离子侵蚀下注浆结石体劣化机理分析

易富, 姜旭桐, 李军, 金洪松. 离子侵蚀下注浆结石体劣化机理分析[J]. 水文地质工程地质, 2022, 49(6): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202109005
引用本文: 易富, 姜旭桐, 李军, 金洪松. 离子侵蚀下注浆结石体劣化机理分析[J]. 水文地质工程地质, 2022, 49(6): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202109005
YI Fu, JIANG Xutong, LI Jun, JIN Hongsong. An analysis of the deterioration mechanism of a grouting stone under the ion erosion[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202109005
Citation: YI Fu, JIANG Xutong, LI Jun, JIN Hongsong. An analysis of the deterioration mechanism of a grouting stone under the ion erosion[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 200-208. doi: 10.16030/j.cnki.issn.1000-3665.202109005

离子侵蚀下注浆结石体劣化机理分析

  • 基金项目: 国家自然科学基金项目(51774163);辽宁工程技术大学 “双一流”学科建设创新团队项目(LNTU20TD-26)
详细信息
    作者简介: 易富(1978-),男,博士,教授,主要从事固废资源化研究。E-mail:yifu9716@163.com
    通讯作者: 姜旭桐(1996-),男,硕士研究生,主要从事矿山边坡稳定性研究。E-mail:lyjxt112526@163.com
  • 中图分类号: TU578

An analysis of the deterioration mechanism of a grouting stone under the ion erosion

More Information
  • 针对水泥-水玻璃注浆结石体(C-S结石体)在离子侵蚀环境下劣化机理研究较少之问题,通过无侧限抗压强度试验,分析了C-S结石体在3种不同浓度的硫酸盐、氯盐及二者混合液侵蚀后,不同龄期条件下的宏观力学性能变化规律;采用SEM、EDS和XRD相结合的方法观察C-S结石体细观结构及化学成分变化,揭示C-S结石体离子侵蚀损伤机理。研究结果表明:(1)侵蚀时间少于28 d时,离子溶液对C-S结石体强度增长并未产生明显影响;(2)侵蚀时间28 d到90 d时,高浓度离子溶液中C-S结石体劣化显著,${\rm{ SO}}_4^{2-} $离子溶液浓度20 g/L时,C-S结石体90 d强度值仅为28 d强度值的2.43%;(3)C-S结石体受离子侵蚀后,Ca2+离子析出,破坏了内部的溶解动态平衡,导致其内部发生改变,无侧限抗压强度大幅度折减;(4)C-S结石体受离子侵蚀影响主要以${\rm{ SO}}_4^{2-} $侵蚀为主,相同离子浓度侵蚀损伤程度为:${\rm{ SO}}_4^{2-}$>${\rm{ SO}}_4^{2-} $ & ${\rm{Cl}}^- $混合液>${\rm{Cl}}^- $>清水。研究结果可为海水倒灌、地下水污染等具有离子侵蚀环境条件下的注浆结石体劣化防治提供参考依据。

  • 加载中
  • 图 1  C-S结石体侵蚀试验

    Figure 1. 

    图 2  不同离子浓度侵蚀下C-S结石体强度变化规律

    Figure 2. 

    图 3  离子浓度20 g/L时侵蚀28 d C-S结石体表观形态

    Figure 3. 

    图 4  离子浓度20 g/L时侵蚀90 d C-S结石体表观形态

    Figure 4. 

    图 6  浓度20 g/L 时${\bf{SO}}_{\boldsymbol{4}}^{{\boldsymbol{2}}-}$离子侵蚀条件下C-S结石体细观图像

    Figure 6. 

    图 7  浓度20 g/L时 ${\bf{Cl}}^{\boldsymbol{-}}$离子侵蚀条件下C-S结石体细观图像

    Figure 7. 

    图 8  浓度20 g/L时 ${\bf{SO}}_{\boldsymbol{4}}^{{\boldsymbol{2}}-}$ & ${\bf{Cl}}^{\boldsymbol{-}}$混合液侵蚀条件下C-S结石体细观图像

    Figure 8. 

