Mechanical responses and energy characteristics of the Jinping marble under the dynamic impact
-
摘要:
为了分析锦屏水电站大理岩的动力学响应和能量特性,采用分离式霍普金森压杆对岩样开展了动态压缩试验,并引入分形维数定量表征试样的破碎形态、能耗特性及其与应变率的内在关系。结果表明:动态载荷下大理岩应力-应变曲线初始压密段不明显,当应变率较低时,应力-应变曲线呈现出回弹现象;试样峰值应力随应变率的增大而增加,且动态抗压强度与应变率对数呈线性关系;试样能量时程曲线呈“S”型演化,入射能、反射能及透射能均随应变率的增高而增大,动态抗压强度与能耗密度呈对数增长关系;随着比能量耗散值或应变率的增加,试样破坏程度和分形维数均逐渐增大。本文研究对提高爆破等动态荷载下岩石损伤破坏机理的认知具有一定参考价值。
Abstract:To study the dynamic responses and energy characteristics of the marble from the Jinping hydropower station, the dynamic compression tests on the rock samples are carried out using the split-Hopkinson pressure bar, and the fractal dimension of the fragments is also introduced to quantitatively characterize the relationship among the failure shape, energy consumption characteristics and strain rate of the rock samples. The results show that the initial compaction section of the stress-strain curve of the marble under dynamic loading is not obvious, and the stress-strain curve takes on a rebound phenomenon when the strain rate is low, and the peak stress of the sample increases with the rise of strain rate. The dynamic compressive strength has a linear relationship with the logarithm of strain rate, and the energy time-history curves show an "S"-shaped evolution. The incident energy, reflected energy and transmitted energy all increase with the increasing strain rate. The dynamic compressive strength has a logarithmic growth with the energy consumption density. As the energy consumption density or strain rate rises, the failure degree and the fractal dimension of the samples gradually increase. This study is of certain reference value for improving the cognition of rock damage and fracture evolution mechanism under dynamic loads such as blast.
-
Key words:
- marble /
- dynamic impact /
- mechanical responses /
- energy characteristics /
- fractal dimension
-
-
表 1 大理岩能量计算结果
Table 1. Energy calculation results of the marble
编号 /J
/J
/J
/J
θ/(J·cm−3) /s−1
C12 680 619 16 39 0.8 14.3 C23 704 625 17 62 1.3 16.8 C4 1846 1500 46 217 4.4 33.6 C16 1817 1509 44 264 5.4 43.7 C20 3522 2554 160 808 16.5 70.1 C5 3210 2051 168 999 20.4 83.9 表 2 大理岩分形维数计算结果
Table 2. Calculation results of the fractal dimension of the marble
编号 C12 C23 C4 C16 C20 C5 D 1.27 1.30 1.61 1.64 2.01 2.12 -
[1] 戴俊. 岩石动力学特性与爆破理论[M]. 2版. 北京: 冶金工业出版社, 2013
DAI Jun. Dynamic behaviors and blasting theory of rock[M]. 2nd ed. Beijing: Metallurgical Industry Press, 2013. (in Chinese with English abstract)
[2] 李晓锋,李海波,刘凯,等. 冲击荷载作用下岩石动态力学特性及破裂特征研究[J]. 岩石力学与工程学报,2017,36(10):2393 − 2405. [LI Xiaofeng,LI Haibo,LIU Kai,et al. Dynamic properties and fracture characteristics of rocks subject to impact loading[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(10):2393 − 2405. (in Chinese with English abstract)
[3] 黎立云,徐志强,谢和平,等. 不同冲击速度下岩石破坏能量规律的实验研究[J]. 煤炭学报,2011,36(12):2007 − 2011. [LI Liyun,XU Zhiqiang,XIE Heping,et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society,2011,36(12):2007 − 2011. (in Chinese with English abstract)
[4] HONG L,ZHOU Z L,YIN T B,et al. Energy consumption in rock fragmentation at intermediate strain rate[J]. Journal of Central South University of Technology,2009,16(4):677 − 682. doi: 10.1007/s11771-009-0112-5
[5] 张号,平琦,苏海鹏. 不同长径比石灰岩动态压缩SHPB试验研究[J]. 煤炭科学技术,2018,46(8):38 − 43. [ZHANG Hao,PING Qi,SU Haipeng. Study on dynamic compression SHPB test of limestone with different length diameter ratios[J]. Coal Science and Technology,2018,46(8):38 − 43. (in Chinese with English abstract)
