瓜尔豆胶固化黄土的工程特性及抗冲蚀试验研究

杨万里, 石玉玲, 穆鹏雪, 贾卓龙, 曹怡菡. 瓜尔豆胶固化黄土的工程特性及抗冲蚀试验研究[J]. 水文地质工程地质, 2022, 49(4): 117-124. doi: 10.16030/j.cnki.issn.1000-3665.202110027
引用本文: 杨万里, 石玉玲, 穆鹏雪, 贾卓龙, 曹怡菡. 瓜尔豆胶固化黄土的工程特性及抗冲蚀试验研究[J]. 水文地质工程地质, 2022, 49(4): 117-124. doi: 10.16030/j.cnki.issn.1000-3665.202110027
YANG Wanli, SHI Yuling, MU Pengxue, JIA Zhuolong, CAO Yihan. An experimental study of the engineering properties and erosion resistance of guar gum-reinforced loess[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 117-124. doi: 10.16030/j.cnki.issn.1000-3665.202110027
Citation: YANG Wanli, SHI Yuling, MU Pengxue, JIA Zhuolong, CAO Yihan. An experimental study of the engineering properties and erosion resistance of guar gum-reinforced loess[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 117-124. doi: 10.16030/j.cnki.issn.1000-3665.202110027

瓜尔豆胶固化黄土的工程特性及抗冲蚀试验研究

  • 基金项目: 国家自然科学基金项目(42077265);甘肃省交通运输厅科技项目(2021-19)
详细信息
    作者简介: 杨万里(1981-),男,硕士,高级工程师,主要从事高速公路建设管理工作。E-mail:305283628@qq.com
    通讯作者: 石玉玲(1972-),女,博士,副教授,主要从事岩土工程及灾害治理研究。E-mail:dcdgx15@chd.edu.cn
  • 中图分类号: TU444

An experimental study of the engineering properties and erosion resistance of guar gum-reinforced loess

More Information
  • 为了减少暴雨冲刷条件下黄土边坡侵蚀的发生,提出采用瓜尔豆胶固化黄土对边坡坡面进行防护。基于直剪试验、渗透试验以及模拟暴雨边坡冲刷试验,研究了瓜尔豆胶固化黄土的工程特性及抗冲蚀能力,并对比素黄土与固化黄土的微观结构,探讨了瓜尔豆胶对黄土的加固机制。试验结果表明:瓜尔豆胶可有效增强黄土的抗剪强度和抗渗透性,固化黄土的黏聚力和内摩擦角呈现相同的变化趋势,即随瓜尔豆胶掺量增加而先增加后减小,随养护龄期增长而增加,饱和渗透系数随瓜尔豆胶掺量增加和养护龄期增长而减小;瓜尔豆胶掺量1.0%,养护龄期7 d的固化黄土相比于素黄土,黏聚力和内摩擦角提升了53.7%和5.6%,饱和渗透系数降低了78.3%;瓜尔豆胶固化黄土在暴雨冲刷条件下的坡面防护效果明显,相比于无防护边坡,坡面的累计冲刷量降低了64.4%,平均流速提升了55.2%;瓜尔豆胶对黄土的加固机制主要在于其水化反应产生的高黏度水凝胶能够填充孔隙和胶结黄土颗粒。本研究可为瓜尔豆胶固化黄土在边坡坡面防护工程中的应用及推广提供试验支撑。

  • 加载中
  • 图 1  黄土颗粒级配曲线

    Figure 1. 

    图 2  瓜尔豆胶

    Figure 2. 

    图 3  模拟暴雨边坡冲刷试验示意图

    Figure 3. 

    图 4  DIK-6000型人工降雨模拟器

    Figure 4. 

    图 5  不同固化黄土试样对应的抗剪强度参数

    Figure 5. 

    图 6  不同固化黄土试样对应的饱和渗透系数

    Figure 6. 

    图 7  边坡模型坡面的含泥量随降雨历时的变化曲线

    Figure 7. 

    图 8  边坡模型坡面的流速随降雨历时变化曲线

    Figure 8. 

    图 9  素黄土和固化黄土的SEM照片

    Figure 9. 

