季冻区草炭土固结特性研究

韩伶敏, 徐燕, 高康. 季冻区草炭土固结特性研究[J]. 水文地质工程地质, 2022, 49(4): 109-116. doi: 10.16030/j.cnki.issn.1000-3665.202109028
引用本文: 韩伶敏, 徐燕, 高康. 季冻区草炭土固结特性研究[J]. 水文地质工程地质, 2022, 49(4): 109-116. doi: 10.16030/j.cnki.issn.1000-3665.202109028
HAN Lingmin, XU Yan, GAO Kang. Consolidation characteristics of the turfy soil in seasonally frozen area[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 109-116. doi: 10.16030/j.cnki.issn.1000-3665.202109028
Citation: HAN Lingmin, XU Yan, GAO Kang. Consolidation characteristics of the turfy soil in seasonally frozen area[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 109-116. doi: 10.16030/j.cnki.issn.1000-3665.202109028

季冻区草炭土固结特性研究

  • 基金项目: 国家自然科学基金青年基金项目(41702300);国家自然科学基金项目(41572254)
详细信息
    作者简介: 韩伶敏(1996-),男,硕士研究生,主要从事特殊土的工程地质性质研究。E-mail:773939896@qq.com
  • 中图分类号: TU411.5

Consolidation characteristics of the turfy soil in seasonally frozen area

  • 季冻区草炭土的工程性质很差,具有高压缩性的同时蠕变特性明显,路基工后沉降量大。目前针对季冻区草炭土固结压缩蠕变特性的研究仍相对匮乏,亟需对其固结压缩及蠕变特性进行深入研究,为季冻区草炭土路基的沉降预测提供参数依据。选取吉林省敦化市江源镇典型季冻区草炭土为研究对象,通过一维固结压缩试验和一维固结蠕变试验,获得草炭土压缩系数、固结系数和次固结系数分布范围及纤维含量对草炭土主、次固结特性的影响规律。试验表明:分级加载下,草炭土纤维含量越大,压缩性越强,两者呈正相关性;固结系数(Cv)范围为1.00×10−3~8.39×10−3 cm2/s,固结系数随固结压力增大而减小,当固结压力超过200 kPa之后基本稳定。次固结系数(Cα)范围为0.022~0.095,次固结系数随固结压力增大而增大,到达峰值后逐渐减小,峰值时所对应的固结压力介于50~100 kPa之间;当固结压力一定时,纤维含量越大固结蠕变越明显,次固结系数越大。吉林敦化草炭土的次固结系数和压缩指数具有一定的相关性,纤维质量占比为21%、34%、48%、59%、73%的草炭土对应的次固结系数与压缩指数比值(Cα/Cc)分别为0.0452,0.0331,0.0303,0.0246,0.0245。

  • 加载中
  • 图 1  吉林敦化草炭土不同纤维含量的压缩曲线

    Figure 1. 

    图 2  原状草炭土的ln(1+e)-lgp曲线

    Figure 2. 

    图 3  各土样分级加载下av-p曲线

    Figure 3. 

    图 4  各土样分级加载下的Cv-p曲线

    Figure 4. 

    图 5  吉林敦化草炭土e-lgt曲线

    Figure 5. 

    图 6  各土样分级加载下Cα-p曲线

    Figure 6. 

    图 7  不同纤维含量草炭土Cα-Cc关系曲线

    Figure 7. 

    表 1  吉林敦化草炭土不同深度有机质质量分数(Wu)和纤维质量分数(Wf

    Table 1.  Organic matter content and fiber content of the turfy soil at different depths near Dunhua in Jilin

    深度/mWu/%Wf /%
    0.0~1.053.28~81.3540.99~73.78
    1.0~2.036.25~65.8130.83~49.12
    2.0~2.438.37~55.2519.83~37.65
    下载: 导出CSV

    表 2  吉林敦化草炭土样基本物理指标

    Table 2.  Basic physical indexes of the turfy soil samples near Dunhua in Jilin

    深度/m取样编号密度ρ/(g·cm−3含水率w/%比重Gs初始孔隙比e0有机质质量分数Wu /%纤维质量占比Wf /%
    0.0~0.5K1-10.99416.831.318.8879.4373
    0.5~1.0K2-11.05392.921.627.1167.1259
    1.0~1.5K3-11.09306.081.685.3365.8148
    1.5~2.0K4-11.14242.182.094.5050.8834
    2.0~2.4K5-11.17198.271.962.9139.1021
    下载: 导出CSV

