基于微地震数据的增强型地热储层参数及采热的数值模拟研究

马子涵, 邢会林, 靳国栋, 谭玉阳, 闫伟超, 李四海. 基于微地震数据的增强型地热储层参数及采热的数值模拟研究[J]. 水文地质工程地质, 2022, 49(6): 190-199. doi: 10.16030/j.cnki.issn.1000-3665.202112010
引用本文: 马子涵, 邢会林, 靳国栋, 谭玉阳, 闫伟超, 李四海. 基于微地震数据的增强型地热储层参数及采热的数值模拟研究[J]. 水文地质工程地质, 2022, 49(6): 190-199. doi: 10.16030/j.cnki.issn.1000-3665.202112010
MA Zihan, XING Huilin, JIN Guodong, TAN Yuyang, YAN Weichao, LI Sihai. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 190-199. doi: 10.16030/j.cnki.issn.1000-3665.202112010
Citation: MA Zihan, XING Huilin, JIN Guodong, TAN Yuyang, YAN Weichao, LI Sihai. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 190-199. doi: 10.16030/j.cnki.issn.1000-3665.202112010

基于微地震数据的增强型地热储层参数及采热的数值模拟研究

  • 基金项目: 国家自然科学基金面上项目(52074251);国家自然科学基金重大计划重点支持项目(92058211);国家自然科学基金委创新群体项目(42121005);中央高校基本科研业务经费(202012003);高等学校学科创新引智计划(B20048)
详细信息
    作者简介: 马子涵(1997-),女,硕士研究生,主要从事干热岩开采的数值模拟研究。E-mail:1911778485@qq.com
    通讯作者: 邢会林(1965-),男,教授,博士生导师,主要从事超级计算地球科学理论、软件研发及其应用等研究。E-mail:h.xing@ouc.edu.cn
  • 中图分类号: TK521

A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data

More Information
  • 发展清洁、稳定、可再生的干热岩型地热资源对于缓解能源危机、减轻环境污染、改善人类健康具有重要意义。增强型地热系统(Enhanced Geothermal System,EGS) 是一项改造干热岩天然储层,高效开发地热能资源的先进技术。以澳大利亚库珀盆地地热储层为研究对象,基于水力压裂实测微震数据,建立了三维分区均质渗透率模型和非均质渗透率模型,分别进行储层温度场、流场及采热性能变化的研究,并对比其差异。结果表明:在同样的注采流量下,由于非均质模型中微震事件集中于井口附近,进而形成明显的优势流动通道,流体从注入井更快流向生产井,温度下降速度相对更快,分区均质模型中优势流动通道没有非均质模型明显,温度下降速度较慢;地热模型运行期间分区均质模型的采热量变化相对稳定,降幅为3.74%,非均质模型采热量降幅较大,为12.72%。分区均质模型的模拟结果相比于非均质模型,温度下降幅度小、采热量高;但实际储层中的渗透率分布不均,分区均质模型的模拟采热量相比实际采热量偏高,因此在实际应用中,非均质模型的模拟结果对实际工程更具参考意义。

  • 加载中
  • 图 1  库珀盆地热储层研究区域(修改自文献[1224])

    Figure 1. 

    图 2  分区均质模型和剖面图

    Figure 2. 

    图 3  模型中H01、H03位置

    Figure 3. 

    图 4  (a)非均质模型的渗透率分布图和(b)渗透率剖面图

    Figure 4. 

    图 5  (a)渗透率分布等值面图和(b)渗透率等值面的剖面图

    Figure 5. 

    图 6  不同模型的流速分布(上为分区均质模型,下为非均质模型)

    Figure 6. 

    图 7  非均质模型中z=4250 m剖面渗透率分布

    Figure 7. 

    图 8  不同模型温度随时间变化的等值面图

    Figure 8. 

    图 9  分区均质和非均质模型生产井井底温度和采热量对比

    Figure 9. 