    表 1  人工降雨模拟器的技术参数

    Table 1.  Technical parameters of the artificial rainfall simulator

    型号降雨强度/
    (mm·h−1
    有效降雨
    面积/m2
    有效降雨
    高度/m
    雨滴直径/
    mm
    DIK-600010~801.040421.7~3.0
    下载: 导出CSV

    表 2  不同试样的黏聚力及内摩擦角

    Table 2.  Cohesion and internal friction angle of different samples

    瓜尔豆胶掺量/%养护龄期/d黏聚力/kPa内摩擦角/(°)
    0.00766.0827.0
    0.25366.1727.5
    776.6228.1
    2879.7828.4
    0.50369.6528.1
    779.7828.3
    2881.9528.8
    1.00376.7727.9
    7101.5628.5
    28105.6428.9
    1.50375.1827.1
    780.8227.3
    2883.8728.6
    下载: 导出CSV

    表 3  不同试样的饱和渗透系数

    Table 3.  Saturation permeability coefficient of different samples

    瓜尔豆胶掺量/%养护龄期/d饱和渗透系数/(10−5 cm·s−1
    0.0078.56
    0.2537.46
    77.12
    286.92
    0.5035.17
    74.67
    284.32
    1.0032.58
    71.86
    281.63
    1.5031.03
    70.89
    280.78
    下载: 导出CSV

    表 4  各时段边坡坡面的含泥量与流速

    Table 4.  Mud content and velocity of slope in each period

    防护类型参数时间/min
    51015202530354045505560
    无防护含泥量/kg0.6660.9231.0301.0171.0181.0710.9961.0701.0551.0891.0891.241
    流速/ (m·s−10.1570.1470.1210.1280.1250.1200.1130.1170.1180.1180.1210.115
    固化土防护含泥量/kg0.5840.3840.4310.4540.4390.4200.3560.2920.3060.2450.2140.239
    流速/ (m·s−10.2210.2490.2080.1770.1670.1930.1840.1980.1810.1850.1720.193
    下载: 导出CSV
  • [1]

    唐泽军, 雷廷武, 张晴雯, 等. 雨滴溅蚀和结皮效应对土壤侵蚀影响的试验研究[J]. 土壤学报,2004,41(4):632 − 635. [TANG Zejun, LEI Tingwu, ZHANG Qingwen, et al. Quantitative determination of the impacts of raindrop splash and crust on soil erosion with ree experimental data[J]. Acta Pedologica Sinica,2004,41(4):632 − 635. (in Chinese with English abstract) doi: 10.3321/j.issn:0564-3929.2004.04.022

    TANG Zejun, LEI Tingwu, ZHANG Qingwen, et al. Quantitative determination of the impacts of raindrop splash and crust on soil erosion with ree experimental data[J]. Acta Pedologica Sinica, 2004, 41(4): 632-635. (in Chinese with English abstract) doi: 10.3321/j.issn:0564-3929.2004.04.022

    [2]

    LIU J, CHEN Z H, KANUNGO D P, et al. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer[J]. Engineering Geology,2019,252:125 − 135. doi: 10.1016/j.enggeo.2019.03.003

    [3]

    PUPPALA A J, PEDARLA A. Innovative ground improvement techniques for expansive soils[J]. Innovative Infrastructure Solutions,2017,2(1):1 − 15. doi: 10.1007/s41062-016-0049-0

    [4]

    安宁, 晏长根, 王亚冲, 等. 聚丙烯纤维加筋黄土抗侵蚀性能试验研究[J]. 岩土力学,2021,42(2):501 − 510. [AN Ning, YAN Changgen, WANG Yachong, et al. Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess[J]. Rock and Soil Mechanics,2021,42(2):501 − 510. (in Chinese with English abstract)

    AN Ning, YAN Changgen, WANG Yachong, et al. Experimental study on anti-erosion performance of polypropylene fiber-reinforced loess[J]. Rock and Soil Mechanics, 2021, 42(2): 501-510. (in Chinese with English abstract)

    [5]

    沙琳川, 王桂尧, 张永杰, 等. 含水率与加筋率对加筋土抗剪强度的影响规律研究[J]. 水文地质工程地质,2018,45(2):51 − 58. [SHA Linchuan, WANG Guiyao, ZHANG Yongjie, et al. A study of influence of water content and reinforcement ratio on the shear strength of reinforced soil[J]. Hydrogeology & Engineering Geology,2018,45(2):51 − 58. (in Chinese with English abstract)

    SHA Linchuan, WANG Guiyao, ZHANG Yongjie, et al. A study of influence of water content and reinforcement ratio on the shear strength of reinforced soil[J]. Hydrogeology & Engineering Geology, 2018, 45(2): 51-58. (in Chinese with English abstract)

    [6]

    徐岗, 裴向军, 袁进科, 等. 改性纳米硅材料加固松散砂土的工程特性研究[J]. 水文地质工程地质,2019,46(4):142 − 149. [XU Gang, PEI Xiangjun, YUAN Jinke, et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology,2019,46(4):142 − 149. (in Chinese with English abstract)

