fracture of rock layers at non-fractures, with inter-fracture bridge penetration as the main fracture pattern. Based on fracture mechanics and combined with the principle of fracture superposition, it is found that the instability factor of the rock layer at the main fracture section is the smallest at 1/3 of the slope height and gradually becomes larger towards the foot and both sides of the slope top, while the stress intensity factor gradually decreases from 1/3 of the slope height to the foot and the top of the slope. The fracture extension of cracks controls the slope evolution and is greatly influenced by the crack rate and the tip stress field around the cracks. At the early stage of slope evolution, the compression and settlement of the back edge of the slope and the compression and shear damage of the local rock cracks are the main features, and the dip angle of the rock layers changes greatly, showing a trend of becoming larger from the upper part of the slope to the lower part of the slope. At the middle of the evolution, the fracture extension of the back edge of the slope forms the main fracture surface, and the angle of the rock layers in the middle and upper part of the slope changes greatly. At the end of the evolution, the number of fractures remains stable, and the main deformation feature is characterized by the redistribution of the location of fractured rock layers, the formation of secondary fracture surfaces, further compression between broken rock layers, and further destabilization of the slope body.
-
表 1 原型及相似材料基本物理力学参数
Table 1. Basic physical and mechanical parameters of similar materials
材料种类 密度
/(kg·m−3)弹性模量/MPa 抗压强度/MPa 黏聚力/kPa 内摩擦角/(°) 原型岩石 2 670 1 160 25.19 − − 模型岩石 2 600 1 155 16.19 − − 原型黏结材料 − − − 28 36 模型黏结材料 − − − 29 34 注:“−”表示无法获得 -
[1] 黄达,马昊,孟秋杰,等. 软硬互层岩质反倾边坡弯曲倾倒离心模型试验与数值模拟研究[J]. 岩土工程学报,2020,42(7):1286 − 1295. [HUANG Da,MA Hao,MENG Qiujie,et al. Centrifugal model test and numerical simulation for anaclinal rock slopes with soft-hard interbedded structures[J]. Chinese Journal of Geotechnical Engineering,2020,42(7):1286 − 1295. (in Chinese with English abstract)
[2] 黄达, 马昊, 石林. 反倾层状岩质边坡倾倒变形机理与影响因素的离散元模拟[J]. 吉林大学学报(地球科学版),2021,51(6):1770 − 1782. [HUANG Da, MA Hao, SHI Lin. Discrete element simulation of toppling mechanism and influencing factors of anti-dip layered rock slope[J]. Journal of Jilin University (Earth Science Edition),2021,51(6):1770 − 1782. (in Chinese with English abstract)
[3] 吴昊,赵维,年廷凯,等. 反倾层状岩质边坡倾倒破坏的离心模型试验研究[J]. 水利学报,2018,49(2):223 − 231. [WU Hao,ZHAO Wei,NIAN Tingkai,et al. Study on the anti-dip layered rock slope toppling failure based on centrifuge model test[J]. Journal of Hydraulic Engineering,2018,49(2):223 − 231. (in Chinese with English abstract)
[4] 姚晔,章广成,陈鸿杰,等. 反倾层状碎裂结构岩质边坡破坏机制研究[J]. 岩石力学与工程学报,2021,40(2):365 − 381. [YAO Ye,ZHANG Guangcheng,CHEN Hongjie,et al. Study on the failure mechanisms of counter-tilt rock slopes with layered cataclastic structure[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(2):365 − 381. (in Chinese with English abstract)
[5] 陶志刚,任树林,郝宇,等. 层状反倾边坡破坏机制及NPR锚索控制效果物理模型试验[J]. 岩土力学,2021,42(4):976 − 990. [TAO Zhigang,REN Shulin,HAO Yu,et al. Physical model experiment on failure mechanism and NPR anchor cable control effect of layered counter-tilt slope[J]. Rock and Soil Mechanics,2021,42(4):976 − 990. (in Chinese with English abstract)
[6] 郑达,张硕,郑光. 基于坡角变化的反倾层状岩质斜坡倾倒变形离心模型试验研究[J]. 岩土工程学报,2021,43(3):439 − 447. [ZHENG Da,ZHANG Shuo,ZHENG Guang. Centrifugal model tests on toppling deformation of counter-tilt layered rock slopes based on change of slope angle[J]. Chinese Journal of Geotechnical Engineering,2021,43(3):439 − 447. (in Chinese with English abstract)
[7] 郑达,毛峰,王沁沅,等. 上硬下软反倾边坡开挖变形响应的物理模拟[J]. 水文地质工程地质,2019,46(5):89 − 95. [ZHENG Da,MAO Feng,WANG Qinyuan,et al. Physical simulation of the excavation deformation response of counter-tilt slope with rigid layers on the soft[J]. Hydrogeology & Engineering Geology,2019,46(5):89 − 95. (in Chinese with English abstract)
