贵州贞丰—关岭花江喀斯特石漠化地区土壤厚度的空间分布特征

邓大鹏, 刘琦, 卢耀如, 闫钇全. 贵州贞丰—关岭花江喀斯特石漠化地区土壤厚度的空间分布特征[J]. 水文地质工程地质, 2023, 50(1): 197-206. doi: 10.16030/j.cnki.issn.1000-3665.202111005
引用本文: 邓大鹏, 刘琦, 卢耀如, 闫钇全. 贵州贞丰—关岭花江喀斯特石漠化地区土壤厚度的空间分布特征[J]. 水文地质工程地质, 2023, 50(1): 197-206. doi: 10.16030/j.cnki.issn.1000-3665.202111005
DENG Dapeng, LIU Qi, LU Yaoru, YAN Yiquan. Spatial distribution characteristics of soil thickness in the Zhenfeng-GuanlingHuajiang karst rocky desertification area in Guizhou Province[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 197-206. doi: 10.16030/j.cnki.issn.1000-3665.202111005
Citation: DENG Dapeng, LIU Qi, LU Yaoru, YAN Yiquan. Spatial distribution characteristics of soil thickness in the Zhenfeng-GuanlingHuajiang karst rocky desertification area in Guizhou Province[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 197-206. doi: 10.16030/j.cnki.issn.1000-3665.202111005

贵州贞丰—关岭花江喀斯特石漠化地区土壤厚度的空间分布特征

  • 基金项目: 国家自然科学基金项目(41772292);国家重点研发计划(2016YFC0502603)
详细信息
    作者简介: 邓大鹏(1992-),男,博士研究生,主要从事岩溶石漠化方面的研究。 E-mail:1910362@tongji.edu.cn
    通讯作者: 刘琦(1980-),女,博士,副研究员,主要从事水文地质工程地质方面的教学和研究。 E-mail:liuqi472@163.com
  • 中图分类号: X171.1

Spatial distribution characteristics of soil thickness in the Zhenfeng-GuanlingHuajiang karst rocky desertification area in Guizhou Province

More Information
  • 土壤厚度与石漠化发展程度有着密切的关系,土壤也是石漠化地区生态恢复以及农业生产的基础。为了研究典型高原峡谷中-强度石漠化地区的土壤厚度空间分布规律,在土壤厚度野外调查的基础上,利用地统计学方法分析了贵州典型石漠化地区——贞丰—关岭花江小流域土壤厚度空间分布特征及主要影响因素。结果表明:(1)研究区土壤平均厚度仅为26 cm,土壤平均厚度表现为坡耕地>荒地>林地;(2)土壤厚度空间变异性以强度为主,荒地的土壤厚度空间分布连续程度优于林地和坡耕地,林地的土壤厚度空间分布有明显突变性,坡耕地的土壤厚度具有点状分布特征,有耕作物附近土壤厚度较大;(3)土壤厚度与海拔、基岩裸露率、坡度之间均有明显负相关关系;(4)自然和人为因素综合影响下的土壤强侵蚀是研究区土壤厚度分布极为不均的主要原因,对该区域石漠化的治理可以采用工程措施与生物措施相结合的方法。研究结果对研究区石漠化因地制宜地防治及其他地区水土流失防治、生态恢复、农业合理生产具有一定的参考价值。

  • 加载中
  • 图 1  平面地质图及研究区土壤厚度调查单元分布

    Figure 1. 

    图 2  花江喀斯特峡谷地质剖面图

    Figure 2. 

    图 3  调查单元样点布设示意图

    Figure 3. 

    图 4  土壤厚度分布比例

    Figure 4. 

    图 5  不同土地利用类型土壤厚度分布

    Figure 5. 

    图 6  荒地土壤厚度分布等值线图

    Figure 6. 

    图 7  林地土壤厚度分布等值线图

    Figure 7. 

    图 8  坡耕地土壤厚度分布等值线图

    Figure 8. 

    图 9  海拔与土壤厚度关系

    Figure 9. 

    图 10  基岩裸露率与土壤厚度关系

    Figure 10. 

    图 11  坡度与土壤厚度关系图

    Figure 11. 