    表 1  分区均质模型中岩石物理性质参数

    Table 1.  Parameters of rock in the zonal homogenization model

    区域密度
    /(kg·m−3
    比热
    /(J·kg−1·K−1
    孔隙度/%导热系数
    /(W·m−1·K−1
    压缩系数
    /(10−10 Pa−1
    上层花岗岩2 7009600.013.3955.00
    改造区2 7009601.403.3955.00
    下层花岗岩2 7009600.013.3955.00
    下载: 导出CSV

    表 2  循环工作流体的物理性质参数

    Table 2.  Parameters of the circulating fluid

    密度
    /(kg·m−3
    比热
    /(J·kg−1·K−1
    导热系数
    /(W·m−1·K−1
    黏度
    /(Pa·s)
    压缩系数
    /(10−10 Pa−1
    1 0004 2000.60.0015.0
    下载: 导出CSV

    表 3  分区均质模型不同渗透率下生产井中的模拟流量与实际流量

    Table 3.  Simulated flow and actual flow of production wells in the homogeneous model with different permeabilities

    试验渗透率/m2时间/d模拟流量/(m3·s−1实测流量/(m3·s−1
    xyz
    16.00×10−131.20×10−124.00×10−14420.074 90.015 5
    22.00×10−134.00×10−134.00×10−14420.023 8
    31.50×10−133.00×10−134.00×10−14420.017 6
    41.40×10−132.80×10−134.00×10−14420.016 4
    51.30×10−132.60×10−134.00×10−14420.015 2
    61.20×10−132.40×10−134.00×10−14420.014 0
    71.00×10−132.00×10−134.00×10−14420.011 6
    下载: 导出CSV

    表 4  非均质模型不同渗透率相关参数下生产井中模拟流量与实际流量

    Table 4.  Simulated flow and actual flow of production wells in the heterogeneous model with different permeability related parameters

    试验渗透率计算相关系数时间/d模拟流量/(m3·s−1实测流量/(m3·s−1
    B1B2B3
    13.00×10-51.50×10-52.5420.030 20.015 5
    24.00×10-51.50×10-52.5420.029 3
    34.00×10-52.00×10-52.5420.021 2
    45.00×10-52.00×10-52.5420.015 8
    55.00×10-52.50×10-52.5420.008 6
    下载: 导出CSV
  • [1]

    SUN Z X,ZHANG X,XU Y,et al. Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J]. Energy,2017,120:20 − 33. doi: 10.1016/j.energy.2016.10.046

    [2]

    XU C S,DOWD P A,TIAN Z F. A simplified coupled hydro-thermal model for enhanced geothermal systems[J]. Applied Energy,2015,140:135 − 145. doi: 10.1016/j.apenergy.2014.11.050

    [3]

    许天福,张炜. 增强型地热工程国际发展和我国前景展望[J]. 石油科学通报,2016,1(1):38 − 44. [XU Tianfu,ZHANG Wei. Enhanced geothermal systems:International developments and China’s prospects[J]. Petroleum Science Bulletin,2016,1(1):38 − 44. (in Chinese with English abstract)

    [4]

    WANG Y,LI T,CHEN Y,et al. A three-dimensional thermo-hydro-mechanical coupled model for enhanced geothermal systems (EGS) embedded with discrete fracture networks[J]. Computer Methods in Applied Mechanics and Engineering,2019,356:465 − 489. doi: 10.1016/j.cma.2019.06.037

    [5]

    OLASOLO P,JUÁREZ M C,MORALES M P,et al. Enhanced geothermal systems (EGS):A review[J]. Renewable and Sustainable Energy Reviews,2016,56:133 − 144. doi: 10.1016/j.rser.2015.11.031

    [6]

    JIANG F M,CHEN J L,HUANG W B,et al. A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy,2014,72:300 − 310. doi: 10.1016/j.energy.2014.05.038

    [7]

    ALIYU M D,ARCHER R A. Numerical simulation of multifracture HDR geothermal reservoirs[J]. Renewable Energy,2021,164:541 − 555. doi: 10.1016/j.renene.2020.09.085

    [8]

    段云星, 杨浩. 增强型地热系统采热性能影响因素分析[J]. 吉林大学学报(地球科学版),2020,50(4):1161 − 1172. [DUAN Yunxing, YANG Hao. Analysis of influencing factors on heat extraction performance of enhanced geothermal system[J]. Journal of Jilin University (Earth Science Edition),2020,50(4):1161 − 1172. (in Chinese with English abstract)

    [9]

    XING H L, GAO J, ZHANG J, et al. Towards an integrated simulator for enhanced geothermal reservoirs[C]//35th Stanford Geotherma Workshop. Bali: Indonesia, 2010: 25 − 29.

    [10]

    XING H L,LIU Y,GAO J F,et al. Recent development in numerical simulation of enhanced geothermal reservoirs[J]. Journal of Earth Science,2015,26(1):28 − 36. doi: 10.1007/s12583-015-0506-2

    [11]

    AYLING B F,HOGARTH R A,ROSE P E. Tracer testing at the Habanero EGS site,central Australia[J]. Geothermics,2016,63:15 − 26. doi: 10.1016/j.geothermics.2015.03.008

    [12]

    LLANOS E M,ZARROUK S J,HOGARTH R A. Numerical model of the Habanero geothermal reservoir,Australia[J]. Geothermics,2015,53:308 − 319. doi: 10.1016/j.geothermics.2014.07.008

    [13]

    HOGARTH, BOUR, DANIEL. Flow Performance of the Habanero EGS Closed Loop[R]. Melbourne: World Geothermal Congress, 2015.

