六价铬污染模拟含水层的注入型黄原胶凝胶阻截屏障试验研究

张力, 赵勇胜. 六价铬污染模拟含水层的注入型黄原胶凝胶阻截屏障试验研究[J]. 水文地质工程地质, 2023, 50(2): 171-177. doi: 10.16030/j.cnki.issn.1000-3665.202112043
引用本文: 张力, 赵勇胜. 六价铬污染模拟含水层的注入型黄原胶凝胶阻截屏障试验研究[J]. 水文地质工程地质, 2023, 50(2): 171-177. doi: 10.16030/j.cnki.issn.1000-3665.202112043
ZHANG Li, ZHAO Yongsheng. Experimental research on the injectable xanthan gum gel intercepting barrier of simulated Cr(VI) contaminated aquifer[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 171-177. doi: 10.16030/j.cnki.issn.1000-3665.202112043
Citation: ZHANG Li, ZHAO Yongsheng. Experimental research on the injectable xanthan gum gel intercepting barrier of simulated Cr(VI) contaminated aquifer[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 171-177. doi: 10.16030/j.cnki.issn.1000-3665.202112043

六价铬污染模拟含水层的注入型黄原胶凝胶阻截屏障试验研究

  • 基金项目: 国家自然科学基金项目(42072270)
详细信息
    作者简介: 张力(1996-),男,硕士研究生,主要从事地下水污染阻截与修复技术研究。E-mail:cpslddzl@163.com
    通讯作者: 赵勇胜(1961-),男,教授,博士生导师,主要从事污染场地的模拟控制与修复研究。E-mail:zhaoyongsheng@jlu.edu.cn
  • 中图分类号: X523

Experimental research on the injectable xanthan gum gel intercepting barrier of simulated Cr(VI) contaminated aquifer

More Information
  • 由于工业废物的不合理排放,大量的重金属污染物Cr(VI)进入地下环境,严重威胁着人类健康和生态环境。Cr(VI)在地下水环境中高度易迁移的特性,造成其污染修复上的困难,亟待一种绿色、经济、有效的阻截方式提高地下水对Cr(VI)的阻控能力。研究利用焦亚硫酸钠原位还原地下水中的Cr(VI),产生Cr3+作为黄原胶交联剂,形成凝胶阻截屏障,探究了各类成分对凝胶时间、黏度变化的影响及凝胶屏障对含水层的阻截效果,得到如下结论:(1)在Cr(VI)质量浓度达到200 mg/L的体系中,质量分数0.4%的黄原胶溶液在1.5 h内即可形成具有一定机械强度的凝胶;(2)凝胶具有耐盐性,适用于常见含水层,2.5~5 g/L的Na+和K+对凝胶起促进作用;(3)注入型凝胶阻截屏障能够大幅降低中砂介质的渗透系数至1×10−7 cm/s,满足地下水阻截需求。注入型凝胶屏障的形成无需引入有害物质,阻截结束后注入型屏障可经生物作用自然降解,不会长期改变含水层水力条件。研究成果可为Cr(VI)污染地下水中凝胶阻截屏障的构筑提供理论基础。

  • 加载中
  • 图 1  模拟柱试验装置示意图

    Figure 1. 

    图 2  体系中 Cr(VI)质量浓度对凝胶时间的影响

    Figure 2. 

    图 3  不同质量浓度K+影响下凝胶基液黏度随时间变化

    Figure 3. 

    图 4  不同质量浓度 Na+影响下凝胶基液黏度随时间变化

    Figure 4. 

    图 5  不同质量浓度 Ca2+影响下凝胶基液黏度随时间变化

    Figure 5. 

    图 6  凝胶屏障封堵介质的渗透系数随时间的变化

    Figure 6. 

  • [1]

    DHAL B,THATOI H N,DAS N N,et al. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:A review[J]. Journal of Hazardous Materials,2013,250/251:272 − 291. doi: 10.1016/j.jhazmat.2013.01.048

    [2]

    ZHAO Fangjie,MA Yibing,ZHU Yongguan,et al. Soil contamination in China:Current status and mitigation strategies[J]. Environmental Science & Technology,2015,49(2):750 − 759.