    表 3  云南滇池土样[18]和云南大理土样[19]基本物理指标

    Table 3.  Basic physical indexes of Yunnan Dianchi Lake soil samples and Yunnan Dali soil samples

    土样
    名称
    深度/
    m
    取样
    编号
    含水率
    w/%
    比重
    Gs
    初始
    孔隙比e0
    有机质
    质量分数Wu/%
    滇池
    泥炭土
    2.5~3.0CT1-164.62.41.415.7
    7.5~8.0CT2-1203.42.14.448.1
    1.0~2.0CT3-1406.31.56.469.3
    大理
    泥炭土
    1S1171.741.8
    1S6162.132.1
    1S7118.034.8
    下载: 导出CSV

    表 4  试验方案

    Table 4.  Test schemes

    试验名称试验目的
    Wf/%加荷序列/
    kPa
    加荷比历时/d
    固结
    压缩
    试验
    先期固结
    压力分析

    212.4-3.9-6.3-
    12.5-25-50-
    100-200-400
    (12.5 kPa
    开始每级1 d)
    7
    34
    48
    59
    73
    固结
    压缩
    试验
    (1)压缩特性分析
    (2)主固结特性分析

    2112.5-25-50-
    100-200-400
    (每级1 d)
    16
    34
    48
    59
    73
    固结
    蠕变
    试验
    固结蠕变
    特性分析

    2112.5-25-50-
    100-200-400
    (每级7 d)
    142
    34
    48
    59
    73
    下载: 导出CSV

    表 5  不同纤维含量草炭土的Cv-p经验关系表达式

    Table 5.  Cv-P empirical relationship expression of the turfy soil with different fiber contents

    Wf/%拟合公式相关系数
    21Cv=15.09p0.48R2=0.96
    34Cv =19.43p0.50R2=0.97
    48Cv=18.05p0.47R2=0.94
    59Cv =21.72p0.49R2=0.96
    73Cv =19.82p0.43R2=0.93
    下载: 导出CSV
  • [1]

    刘柱, 佴磊. 吉林地区草炭土物理力学指标相关性试验研究[J]. 水文地质工程地质,2010,37(4):53 − 57. [LIU Zhu, NIE Lei. Experimental research on the correlation of physical mechanics indexes of the turfy soil in the Jilin Area[J]. Hydrogeology & Engineering Geology,2010,37(4):53 − 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.04.011

    LIU Zhu, NIE Lei. Experimental research on the correlation of physical mechanics indexes of the turfy soil in the Jilin Area[J]. Hydrogeology & Engineering Geology, 2010, 37(4): 53-57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.04.011

    [2]

    徐燕, 佴磊, 胡忠君. 季冻区草炭土工程地质特性研究[J]. 人民长江,2011,42(10):17 − 20. [XU Yan, NAI Lei, HU Zhongjun. Study on engineering geological properties of turfy soil in seasonal frozen region[J]. Yangtze River,2011,42(10):17 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2011.10.005

    XU Yan, NAI Lei, HU Zhongjun. Study on engineering geological properties of turfy soil in seasonal frozen region[J]. Yangtze River, 2011, 42(10): 17-20. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4179.2011.10.005

    [3]

    WHITLOW R. Basic soil mechanics[M]. 3th ed. London: Longman Group Limited, 1995.

    [4]

    RAZALI S N M, BAKAR I, ZAINORABIDIN A. Behaviour of peat soil in instrumented physical model studies[J]. Procedia Engineering,2013,53:145 − 155. doi: 10.1016/j.proeng.2013.02.020

    [5]

    SANTAGATA M, BOBET A, JOHNSTON C T, et al. One-dimensional compression behavior of a soil with high organic matter content[J]. Journal of Geotechnical and Geoenvironmental Engineering,2008,134(1):1 − 13. doi: 10.1061/(ASCE)1090-0241(2008)134:1(1)

    [6]

    JOHARI N N, BAKAR I, RAZALI S M, et al. Fiber effects on compressibility of peat[J]. IOP Conference Series:Materials Science and Engineering,2016,136:012036. doi: 10.1088/1757-899X/136/1/012036

    [7]

    桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土固结系数变化规律试验研究[J]. 岩石力学与工程学报, 2016, 35(增刊1): 3259 − 3267