[8] 郑达,王沁沅,毛峰,等. 反倾层状岩质边坡深层倾倒变形关键致灾因子及成灾模式的离心试验研究[J]. 岩石力学与工程学报,2019,38(10):1954 − 1963. [ZHENG Da,WANG Qinyuan,MAO Feng,et al. Centrifuge model test study on key hazard-inducing factors of deep toppling deformation and disaster patterns of counter-tilt layered rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):1954 − 1963. (in Chinese with English abstract)
[9] 杨国香,叶海林,伍法权,等. 反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究[J]. 岩石力学与工程学报,2012,31(11):2214 − 2221. [YANG Guoxiang,YE Hailin,WU Faquan,et al. Shaking table model test on dynamic response characteristics and failure mechanism of antidip layered rock slope[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(11):2214 − 2221. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6915.2012.11.009
[10] 李祥龙,唐辉明. 逆层岩质边坡地震动力破坏离心机试验研究[J]. 岩土工程学报,2014,36(4):687 − 694. [LI Xianglong,TANG Huiming. Dynamic centrifugal modelling tests on toppling rock slopes[J]. Chinese Journal of Geotechnical Engineering,2014,36(4):687 − 694. (in Chinese with English abstract) doi: 10.11779/CJGE201404013
[11] ZHANG J H,CHEN Z Y,WANG X G. Centrifuge modeling of rock slopes susceptible to block toppling[J]. Rock Mechanics and Rock Engineering,2006,40(4):363 − 382.
[12] CHEN Z,GONG W,MA G,et al. Comparisons between centrifuge and numerical modeling results for slope toppling failure[J]. Science China Technological Sciences,2015,58(9):1497 − 1508. doi: 10.1007/s11431-015-5889-x
[13] 代仲海, 胡再强, 尹小涛, 等. 工程荷载作用下缓倾角反倾似层状岩质边坡变形稳定性分析[J]. 岩土力学, 2018, 39(增刊1): 412 − 418
DAI Zhonghai, HU Zaiqiang, YIN Xiaotao, et al. Deformation stability analysis of gentle reverse inclined layer-like rock slope under engineering load[J] Rock and Soil Mechanics, 2018, 39(Sup 1): 412 − 418. (in Chinese with English abstract)
[14] 吴季寰, 张春山, 孟华君, 等. 抚顺西露天矿区滑坡易发性评价与时空特征分析[J]. 地质力学学报, 2021, 27(3): 409 − 417.
WU Jihuan, ZHANG Chunshan, MENG Huajun, et al. Temporal and spatial characteristics of landslide susceptibility in the west open-pit mining area, Fushun, China[J]. Journal of Geomechanics, 2021, 27(3): 409 − 417. (in Chinese with English abstract)
[15] 高旭,晏鄂川,张世殊,等. 弯曲倾倒模式下薄层状反倾岩质边坡锚固力研究[J]. 中南大学学报(自然科学版),2017,48(10):2790 − 2799. [GAO Xu,YAN Echuan,ZHANG Shishu, et al. Research on anchorage force of a thin layered anti-dip rock slope under bending and toppling mode[J]. Journal of Central South University (Science and Technology),2017,48(10):2790 − 2799. (in Chinese with English abstract)
[16] 岑夺丰,黄达,黄润秋. 块裂反倾巨厚层状岩质边坡变形破坏颗粒流模拟及稳定性分析[J]. 中南大学学报(自然科学版),2016,47(3):984 − 993. [CEN Duofeng,HUANG Da,HUANG Runqiu. Simulation of deformation and failure for blocky anti-dip thick-layered rock slopes using particle flow code and analysis on its stability[J]. Journal of Central South University (Science and Technology),2016,47(3):984 − 993. (in Chinese with English abstract)
[17] 胡康,任光明,常文娟,等. 基于节理不确定性的可靠度分析—以西藏某岩质边坡为例[J]. 中国地质灾害与防治学报,2022,33(2):53 − 60. [HU Kang, REN Guangming, CHANG Wenjuan, et al. Reliability analysis based on joint uncertainty:A case study of a rock slope in Tibet[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):53 − 60. (in Chinese with English abstract)
[18] 蔡静森, 晏鄂川, 王章琼, 等. 反倾层状岩质边坡悬臂梁极限平衡模型研究[J]. 岩土力学, 2014, 35(增刊1): 15 − 28
CAI Jingsen, YAN Echuan, WANG Zhangqiong, et al. Study of cantilever beam limit equilibrium model of anti-dip layered rock slopes[J]. Rock and Soil Mechanics, 2014, 35(Sup1): 15 − 28. (in Chinese with English abstract)
[19] 王宇, 李晓, 王梦瑶, 等. 反倾岩质边坡变形破坏的节理有限元模拟计算[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3945 − 3953
WANG Yu, LI Xiao, WANG Mengyao, et al. Failure mechanism of topping rock slope using jointed finite element simulation method[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Sup2): 3945 − 3953. (in Chinese with English abstract)
[20] 程东幸,刘大安,丁恩保,等. 层状反倾岩质边坡影响因素及反倾条件分析[J]. 岩土工程学报,2005,27(11):1362 − 1366. [CHENG Dongxing,LIU Daan,DING Enbao, et al. Analysis on influential factors and toppling conditions of toppling rock slope[J]. Chinese Journal of Geotechnical Engineering,2005,27(11):1362 − 1366. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2005.11.027
[21] ALZO’UBI A K,MARTIN C D,CRUDEN D M. Influence of tensile strength on toppling failure in centrifuge tests[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47(6):974 − 982.