    [3]

    张进德,田磊,裴圣良. 矿山水土污染与防治对策研究[J]. 水文地质工程地质,2021,48(2):157 − 163. [ZHANG Jinde,TIAN Lei,PEI Shengliang. A discussion of soil and water pollution and control countermeasures in mining area of China[J]. Hydrogeology & Engineering Geology,2021,48(2):157 − 163. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003031

    [4]

    王晟,冯翔,李兵,等. 多种铁改性和未改性生物炭对模拟地下水中六价铬的去除[J]. 吉林大学学报(地球科学版),2021,51(1):247 − 255. [WANG Sheng,FENG Xiang,LI Bing,et al. Removal of hexavalent chromium from simulated groundwater by variety of iron-modified and unmodified biochars[J]. Journal of Jilin University (Earth Science Edition),2021,51(1):247 − 255. (in Chinese with English abstract)

    [5]

    WU Yihan,PANG Hongwei,LIU Yue,et al. Environmental remediation of heavy metal ions by novel-nanomaterials:A review[J]. Environmental Pollution,2019,246:608 − 620. doi: 10.1016/j.envpol.2018.12.076

    [6]

    ZOU Yidong,WANG Xiangxue,KHAN A,et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions:A review[J]. Environmental Science & Technology,2016,50(14):7290 − 7304.

    [7]

    LIU Lianwen,LI Wei,SONG Weiping,et al. Remediation techniques for heavy metal-contaminated soils:Principles and applicability[J]. Science of the Total Environment,2018,633:206 − 219. doi: 10.1016/j.scitotenv.2018.03.161

    [8]

    ZHOU Rui,SUN He,HOU Zhimin,et al. Light transmission method to explore the migration and distribution of Cr(VI) in a sandy aquifer[J]. Environmental Earth Sciences,2018,77(6):255. doi: 10.1007/s12665-018-7435-1

    [9]

    ZHANG Yu,TANG Qiang,SHI Peixin,et al. Influence of bio-clogging on permeability characteristics of soil[J]. Geotextiles and Geomembranes,2021,49(3):707 − 721. doi: 10.1016/j.geotexmem.2020.11.010

    [10]

    PENSINI E,ELSAYED A,MACIAS RODRIGUEZ B,et al. In situ trapping and treating of hexavalent chromium using scleroglucan-based fluids:A proof of concept[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2018,559:192 − 200.

    [11]

    KIM M,CORAPCIOGLU M Y. Gel barrier formation in unsaturated porous media[J]. Journal of Contaminant Hydrology,2002,56(1/2):75 − 98.

    [12]

    KIM M,CORAPCIOGLU M Y. Modeling of gel barrier formation by using colloidal silica in saturated media[J]. Environmental Technology,2003,24(4):517 − 529. doi: 10.1080/09593330309385586

    [13]

    DEHGHAN H,TABARSA A,LATIFI N,et al. Use of xanthan and guar gums in soil strengthening[J]. Clean Technologies and Environmental Policy,2019,21(1):155 − 165. doi: 10.1007/s10098-018-1625-0

    [14]

    SIWIK A,PENSINI E,ELSAYED A,et al. Natural guar,xanthan and carboxymethyl-cellulose-based fluids:Potential use to trap and treat hexavalent chromium in the subsurface[J]. Journal of Environmental Chemical Engineering,2019,7(1):102807. doi: 10.1016/j.jece.2018.11.051

    [15]

    KUMAR S A,SUJATHA E R,PUGAZHENDI A,et al. Guar gum-stabilized soil:A clean,sustainable and economic alternative liner material for landfills[J]. Clean Technologies and Environmental Policy,2021:1 − 19.

    [16]

    ARMISTEAD S J,RAWLINGS A E,SMITH C C,et al. Biopolymer stabilization/solidification of soils:A rapid,micro-macro,cross-disciplinary approach[J]. Environmental Science & Technology,2020,54(21):13963 − 13972.