    XU Gang, PEI Xiangjun, YUAN Jinke, et al. A study of the engineering characteristics of reinforced loose sand by modified nano-Si materials[J]. Hydrogeology & Engineering Geology, 2019, 46(4): 142-149. (in Chinese with English abstract)

    [7]

    CHANG I, IM J, CHO G C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering[J]. Sustainability,2016,8(3):251. doi: 10.3390/su8030251

    [8]

    SHARMA G, SHARMA S, KUMAR A, et al. Guar gum and its composites as potential materials for diverse applications: A review[J]. Carbohydrate Polymers,2018,199:534 − 545. doi: 10.1016/j.carbpol.2018.07.053

    [9]

    祝艳波, 李红飞, 巨之通, 等. 黄土抗剪强度与耐崩解性能综合改良试验研究[J]. 煤田地质与勘探,2021,49(4):221 − 233. [ZHU Yanbo, LI Hongfei, JU Zhitong, et al. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. Coal Geology & Exploration,2021,49(4):221 − 233. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1986.2021.04.027

    ZHU Yanbo, LI Hongfei, JU Zhitong, et al. Improvement of shear strength and anti-disintegration performance of compacted loess[J]. Coal Geology & Exploration, 2021, 49(4): 221-233. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-1986.2021.04.027

    [10]

    周天宝, 张福海, 周炳生, 等. 生物聚合物固化粉土室内试验与机理研究[J]. 长江科学院院报,2019,36(1):107 − 110. [ZHOU Tianbao, ZHANG Fuhai, ZHOU Bingsheng, et al. Laboratory experiment and mechanism of solidified soil of biopolymer[J]. Journal of Yangtze River Scientific Research Institute,2019,36(1):107 − 110. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170797

    ZHOU Tianbao, ZHANG Fuhai, ZHOU Bingsheng, et al. Laboratory experiment and mechanism of solidified soil of biopolymer[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(1): 107-110. (in Chinese with English abstract) doi: 10.11988/ckyyb.20170797

    [11]

    ORTS W J, SOJKA R E, GLENN G M. Biopolymer additives to reduce erosion-induced soil losses during irrigation[J]. Industrial Crops and Products,2000,11(1):19 − 29. doi: 10.1016/S0926-6690(99)00030-8

    [12]

    贺智强, 樊恒辉, 王军强, 等. 木质素加固黄土的工程性能试验研究[J]. 岩土力学,2017,38(3):731 − 739. [HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics,2017,38(3):731 − 739. (in Chinese with English abstract)

    HE Zhiqiang, FAN Henghui, WANG Junqiang, et al. Experimental study of engineering properties of loess reinforced by lignosulfonate[J]. Rock and Soil Mechanics, 2017, 38(3): 731-739. (in Chinese with English abstract)

    [13]

    刘钊钊, 王谦, 钟秀梅, 等. 木质素改良黄土的持水性和水稳性[J]. 岩石力学与工程学报,2020,39(12):2582 − 2592. [LIU Zhaozhao, WANG Qian, ZHONG Xiumei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(12):2582 − 2592. (in Chinese with English abstract)

    LIU Zhaozhao, WANG Qian, ZHONG Xiumei, et al. Water holding capacity and water stability of lignin-modified loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(12): 2582-2592. (in Chinese with English abstract)

    [14]

    CHANG I, IM J, PRASIDHI A K, et al. Effects of Xanthan gum biopolymer on soil strengthening[J]. Construction and Building Materials,2015,74:65 − 72. doi: 10.1016/j.conbuildmat.2014.10.026

    [15]

    CHANG I, PRASIDHI A K, IM J, et al. Soil strengthening using thermo-gelation biopolymers[J]. Construction and Building Materials,2015,77:430 − 438. doi: 10.1016/j.conbuildmat.2014.12.116

    [16]

    CHANG I, CHO G C. Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer[J]. Construction and Building Materials,2012,30:30 − 35. doi: 10.1016/j.conbuildmat.2011.11.030

    [17]

    SUJATHA E R, SAISREE S. Geotechnical behaviour of guar gum-treated soil[J]. Soils and Foundations,2019,59(6):2155 − 2166. doi: 10.1016/j.sandf.2019.11.012

    [18]

    AYELDEEN M K, NEGM A M, EL SAWWAF M A. Evaluating the physical characteristics of biopolymer/soil mixtures[J]. Arabian Journal of Geosciences,2016,9(5):1 − 13.