    图 9  20 g/L不同离子溶液侵蚀90 d EDS面扫Ca2+离子数量分布

    Figure 9. 

    图 5  清水浸泡条件下C-S结石体细观图像

    Figure 5. 

    图 10  浓度20 g/L时不同盐溶液侵蚀90 d后的XRD能谱图

    Figure 10. 

    图 11  ${\bf{SO}}_{\boldsymbol{4}}^{{\boldsymbol{2}}-} $离子和${\bf{Cl}}^{\boldsymbol{-}} $离子侵蚀C-S结石体过程示意图

    Figure 11. 

  • [1]

    巫茂寅,王起才,张戎令,等. 复合水泥基-水玻璃双液注浆材料胶凝性能及抗压强度试验研究[J]. 硅酸盐通报,2016,35(9):2741 − 2746. [WU Maoyin,WANG Qicai,ZHANG Rongling,et al. Cementing performance and compressive strength of complex cementitions-sodium silicate two-shot grouting materials[J]. Bulletin of the Chinese Ceramic Society,2016,35(9):2741 − 2746. (in Chinese with English abstract)

    [2]

    杨建康,陆海军,李继祥,等. 水泥-水玻璃双液注浆材料工程性能及孔隙结构[J]. 大连理工大学学报,2016,56(3):252 − 256. [YANG Jiankang,LU Haijun,LI Jixiang,et al. Engineering properties and pore structure of cement-sodium silicate double solution grouting material[J]. Journal of Dalian University of Technology,2016,56(3):252 − 256. (in Chinese with English abstract)

    [3]

    ELAHI M M A, SHEARER C R, NASER RASHID REZA A, et al. Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review[J]. Construction and Building Materials, 2021, 281: 122628.

    [4]

    CHANG H L, JIN Z Q, WANG Penggang, et al. Comprehensive resistance of fair-faced concrete suffering from sulfate attack under marine environments[J]. Construction and Building Materials, 2021, 277: 122312.

    [5]

    KAUFMANN J, LOSER R, WINNEFELD F, et al. Sulfate resistance and phase composition of shotcrete[J]. Tunnelling and Underground Space Technology, 2021, 109: 103760.

    [6]

    王洪波. 海水侵蚀—渗流作用下砂层注浆扩散加固与劣化机理及应用[D]. 济南: 山东大学, 2019

    WANG Hongbo. Study on penetration, reinforcement and deterioration mechanism of grouting in sand layer under seawater erosion-seepage and its application[D]. Jinan: Shandong University, 2019. (in Chinese with English abstract)

    [7]

    刘赞群,裴敏,张丰燕,等. 半浸泡在Na2SO4溶液中水泥净浆不同部位化学侵蚀产物对比[J]. 建筑材料学报,2020,23(3):485 − 492. [LIU Zanqun,PEI Min,ZHANG Fengyan,et al. Comparison of chemical attack products in different zones of cement paste partially immersed in Na2SO4 solution[J]. Journal of Building Materials,2020,23(3):485 − 492. (in Chinese with English abstract)

    [8]

    段德峰,黄显冲,王晓川. 受硫酸盐腐蚀混凝土微观结构分析[J]. 四川建筑科学研究,2015,41(2):202 − 207. [DUAN Defeng,HUANG Xianchong,WANG Xiaochuan. Microstructure analysis of concrete under sulfate corrosion[J]. Sichuan Building Science,2015,41(2):202 − 207. (in Chinese with English abstract)

    [9]

    马向楠. 盐溶液侵蚀作用下涂层防护混凝土耐久性研究[D]. 沈阳: 沈阳建筑大学, 2019

    MA Xiangnan. Study on durability of coated protective concrete under salt solution erosion[D]. Shenyang: Shenyang Jianzhu University, 2019. (in Chinese with English abstract)

    [10]