[6] 王德荣,刘昭言,刘家贵,等. 砂岩和花岗岩的动态性能与能量耗散分析[J]. 北京理工大学学报,2017,37(12):1217 − 1223. [WANG Derong,LIU Zhaoyan,LIU Jiagui,et al. Analysis of dynamic properties and energy dissipation of sandstone and granite[J]. Transactions of Beijing Institute of Technology,2017,37(12):1217 − 1223. (in Chinese with English abstract)
[7] 李邵军,徐怀胜,晏飞,等. 锦屏隧洞深部大理岩动力扰动力学特性试验研究[J]. 中南大学学报(自然科学版),2021,52(8):2669 − 2676. [LI Shaojun,XU Huaisheng,YAN Fei,et al. Experimental study on mechanical properties under dynamics disturbance condition of marble of Jinping deep tunnel[J]. Journal of Central South University (Science and Technology),2021,52(8):2669 − 2676. (in Chinese with English abstract)
[8] 朱子涵,蔚立元,孟庆彬,等. 峰前卸荷损伤大理岩的动静力学特性试验研究[J]. 岩石力学与工程学报,2019,38(4):747 − 756. [ZHU Zihan,YU Liyuan,MENG Qingbin,et al. Experimental study on dynamic and static characteristics of marble considering pre-peak unloading damage[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(4):747 − 756. (in Chinese with English abstract)
[9] XIE H P. Fractals in rock mechanics[M]. Rotterdam: A A Balkema, 1993.
[10] 付小凤. 渗流-应力耦合作用下砂岩声发射及分形损伤特征研究[J]. 水文地质工程地质,2017,44(6):83 − 88. [FU Xiaofeng. A study of the acoustic emission and fractal damage of sandstone under the coupling of seepage and stress[J]. Hydrogeology & Engineering Geology,2017,44(6):83 − 88. (in Chinese with English abstract)
[11] XU X L,ZHANG Z Z. Fractal characteristics of rock fracture surface under triaxial compression after high temperature[J]. Advances in Materials Science and Engineering,2016(1):1155 − 1165.
[12] FREW D J,FORRESTAL M J,CHEN W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar[J]. Experimental Mechanics,2002,42(1):93 − 106. doi: 10.1007/BF02411056
[13] LI X B,HONG L,YIN T B,et al. Relationship between diameter of split Hopkinson pressure bar and minimum loading rate under rock failure[J]. Journal of Central South University of Technology,2008,15(2):218 − 223. doi: 10.1007/s11771-008-0042-7
[14] WANG Z L,SHI G Y. Effect of heat treatment on dynamic tensile strength and damage behavior of medium-fine-grained Huashan granite[J]. Experimental Techniques,2017,41(4):365 − 375. doi: 10.1007/s40799-017-0180-7
[15] 东兆星,单仁亮. 岩石在动载作用下破坏模式与强度特性研究[J]. 爆破器材,2000,29(1):1 − 5. [DONG Zhaoxing,SHAN Renliang. Research on the failure pattern and strength properties of rock under dynamic loading[J]. Explosive Materials,2000,29(1):1 − 5. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-8352.2000.01.001
[16] 李淼,乔兰,李庆文. 高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析[J]. 岩土工程学报,2017,39(7):1336 − 1343. [LI Miao,QIAO Lan,LI Qingwen. Energy dissipation of rock specimens under high strain rate with single joint in SHPB tensile tests[J]. Chinese Journal of Geotechnical Engineering,2017,39(7):1336 − 1343. (in Chinese with English abstract) doi: 10.11779/CJGE201707021
[17] 翟越,马国伟,赵均海,等. 花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较[J]. 岩石力学与工程学报,2007,26(4):762 − 768. [ZHAI Yue,MA Guowei,ZHAO Junhai,et al. Comparison of dynamic capabilities of granite and concrete under uniaxial impact compressive loading[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(4):762 − 768. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2007.04.015
[18] WANG Z L,LI H R,WANG J G,et al. Experimental study on mechanical and energy properties of granite under dynamic triaxial condition[J]. Geotechnical Testing Journal,2018,41(6):1063 − 1075.
[19] 高峰,谢和平,赵鹏. 岩石块度分布的分形性质及细观结构效应[J]. 岩石力学与工程学报,1994,13(3):240 − 246. [GAO Feng,XIE Heping,ZHAO Peng. Fractal properties of size-frequency distribution of rock fragments and the influence of meso-structure[J]. Chinese Journal of Rock Mechanics and Engineering,1994,13(3):240 − 246. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.1994.03.008
-