    [17]

    GIOIA F,CIRIELLO P P. The containment of oil spills in porous media using xanthan/aluminum solutions,gelled by gaseous CO2 or by AlCl3 solutions[J]. Journal of Hazardous Materials,2006,138(3):500 − 506. doi: 10.1016/j.jhazmat.2006.05.095

    [18]

    ZHANG Guicai,CHEN Lifeng,GE Jijiang,et al. Experimental research of syneresis mechanism of HPAM/Cr3+ gel[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,483:96 − 103.

    [19]

    REN Liming,WANG Ruoyu,QIN Bing,et al. Enhanced remediation efficiency of Cr(VI)-contaminated heterogeneous aquifers:Improved sweeping efficiency using shear-thinning fluids[J]. Chemosphere,2021,273:129675. doi: 10.1016/j.chemosphere.2021.129675

    [20]

    佟卉,苏程,毛绍祺,等. 油田用铬交联聚合物凝胶研究进展综述[J]. 化学工程师,2021,35(2):43 − 47. [TONG Hui,SU Cheng,MAO Shaoqi,et al. Research progress of chromium cross-linked polymer gel used in oilfield[J]. Chemical Engineer,2021,35(2):43 − 47. (in Chinese with English abstract) doi: 10.16247/j.cnki.23-1171/tq.20210243

    [21]

    GIOIA F,URCIUOLO M. The containment of oil spills in unconsolidated granular porous media using xanthan/Cr(III) and xanthan/Al(III) gels[J]. Journal of Hazardous Materials,2004,116(1/2):83 − 93.

    [22]

    PENSINI E,RODRIGUEZ B M,MARANGONI A G,et al. Shear rheological properties of composite fluids and stability of particle suspensions:Potential implications for fracturing and environmental fluids[J]. The Canadian Journal of Chemical Engineering,2019,97(9):2395 − 2407. doi: 10.1002/cjce.23486

    [23]

    TELEPANICH A,MARSHALL T,GREGORI S,et al. Graphene-alginate fluids as unconventional electrodes for the electrokinetic remediation of Cr(VI)[J]. Water,Air,& Soil Pollution,2021,232(8):334.

    [24]

    李红,孙辉,张冲,等. 焦亚硫酸钠-石灰法处理含铬废水的研究[J]. 辽宁化工,2020,49(6):631 − 633. [LI Hong,SUN Hui,ZHANG Chong,et al. Study on treatment of chromium-containing wastewater by sodium metabisulfite-lime method[J]. Liaoning Chemical Industry,2020,49(6):631 − 633. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-0935.2020.06.008

    [25]

    雷迅,吴咚咚,郑融融,等. 焦亚硫酸钠对电镀废水六价铬和化学需氧量浓度值影响效果的探讨[J]. 当代化工研究,2020(4):131 − 132. [LEI Xun,WU Dongdong,ZHENG Rongrong,et al. Discussion the effect of sodium pyrosulfite to Cr6+ and chemical oxygen demand in the electroplating wastewate[J]. Modern Chemical Research,2020(4):131 − 132. (in Chinese with English abstract) doi: 10.3969/j.issn.1672-8114.2020.04.061

    [26]

    MCCOOL C S,GREEN D W,WILLHITE G P. Fluid/rock interactions between xanthan/chromium(III) gel systems and dolomite core material[J]. SPE Production & Facilities,2000,15(3):159 − 167.

    [27]

    李琴. 地下水污染膨润土/水泥/粘土系原位阻截材料防渗与兼容性能研究[D]. 长春: 吉林大学, 2020.

    LI Qin. Study on containment performance and chemical compatibility of bentonite/cement/clay based in-situ barrier materials for groundwater pollution[D]. Changchun: Jilin University, 2020. (in Chinese with English abstract)

    [28]

    韩慧慧. 利用弱凝胶强化修复试剂在低渗透地层中的迁移研究[D]. 长春: 吉林大学, 2019

    HAN Huihui. Study on enhancing the migration of the remediation agents in low permeability formation by using weak gel[D]. Changchun: Jilin University, 2019. (in Chinese with English abstract)

  • 加载中

(6)

计量
  • 文章访问数:  982
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2021-12-21
修回日期:  2022-03-05
刊出日期:  2023-03-15

目录