    GUI Yue, YU Zhihua, LIU Haiming, et al. Experimental study of the change law of consolidation coefficient of the plateau lacustrine peaty soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Sup 1): 3259 − 3267. (in Chinese with English abstract)

    [8]

    吕岩, 佴磊, 徐燕, 等. 有机质对草炭土物理力学性质影响的机理分析[J]. 岩土工程学报,2011,33(4):655 − 660. [LYU Yan, NIE Lei, XU Yan, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering,2011,33(4):655 − 660. (in Chinese with English abstract)

    LYU Yan, NIE Lei, XU Yan, et al. The mechanism of organic matter effect on physical and mechanical properties of turfy soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4): 655-660. (in Chinese with English abstract)

    [9]

    MACFARLANE I C. The muskeg subcommittee[C]//Proc, Tench Muskeg Research Conf, National Research Council of Canada, Ottawa: Assoc. Ctee. on Soil and Snow Mech, Tech, Memo. 1965, 85: 1 − 5.

    [10]

    桂跃, 余志华, 刘海明, 等. 高原湖相泥炭土次固结特性及机理分析[J]. 岩土工程学报,2015,37(8):1390 − 1398. [GUI Yue, YU Zhihua, LIU Haiming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering,2015,37(8):1390 − 1398. (in Chinese with English abstract) doi: 10.11779/CJGE201508005

    GUI Yue, YU Zhihua, LIU Haiming, et al. Secondary consolidation properties and mechanism of plateau lacustrine peaty soil[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1390-1398. (in Chinese with English abstract) doi: 10.11779/CJGE201508005

    [11]

    王竟宇, 王志良, 申林方, 等. 单向压缩状态下滇池泥炭土的蠕变特性研究[J]. 地下空间与工程学报,2020,16(6):1689 − 1695. [WANG Jingyu, WANG Zhiliang, SHEN Linfang, et al. Study on consolidation creep properties of Dianchi peaty soil under one-dimensional compression[J]. Chinese Journal of Underground Space and Engineering,2020,16(6):1689 − 1695. (in Chinese with English abstract)

    WANG Jingyu, WANG Zhiliang, SHEN Linfang, et al. Study on consolidation creep properties of Dianchi peaty soil under one-dimensional compression[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(6): 1689-1695. (in Chinese with English abstract)

    [12]

    冯瑞玲, 吴立坚, 张益铭. 泥炭土的固结特性试验研究[J]. 地下空间与工程学报,2019,15(5):1384 − 1392. [FENG Ruiling, WU Lijian, ZHANG Yiming. Study on the consolidation properties of peaty soil[J]. Chinese Journal of Underground Space and Engineering,2019,15(5):1384 − 1392. (in Chinese with English abstract)

    FENG Ruiling, WU Lijian, ZHANG Yiming. Study on the consolidation properties of peaty soil[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(5): 1384-1392. (in Chinese with English abstract)

    [13]

    李育红, 周庆云, 程芸. 滇池湖相泥炭土固结系数及次固结系数研究[J]. 工程勘察,2019,47(5):26 − 32. [LI Yuhong, ZHOU Qingyun, CHENG Yun. Study on the coefficient of consolidation and secondary consolidation of lacustrine peat soil around the Dian Lake[J]. Geotechnical Investigation & Surveying,2019,47(5):26 − 32. (in Chinese with English abstract)

    LI Yuhong, ZHOU Qingyun, CHENG Yun. Study on the coefficient of consolidation and secondary consolidation of lacustrine peat soil around the Dian Lake[J]. Geotechnical Investigation & Surveying, 2019, 47(5): 26-32. (in Chinese with English abstract)

    [14]

    Standard test methods for moisture, ash, and organic matter of peat and other organic soils: ASTMD 2974—14[S]. 2014.

    [15]

    Standard test methods for laboratory determination of the fiber content of peat samples by dry mass: ASTMD 1997—13[S]. 2013.

    [16]

    Standard classification of peat samples by laboratory testing: ASTMD 4497—13[S]. 2007.