[22] MAJDI A, AMINI M. Analysis of geo-structural defects in flexural toppling failure[J]. International Journal of Rock Mechanics & Mining Sciences, 201l, 48(2): 175 − 186.
[23] 马文著,徐衍,李晓雷,等. 基于黏聚力裂缝模型的反倾层状岩质边坡倾倒破坏模拟[J]. 水文地质工程地质,2020,47(5):150 − 160. [MA Wenzhu,XU Yan,LI Xiaolei,et al. A numerical study of the toppling failure of an anti-dip layered rock slope based on a cohesive crack model[J]. Hydrogeology & Engineering Geology,2020,47(5):150 − 160. (in Chinese with English abstract)
[24] 李彦奇,黄达,孟秋杰. 基于离心机和数值模拟的软硬互层反倾层状岩质边坡变形特征分析[J]. 水文地质工程地质,2021,48(4):141 − 150. [LI Yanqi,HUANG Da,MENG Qiujie. An analysis of the deformation characteristics of soft-hard interbedded anti-tilting layered rock slope based on centrifuge and numerical simulation[J]. Hydrogeology & Engineering Geology,2021,48(4):141 − 150. (in Chinese with English abstract)
[25] 游昆骏. 澜沧江苗尾水电站右坝肩边坡倾倒岩体开挖变形响应及稳定性研究[D]. 成都: 成都理工大学, 2014
YOU Kunjun. Study on deformation response and stability of toppling deformation rock by excavation at right bank abutment of Miaowei Hydropower Station on Lancang river[D]. Chengdu: Chengdu University of Technology, 2014. (in Chinese with English abstract)
[26] 郑达,唐劲松. 基于离心试验的边坡倾倒变形下弯折带演化特征[J]. 西南交通大学学报,2021,56(6):1232 − 1240. [ZHENG Da,TANG Jingsong. Slope toppling deformation and development characteristics of bending belts by centrifugal model test[J]. Journal of Southwest Jiaotong University,2021,56(6):1232 − 1240. (in Chinese with English abstract)
[27] 穆成林,裴向军,王睿,等. 基于物理模型试验的含多层软弱夹层顺层开挖高边坡变形破坏特征分析[J]. 中国地质灾害与防治学报,2022,33(3):61 − 67. [MU Chenglin, PEI Xiangjun, WANG Rui, et al. Analysis on deformation characteristics of a cutting high bedding rock slope with multiple weak layers based on physical model tests[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):61 − 67. (in Chinese with English abstract)
[28] 黄润秋,李渝生,严明. 斜坡倾倒变形的工程地质分析[J]. 工程地质学报,2017,25(5):1165 − 1181. [HUANG Runqiu,LI Yusheng,YAN Ming. The implication and evaluation of toppling failure in engineering geology practice[J]. Journal of Engineering Geology,2017,25(5):1165 − 1181. (in Chinese with English abstract)
[29] 黄建安,王思敬. 含断续节理岩体的断裂力学数值分析[J]. 岩土工程学报,1983,5(3):39 − 52. [HUANG Jian’an,WANG Sijing. Numerical analysis of fracture mechanics for rock mass with discrete joints[J]. Chinese Journal of Geotechnical Engineering,1983,5(3):39 − 52. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1983.03.004
[30] 王建明,陈忠辉,张凌凡,等. 反倾层状岩质边坡失稳的断裂力学分析[J]. 计算力学学报,2020,37(1):75 − 82. [WANG Jianming,CHEN Zhonghui,ZHANG Lingfan,et al. Instability mechanism of counter-tilt layered rock slope by fracture mechanics analysis[J]. Chinese Journal of Computational Mechanics,2020,37(1):75 − 82. (in Chinese with English abstract) doi: 10.7511/jslx20181121003