    陈旭鹏, 庞建勇. 偏高岭土对混凝土抗复合盐侵蚀性能的研究[J]. 非金属矿, 2021, 44(1): 78 − 80

    CHEN Xupeng, PANG Jianyong. Study on resistance of metakaolin to composite salt erosion of concrete[J]. Non-Metallic Mines, 2021, 44(1): 78 − 80. (in Chinese with English abstract)

    [11]

    贺洪坤, 王超. 硫酸盐-氯盐侵蚀对充填体稳定性的影响试验研究[J]. 煤矿安全, 2021, 52(5): 54 − 58

    HE Hongkun, WANG Chao. Experimental study on stability of backfill by sulfate and chloride erosion[J]. Safety in Coal Mines, 2021, 52(5): 54 − 58. (in Chinese with English abstract)

    [12]

    张广泰, 陈勇, 鲁海波, 等. 硫酸盐侵蚀作用下纤维锂渣混凝土裂缝的分形特征[J]. 工程科学学报, 2022, 44(2): 208 − 216

    ZHANG Guangtai, CHEN Yong, LU Haibo, et al. Fractal characteristics of fiber lithium slag concrete cracks under sulfate attack[J]. Chinese Journal of Engineering, 2022, 44(2): 208 − 216. (in Chinese with English abstract)

    [13]

    李寒暝. ASR-氯盐-硫酸盐腐蚀协同作用下混凝土损伤过程数值模拟分析[J]. 水电站机电技术, 2022, 45(1): 85 − 87

    LI Hanming. Numerical simulation analysis of concrete damage process under the synergistic action of ASR-chloride and sulfate corrosion[J]. Mechanical & Electrical Technique of Hydropower Station, 2022, 45(1): 85 − 87. (in Chinese)

    [14]

    张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 69 − 77

    ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete: A review[J]. Materials Reports, 2022, 36(1): 69 − 77. (in Chinese with English abstract)

    [15]

    王盼, 黄英, 刘鹏, 等. 硫酸亚铁侵蚀红土的受力特性[J]. 水文地质工程地质, 2013, 40(4): 112 − 116

    WANG Pan, HUANG Ying, LIU Peng, et al. Mechanical properties of ferrous sulfate erosion of laterite[J]. Hydrogeology & Engineering Geology, 2013, 40(4): 112 − 116. (in Chinese with English abstract)

    [16]

    何俊, 栗志翔, 石小康, 等. 侵蚀环境中碱渣-矿渣固化淤泥的力学性质[J]. 水文地质工程地质, 2019, 46(6): 83 − 89

    HE Jun, LI Zhixiang, SHI Xiaokang, et al. Mechanical properties of the soft soil stabilized with soda residue and ground granulated blast furnace slag under the erosion environment[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 83 − 89. (in Chinese with English abstract)

    [17]

    潘自林, 朱洁, 王福升, 等. 混凝土硫酸盐侵蚀破坏分析与研究[J]. 宁夏工程技术, 2022, 21(1): 34 − 39

    PAN Zilin, ZHU Jie, WANG Fusheng, et al. Analysis and research on sulfate corrosion resistance of concrete with different mix proportions[J]. Ningxia Engineering Technology, 2022, 21(1): 34 − 39. (in Chinese with English abstract)

    [18]

    杜兆文, 陈绍杰, 尹大伟, 等. 氯盐侵蚀环境下膏体充填体稳定性试验研究[J]. 中国矿业大学学报, 2021, 50(3): 532 − 538

    DU Zhaowen, CHEN Shaojie, YIN Dawei, et al. Experimental study of stability of paste backfill under chloride erosion environment[J]. Journal of China University of Mining & Technology, 2021, 50(3): 532 − 538. (in Chinese with English abstract)

  • 加载中

(11)

计量
  • 文章访问数:  785
  • PDF下载数:  66
  • 施引文献:  0
出版历程
收稿日期:  2021-09-03
修回日期:  2021-10-24
刊出日期:  2022-11-15

目录