    表 1  各采样单元土壤厚度

    Table 1.  Soil thickness information of the investigation units

    调查单元编号土地利用类型主要植被海拔
    /m
    基岩裸露率
    /%
    斜坡倾向
    /(°)
    坡度
    /(°)
    土壤厚度描述性统计
    最大值/cm最小值/cm平均值/cm标准差变异系数/%
    Plot 1坡耕地仙人掌、花椒74484.165154010289.5734
    Plot 2坡耕地花椒82060.01129100154424.7457
    Plot 3荒地乔木、杂草70260.0301650103616.9948
    Plot 4坡耕地仙人掌、花椒66579.20202510186.8737
    Plot 5坡耕地花椒、玉米67685.63341858103619.8055
    Plot 6坡耕地花椒61873.0330154003314.9758
    Plot 7林地柚木54263.8255154551814.0477
    Plot 8荒地杂草67780.918163520275.1019
    Plot 9坡耕地玉米87172.8101750103314.6244
    Plot 10坡耕地金银花、花椒77475.1301250183711.6832
    Plot 11坡耕地花椒、仙人掌68963.460165020339.9530
    Plot 12坡耕地火龙果53718.52251955153713.6137
    Plot 13荒地61226.8140153701913.4572
    Plot 14林地柚木55583.72101162153215.6249
    Plot 15坡耕地大豆、花椒、玉米76761.1151680255916.4128
    Plot 16坡耕地花椒71771.930184015287.0725
    Plot 17坡耕地花椒81364.2258148561.4124
    Plot 18坡耕地花生、花椒54766.651455203611.5832
    Plot 19坡耕地花椒73766.234134552515.6763
    Plot 20坡耕地花椒68565.919614305188.0645
    Plot 21坡耕地玉米、花椒74967.6230163252110.8751
    Plot 22荒地杂草82672.022317308237.8034
    Plot 23坡耕地荒草、花椒77574.21211740102310.8046
    Plot 24林地灌木、荒草11890.040201515150.000
    Plot 25坡耕地火龙果、杂草59612.3130157301818.2262
    Plot 26荒地杂草6540.0140154002510.2041
    Plot 27荒地杂草59655.5170224201510.5169
    Plot 28坡耕地花椒、玉米69233.360204901815.1082
    Plot 29坡耕地花椒86640.275283501111.48100
    Plot 30坡耕地核桃、石榴72619.5170165002116.2177
    Plot 31坡耕地仙人掌、红薯93260.2130195301714.8785
    下载: 导出CSV

    表 2  典型样地土壤厚度半方差分析参数表

    Table 2.  Parameters of semi-variance analysis of soil thickness in typical plots

    编号土地利用类型理论模型块金值基台值块金值/基台值变程R2RSS
    Plot 8荒地高斯模型177.0664.90.2731.400.51921732
    Plot 13荒地高斯模型40.0284.60.1412.641.0001.65
    Plot 27荒地高斯模型71.6354.10.2043.000.6291451
    Plot 7林地球状模型166.0742.90.2229.250.60726464
    Plot 14林地球状模型11.2284.60.047.200.715313
    Plot 24林地线性模型71.071.01.0014.140.929632
    Plot 9坡耕地球状模型25.0459.30.057.930.5093922
    Plot 12坡耕地线性模型199.8199.81.0011.770.85518301
    Plot 29坡耕地指数模型98.6342.90.29183.000.528240
    下载: 导出CSV
  • [1]

    卢耀如,张凤娥,刘长礼,等. 中国典型地区岩溶水资源及其生态水文特性[J]. 地球学报,2006,27(5):393 − 402. [LU Yaoru,ZHANG Fenge,LIU Changli,et al. Karst water resources in typical areas of China and their eco-hydrological characteristics[J]. Acta Geoscientica Sinica,2006,27(5):393 − 402. (in Chinese with English abstract) doi: 10.3321/j.issn:1006-3021.2006.05.002

    [2]

    姚邦杰,刘琦,任标,等. 典型石漠化地区岩溶水系统循环演化分析[J]. 工程地质学报,2019,27(5):1179 − 1187. [YAO Bangjie,LIU Qi,REN Biao,et al. Analysis of cyclic evolution of karst water system in typical karst rocky desertification area[J]. Journal of Engineering Geology,2019,27(5):1179 − 1187. (in Chinese with English abstract)

    [3]

    LIU Qi,DENG Dapeng,YAO Bangjie,et al. Analysis of the karst springs’ supply sources in rocky desertification area of Guanling–Huajiang,Guizhou,China[J]. Carbonates and Evaporites,2020,35(3):1 − 11.