    [19]

    AYELDEEN M, NEGM A, EL-SAWWAF M, et al. Enhancing mechanical behaviors of collapsible soil using two biopolymers[J]. Journal of Rock Mechanics and Geotechnical Engineering,2017,9(2):329 − 339. doi: 10.1016/j.jrmge.2016.11.007

    [20]

    CHEN R, ZHANG L Y, BUDHU M. Biopolymer stabilization of mine tailings[J]. Journal of Geotechnical and Geoenvironmental Engineering,2013,139(10):1802 − 1807. doi: 10.1061/(ASCE)GT.1943-5606.0000902

    [21]

    STUPP S I, BRAUN P V. Molecular manipulation of microstructures: Biomaterials, ceramics, and semiconductors[J]. Science,1997,277(5330):1242 − 1248. doi: 10.1126/science.277.5330.1242

    [22]

    周春梅, 王宇, 吕雷, 等. 雨滴溅蚀下压实黄土变形破坏规律研究[J]. 水文地质工程地质,2018,45(6):93 − 98. [ZHOU Chunmei, WANG Yu, LYU Lei, et al. Research on deformation of compacted loess under raindrop splash erosion[J]. Hydrogeology & Engineering Geology,2018,45(6):93 − 98. (in Chinese with English abstract)

    ZHOU Chunmei, WANG Yu, LYU Lei, et al. Research on deformation of compacted loess under raindrop splash erosion[J]. Hydrogeology & Engineering Geology, 2018, 45(6): 93-98. (in Chinese with English abstract)

    [23]

    乔勇虎, 郭东静, 陈锡云. 泾河南小河沟流域自然降雨特性[J]. 水土保持学报,2017,31(5):133 − 138. [QIAO Yonghu, GUO Dongjing, CHEN Xiyun. Characteristics of natural rainfall of Nanxiaohegou Basin in Jinghe River[J]. Journal of Soil and Water Conservation,2017,31(5):133 − 138. (in Chinese with English abstract)

    QIAO Yonghu, GUO Dongjing, CHEN Xiyun. Characteristics of natural rainfall of Nanxiaohegou Basin in Jinghe River[J]. Journal of Soil and Water Conservation, 2017, 31(5): 133-138. (in Chinese with English abstract)

    [24]

    左烽林, 钟守琴, 冉卓灵, 等. 紫色土丘陵区新改土坡面产流产沙及水动力学参数特征[J]. 水土保持学报,2018,32(1):59 − 66. [ZUO Fenglin, ZHONG Shouqin, RAN Zhuoling, et al. Characteristics of sediment and hydrodynamic parameters of new reconstructed slope soil in the hill area with purple soils[J]. Journal of Soil and Water Conservation,2018,32(1):59 − 66. (in Chinese with English abstract)

    ZUO Fenglin, ZHONG Shouqin, RAN Zhuoling, et al. Characteristics of sediment and hydrodynamic parameters of new reconstructed slope soil in the hill area with purple soils[J]. Journal of Soil and Water Conservation, 2018, 32(1): 59-66. (in Chinese with English abstract)

    [25]

    袁和第, 信忠保, 蒋秋玲, 等. 连续降雨作用下褐土坡面侵蚀及其水动力学特征[J]. 水土保持学报,2020,34(4):14 − 20. [YUAN Hedi, XIN Zhongbao, JIANG Qiuling, et al. Slope erosion and its hydrodynamic characteristic of cinnamon soil under continuous rainfall[J]. Journal of Soil and Water Conservation,2020,34(4):14 − 20. (in Chinese with English abstract)

    YUAN Hedi, XIN Zhongbao, JIANG Qiuling, et al. Slope erosion and its hydrodynamic characteristic of cinnamon soil under continuous rainfall[J]. Journal of Soil and Water Conservation, 2020, 34(4): 14-20. (in Chinese with English abstract)

    [26]

    ZHANG G H, LIU G B, TANG K M, et al. Flow detachment of soils under different land uses in the loess plateau of China[J]. Transactions of the ASABE,2008,51(3):883 − 890. doi: 10.13031/2013.24527

    [27]

    ZHANG X C, ZHANG G H, GARBRECHT J D, et al. Dating sediment in a fast sedimentation reservoir using cesium-137 and lead-210[J]. Soil Science Society of America Journal,2015,79(3):948 − 956. doi: 10.2136/sssaj2015.01.0021

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1845
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2021-10-19
修回日期:  2021-11-26
刊出日期:  2022-07-25

目录