    [14]

    SAMIN M Y,FARAMARZI A,JEFFERSON I,et al. A hybrid optimisation approach to improve long-term performance of enhanced geothermal system (EGS) reservoirs[J]. Renewable Energy,2019,134:379 − 389. doi: 10.1016/j.renene.2018.11.045

    [15]

    李庭樑,黄文博,曹文炅,等. EGS热储基于微震数据反演模化及其采热性能分析[J]. 化工学报,2018,69(12):5001 − 5010. [LI Tingliang,HUANG Wenbo,CAO Wenjiong,et al. Inverse modeling of EGS heat reservoir based on micro-seismic data and analysis of its heat recovery performance[J]. CIESC Journal,2018,69(12):5001 − 5010. (in Chinese with English abstract)

    [16]

    YAO C,SHAO Y L,YANG J H. Numerical investigation on the influence of areal flow on EGS thermal exploitation based on the 3-D T-H single fracture model[J]. Energies,2018,11(11):1 − 19.

    [17]

    LI T Y,HAN D X,YANG F S,et al. Modeling study of the thermal-hydraulic-mechanical coupling process for EGS based on the framework of EDFM and XFEM[J]. Geothermics,2021,89:101953. doi: 10.1016/j.geothermics.2020.101953

    [18]

    XU C, DOWD P, MOHAIS R. Connectivity analysis of the Habanero enhanced geothermal system[R]. Stanford: The 37th Workshop on Geothermal Reservoir Engineering, 2012.

    [19]

    FANG Y,ELSWORTH D,CLADOUHOS T T. Reservoir permeability mapping using microearthquake data[J]. Geothermics,2018,72:83 − 100. doi: 10.1016/j.geothermics.2017.10.019

    [20]

    XING H L. Finite element simulation of transient geothermal flow in extremely heterogeneous fractured porous media[J]. Journal of Geochemical Exploration,2014,144:168 − 178. doi: 10.1016/j.gexplo.2014.03.002

    [21]

    WYBORN D. Update of development of the geothermal field in the granite at innamincka, south Australia[R]. Bali: World Geothermal Congress, 2012.

    [22]

    XU C S,DOWD P,LI Q. Carbon sequestration potential of the Habanero reservoir when carbon dioxide is used as the heat exchange fluid[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(1):50 − 59. doi: 10.1016/j.jrmge.2015.05.003

    [23]

    BAISCH S,WEIDLER R,VOROS R,et al. Induced seismicity during the stimulation of a geothermal HFR reservoir in the Cooper Basin,Australia[J]. Bulletin of the Seismological Society of America,2006,96(6):2242 − 2256. doi: 10.1785/0120050255

    [24]

    HILLIS R,HAND M,MILDREN S,et al. Hot dry rock geothermal exploration in Australia[J]. ASEG Extended Abstracts,2004,2004(1):1 − 4.

    [25]

    BAISCH S,VOROS R,WEIDLER R,et al. Investigation of fault mechanisms during geothermal reservoir stimulation experiments in the cooper basin,Australia[J]. Bulletin of the Seismological Society of America,2009,99(1):148 − 158. doi: 10.1785/0120080055

    [26]

    O’SULLIVAN M J, O’SULLIVAN J P. Reservoir modeling and simulation for geothermal resource characterization and evaluation[C]//Geothermal Power Generation. Amsterdam: Elsevier, 2016: 165 − 199.

    [27]

    白斌. THM耦合作用对储层孔渗参数影响及地热系统优化研究[D]. 青岛: 中国石油大学(华东), 2018

    BAI Bin. Research on hydrodynamic parameters in rock reservoir and optimization of geothermal system with THM coupling[D]. Qingdao: China University of Petroleum (Huadong), 2018. (in Chinese with English abstract)

    [28]

    XU G X, WANG S Z. Numerical investigation of fluid flow and heat transfer in a two dimensional anisotropic EGS model[C]//International Conference on Industrial Engineering & Applications. Toronto: IEEE, 2017: 372 − 375.

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1172
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2021-12-04
修回日期:  2022-01-15
刊出日期:  2022-11-15

目录