    [4]

    闫利会,周忠发,陈全,等. 高原峡谷区喀斯特石漠化演变过程研究[J]. 水文地质工程地质,2016,43(2):112 − 117. [YAN Lihui,ZHOU Zhongfa,CHEN Quan,et al. A study of the evolution process of karst rocky desertification in a karst canyon area[J]. Hydrogeology & Engineering Geology,2016,43(2):112 − 117. (in Chinese with English abstract)

    [5]

    张信宝,刘再华,王世杰,等. 锥峰和塔峰溶丘地貌的表层喀斯特带径流溶蚀形成机制[J]. 山地学报,2011,29(5):529 − 533. [ZHANG Xinbao,LIU Zaihua,WANG Shijie,et al. Dynamic mechanism of runoff corrosion in the epikarst zone on the formation of cone and tower karst landforms[J]. Journal of Mountain Science,2011,29(5):529 − 533. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2011.05.003

    [6]

    WANG Miaomiao,CHEN Hongsong,ZHANG Wei,et al. Soil nutrients and stoichiometric ratios as affected by land use and lithology at county scale in a karst area,southwest China[J]. Science of the Total Environment,2018,619/620:1299 − 1307. doi: 10.1016/j.scitotenv.2017.11.175

    [7]

    CAO Shixiong. A win-win path for institutional change[J]. Time and Society,2016,25(3):493 − 512. doi: 10.1177/0961463X15577275

    [8]

    FENG Qi,MA Hua,JIANG Xuemei,et al. What has caused desertification in China?[J]. Scientific Reports,2015,5:15998. doi: 10.1038/srep15998

    [9]

    周春衡,付智勇,吴丽萍,等. 喀斯特坡地土层厚度及养分含量空间分布特征[J]. 农业现代化研究,2020,41(3):539 − 548. [ZHOU Chunheng,FU Zhiyong,WU Liping,et al. Spatial distribution characteristics of soil thickness and soil nutrient content in karst slopes[J]. Research of Agricultural Modernization,2020,41(3):539 − 548. (in Chinese with English abstract)

    [10]

    魏兴琥,李森,罗红波,等. 粤北石漠化过程土壤与植被变化及其相关性研究[J]. 地理科学,2008,28(5):662 − 666. [WEI Xinghu,LI Sen,LUO Hongbo,et al. Changes and correlation of soil and vegetation in process of rock desertification in northern Guangdong Province[J]. Scientia Geographica Sinica,2008,28(5):662 − 666. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0690.2008.05.012

    [11]

    李森,董玉祥,王金华. 土地石漠化概念与分级问题再探讨[J]. 中国岩溶,2007,26(4):279 − 284. [LI Sen,DONG Yuxiang,WANG Jinhua. Re-discussion on the concept and classification of rocky desertification[J]. Carsologica Sinica,2007,26(4):279 − 284. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4810.2007.04.001

    [12]

    周运超,罗美. 喀斯特小流域土壤厚度的影响因素[J]. 山地农业生物学报,2017,36(3):1 − 5. [ZHOU Yunchao,LUO Mei. Influencing factors of soil thickness in karst small watershed[J]. Journal of Mountain Agriculture and Biology,2017,36(3):1 − 5. (in Chinese with English abstract)

    [13]

    尹辉,李晖,蒋忠诚,等. 基于“3S”的广西典型岩溶区土壤厚度空间格局研究[J]. 水土保持研究,2014,21(6):25 − 29. [YIN Hui,LI Hui,JIANG Zhongcheng,et al. Study on spatial pattern of soil thickness in typical karst area in Guangxi based on ‘3S’ technology[J]. Research of Soil and Water Conservation,2014,21(6):25 − 29. (in Chinese with English abstract) doi: 10.13869/j.cnki.rswc.2014.06.008

    [14]

    李程程,程星,杨士超. 岩溶山区植物生长的土壤厚度因素研究:以贵州相宝山为例[J]. 贵州师范学院学报,2012,28(9):38 − 41. [LI Chengcheng,CHENG Xing,YANG Shichao. Study on the soil thickness factor of plant growth in karst mountains: Take the Guizhou Xiangbao Mountain as an example[J]. Journal of Guizhou Normal College,2012,28(9):38 − 41. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-7798.2012.09.010

    [15]

    HUANG Xianfei,ZHANG Zhenming,ZHOU Yunchao,et al. Spatial heterogeneity of soil thickness and factors controlling it in a karst basin[J]. Eurasian Soil Science,2021,54(4):478 − 486. doi: 10.1134/S1064229321040074

    [16]

    尹亮,崔明,周金星,等. 岩溶高原地区小流域土壤厚度的空间变异特征[J]. 中国水土保持科学,2013,11(1):51 − 58. [YIN Liang,CUI Ming,ZHOU Jinxing,et al. Spatial variability of soil thickness in a small watershed of karst plateau[J]. Science of Soil and Water Conservation,2013,11(1):51 − 58. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-3007.2013.01.008