    [17]

    中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for geotechnical testing method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [18]

    方超. 高原湖相泥炭土工程性质原生各向异性试验研究[D]. 昆明: 昆明理工大学, 2019

    FANG Chao. Experimental study on inherent anisotropy of engineering properties of plateau lacustrine peat soil[D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese with English abstract)

    [19]

    彭博. 云南大理地区强泥炭质土固结特性的试验研究[D]. 北京: 北京交通大学, 2019

    PENG Bo. Experimental study on consolidation of peat soil in Dali area of Yunnan[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese with English abstract)

    [20]

    ONITSUKA K, HONG Z S, HARA Y, et al. Interpretation of oedometer test data for natural clays[J]. Soils and Foundations,1995,35(3):61 − 70. doi: 10.3208/sandf.35.61

    [21]

    HONG Z S, ONITSUKA K. A method of correcting yield stress and compression index of ariake clays for sample disturbance[J]. Soils and Foundations,1998,38(2):211 − 222. doi: 10.3208/sandf.38.2_211

    [22]

    沈珠江. 软土工程特性和软土地基设计[J]. 岩土工程学报,1998,20(1):100 − 111. [SHEN Zhujiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering,1998,20(1):100 − 111. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1998.01.025

    SHEN Zhujiang. Engineering properties of soft soils and design of soft ground[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 100-111. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1998.01.025

    [23]

    加瑞, 雷华阳. 有明黏土各向异性固结特性的试验研究[J]. 岩土力学,2019,40(6):2231 − 2238. [JIA Rui, LEI Huayang. Experimental study of anisotropic consolidation behavior of Ariake clay[J]. Rock and Soil Mechanics,2019,40(6):2231 − 2238. (in Chinese with English abstract)

    JIA Rui, LEI Huayang. Experimental study of anisotropic consolidation behavior of Ariake clay[J]. Rock and Soil Mechanics, 2019, 40(6): 2231-2238. (in Chinese with English abstract)

    [24]

    雷华阳, 任倩, 张文振, 等. 吹填超软土固结特性试验分析[J]. 工程地质学报,2014,22(6):1039 − 1045. [LEI Huayang, REN Qian, ZHANG Wenzhen, et al. Consolidation property of ultra soft soil[J]. Journal of Engineering Geology,2014,22(6):1039 − 1045. (in Chinese with English abstract)

    LEI Huayang, REN Qian, ZHANG Wenzhen, et al. Consolidation property of ultra soft soil[J]. Journal of Engineering Geology, 2014, 22(6): 1039-1045. (in Chinese with English abstract)

    [25]

    MESRI G, GODLEWSKI P M. Time and stress compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division,1977,103(5):417 − 430. doi: 10.1061/AJGEB6.0000421

    [26]

    WALKER L K. Undrained creep in a sensitive clay[J]. Géotechnique,1969,19(4):515 − 529.

    [27]

    O’KELLY B C. Compression and consolidation anisotropy of some soft soils[J]. Geotechnical & Geological Engineering,2006,24(6):1715 − 1728.

    [28]

    孙德安, 申海娥. 上海软土的流变特性试验研究[J]. 水文地质工程地质,2010,37(3):74 − 78. [SUN Dean, SHEN Haie. Experimental study on rheology behaviour of Shanghai soft clay[J]. Hydrogeology & Engineering Geology,2010,37(3):74 − 78. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.03.016

    SUN Dean, SHEN Haie. Experimental study on rheology behaviour of Shanghai soft clay[J]. Hydrogeology & Engineering Geology, 2010, 37(3): 74-78. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2010.03.016

    [29]

    邓岳保, 陈菲, 刘干斌, 等. 宁波土层的流变固结试验及流变模型参数研究[J]. 水文地质工程地质,2017,44(5):46 − 51. [DENG Yuebao, CHEN Fei, LIU Ganbin, et al. A study of the rheological consolidation test and rheological model parameters for the Ningbo soil layer[J]. Hydrogeology & Engineering Geology,2017,44(5):46 − 51. (in Chinese with English abstract)

    DENG Yuebao, CHEN Fei, LIU Ganbin, et al. A study of the rheological consolidation test and rheological model parameters for the Ningbo soil layer[J]. Hydrogeology & Engineering Geology, 2017, 44(5): 46-51. (in Chinese with English abstract)

    [30]

    BERRY P L, VICKERS B. Consolidation of fibrous peat[J]. Journal of the Geotechnical Engineering Division,1975,101(8):741 − 753. doi: 10.1061/AJGEB6.0000183

  • 加载中

(7)

(5)

计量
  • 文章访问数:  808
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2021-09-10
修回日期:  2021-11-12
刊出日期:  2022-07-25

目录