    [17]

    梁桂星,覃小群,崔亚莉,等. 分布式水文模型在岩溶地区的改进与应用研究[J]. 水文地质工程地质,2020,47(2):60 − 67. [LIANG Guixing,QIN Xiaoqun,CUI Yali,et al. Improvement and application of a distributed hydrological model in karst regions[J]. Hydrogeology & Engineering Geology,2020,47(2):60 − 67. (in Chinese with English abstract)

    [18]

    王涵,刘琦,任标,等. 典型喀斯特石漠化地区降雨产流产沙特征[J]. 贵州师范大学学报(自然科学版),2019,37(3):6 − 12. [WANG Han,LIU Qi,REN Biao,et al. Characteristics of rainfall runoff and sediment yield in typical karst rocky desertification area[J]. Journal of Guizhou Normal University (Natural Sciences),2019,37(3):6 − 12. (in Chinese with English abstract)

    [19]

    ROBERTSON G P,CRUM J R,ELLIS B G. The spatial variability of soil resources following long-term disturbance[J]. Oecologia,1993,96(4):451 − 456. doi: 10.1007/BF00320501

    [20]

    高峻,何春霞,张劲松,等. 太行山干瘠山地土壤厚度空间变异及草灌群落分布特征[J]. 生态学报,2020,40(6):2080 − 2089. [GAO Jun,HE Chunxia,ZHANG Jinsong,et al. Spatial variability of soil thickness and the distribution characteristics of herb and shrub communities in the arid and barren areas of Taihang Mountains[J]. Acta Ecologica Sinica,2020,40(6):2080 − 2089. (in Chinese with English abstract)

    [21]

    易湘生,李国胜,尹衍雨,等. 土壤厚度的空间插值方法比较:以青海三江源地区为例[J]. 地理研究,2012,31(10):1793 − 1805. [YI Xiangsheng,LI Guosheng,YIN Yanyu,et al. Comparison on soil depth prediction among different spatial interpolation methods:A case study in the Three-River Headwaters Region of Qinghai Province[J]. Geographical Research,2012,31(10):1793 − 1805. (in Chinese with English abstract)

    [22]

    尹亮. 西南岩溶高原石漠化地区小流域土壤厚度空间分异规律研究[D]. 长沙: 湖南大学, 2012

    YIN Liang. Spatial variability of soil thickness in a watershed of highland areas in karst region[D]. Changsha: Hu’nan University, 2012. (in Chinese with English abstract)

    [23]

    代希君,彭杰,张艳丽,等. 基于光谱分类的土壤盐分含量预测[J]. 土壤学报,2016,53(4):909 − 918. [DAI Xijun,PENG Jie,ZHANG Yanli,et al. Prediction on soil salt content based on spectral classification[J]. Acta Pedologica Sinica,2016,53(4):909 − 918. (in Chinese with English abstract)

    [24]

    陈小强,张寿鹏,张连根,等. 岩溶石漠化区吉科小流域治理效果评价[J]. 中国水土保持,2015(6):21 − 23. [CHEN Xiaoqiang,ZHANG Shoupeng,ZHANG Liangen,et al. Evaluation of treatment effect of Jike small watershed in karst rocky desertification area[J]. Soil and Water Conservation in China,2015(6):21 − 23. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0941.2015.06.006

    [25]

    张军以,戴明宏,王腊春,等. 西南喀斯特石漠化治理植物选择与生态适应性[J]. 地球与环境,2015,43(3):269 − 278. [ZHANG Junyi,DAI Minghong,WANG Lachun,et al. Plant selection and their ecological adaptation for rocky desertification control in karst region in the southwest of China[J]. Earth and Environment,2015,43(3):269 − 278. (in Chinese with English abstract) doi: 10.14050/j.cnki.1672-9250.2015.03.001

    [26]

    喻阳华, 闵芳卿, 盈斌. 顶坛花椒矮化密植方法: CN109168865A[P]. 2019-01-11

    YU Yanghua, MIN Fangqing, YING Bin. Zanthoxylum bungeanum dwarfing and dense planting method: CN109168865A[P]. 2019-01-11. (in Chinese)

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1068
  • PDF下载数:  16
  • 施引文献:  0
出版历程
收稿日期:  2021-11-02
修回日期:  2021-12-15
刊出日期:  2023-01-15

目录