Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles
-
摘要:
冬季冻结与春季融化引起北方滨海盐渍土的工程性质劣化。为研究纤维加筋对固化土的抗压性能、抗冻融性能与微观结构变化,开展了石灰固化盐渍土和纤维与石灰加筋固化盐渍土的冻融试验、无侧限抗压试验、扫描电镜试验、核磁共振试验和压汞试验,系统分析冻融后纤维加筋固化盐渍土的抗压强度与孔隙特征间的相关性、抗冻融性能及其变化规律。结果表明:随冻融次数增加,石灰固化土和纤维与石灰加筋固化土的抗压强度、孔隙体积、孔隙率均呈阶段性变化,即冻融1~3次、冻融4~7次、冻融8~10次、冻融11~15次共4个阶段。随冻融次数增加,破坏应变增大。相同冻融次数下,2种土的破坏应变均随压实度的增大而增大,且纤维与石灰加筋固化土的抗压强度、破坏应变均大于石灰固化土,孔隙率则反之。加筋土越密实,筋土摩擦作用越强,土的抗压性能越好;纤维在土中随机分布与交织分布,对土起到了空间约束作用,提高了加筋土的抗冻融性能。研究成果可为北方盐渍土的工程利用提供理论和技术指导。
Abstract:Freezing in winter and thawing in spring lead to deterioration of the engineering property in the coastal saline soil in north China. In order to study the effect of the saline soil added lime (lime-soil) and saline soil added fiber and lime (fiber-lime-soil) on compressive capability, anti- freezing-thawing capability and microstructure, the freezing-thawing tests, unconfined compressive test, scanning electronic microscopy (SEM) test, nuclear magnetic resonance (NMR) test and mercury intrusion porosimetry (MIP) test are carried out, and the correlation between the compressive strength and microstructure characteristics, anti-freezing-thawing capability and its variation rules are systematically analyzed. The test results show that the compressive strength, pore volume and porosity of lime-soil and fiber-lime-soil under the freezing-thawing cycles are varied by four stages, that is, stage one (1−3 freezing-thawing cycles), stage two (4−7 freezing-thawing cycles), stage three (8−10 freezing-thawing cycles), stage four (11−15 freezing-thawing cycles). At the same freezing-thawing cycles, the failure strains of lime-soil and fiber-lime-soil increase with the increasing compactness, and the compressive strength and failure strain of fiber-lime-soil are greater than those of lime-soil, but the porosity is lower than that of lime-soil. The more the compactness is, the stronger the friction between fibers and particles, and the better the compressive properties. The interleaved fibers and randomly distributed fibers jointly limit the deformation of the soil and enhance the anti-freezing-thawing properties of the fiber-lime-soil. The results may provide the guidance in theory and technology for engineering utilization in saline soil areas in northern China.
-
Key words:
- freezing-thawing cycle /
- reinforced saline soil /
- compressive strength /
- microstructure /
- NMR
-
表 1 不同冻融次数3个压实度2种土的孔隙体积占比
Table 1. Volume proportion of the lime-soil and fiber-lime-soil in three compactness under some freezing-thawing cycles /%
孔隙
类型冻融
次数压实度90% 压实度93% 压实度96% 石灰土 加筋土 石灰土 加筋土 石灰土 加筋土 微
孔
隙0 63.94 57.64 76.72 72.16 82.50 84.28 1 62.01 54.52 71.70 69.89 78.93 83.61 2 57.56 54.44 70.23 68.24 76.27 80.57 5 53.00 48.50 65.74 63.93 72.38 76.24 7 52.81 46.02 62.28 60.62 67.12 72.38 10 54.89 54.28 65.70 61.18 66.35 67.56 12 56.31 52.41 64.22 62.58 66.90 66.85 15 55.49 51.42 64.13 59.29 66.99 65.27 小
孔
隙0 16.46 15.94 13.15 14.52 10.89 9.85 1 18.57 18.78 15.80 16.38 12.66 10.54 2 22.13 20.07 17.08 18.03 14.46 12.44 5 23.14 23.22 19.95 20.58 17.24 15.16 7 25.16 24.03 21.08 21.79 19.71 18.17 10 23.67 23.35 21.08 23.27 21.26 20.02 12 23.28 23.75 21.10 22.00 20.64 19.86 15 23.72 24.22 20.96 23.17 20.87 20.18 中
孔
隙0 13.34 14.68 7.83 9.01 4.75 4.05 1 14.86 17.03 10.02 10.48 6.20 4.33 2 16.16 17.00 10.35 11.04 7.09 5.43 5 18.30 18.68 11.94 12.44 8.40 6.86 7 19.97 19.86 13.65 14.05 10.69 9.61 10 17.32 17.17 11.58 13.12 10.41 10.09 12 16.58 17.66 12.27 12.67 10.11 10.07 15 16.53 18.13 11.83 13.97 9.88 10.69 大
孔
隙0 6.26 11.74 2.29 4.31 1.86 1.82 1 4.57 9.68 2.49 3.25 2.22 1.52 2 4.15 8.50 2.34 2.70 2.19 1.56 5 5.56 9.61 2.36 3.04 1.97 1.75 7 4.06 10.10 2.99 3.54 2.49 2.65 10 4.12 5.21 1.64 2.42 1.97 2.34 12 3.83 6.18 2.42 2.76 2.35 3.22 15 4.26 6.23 3.08 3.56 2.26 3.86 表 2 冻融前后石灰固化土和纤维与石灰加筋固化土的孔隙指标
Table 2. Pore indices of the lime-soil and fiber-lime-soil before and after freezing-thawing cycles
冻融
次数石灰固化土 纤维与石灰加筋固化土 孔隙面积/
(m2·g−1)平均直径/
μm孔隙率/
%孔隙率
增长率/%孔隙面积/
(m2·g−1)平均直径/
μm孔隙率/
%孔隙率
增长率/%0 22.168 0.025 26.79 0.0 20.817 0.023 25.39 0.0 1 23.162 0.026 28.20 5.3 21.257 0.024 26.58 4.7 2 23.274 0.027 28.87 7.8 21.390 0.026 27.08 6.7 5 23.495 0.029 29.98 11.9 21.500 0.027 27.75 9.3 7 23.668 0.030 30.73 14.7 21.531 0.028 28.25 11.3 10 24.762 0.032 31.77 18.6 22.152 0.029 29.05 14.4 15 25.413 0.035 34.52 28.9 22.988 0.030 30.89 21.7 -
[1] 魏玉涛,刘德玉,张伟,等. 荒漠-湿地生态系统区盐渍土特征及空间变异性[J]. 水文地质工程地质,2020,47(2):183 − 190. [WEI Yutao,LIU Deyu,ZHANG Wei,et al. Characteristics and spatial variability of saline soil in desert-wet ecosystem area,Gansu Province,China[J]. Hydrogeology & Engineering Geology,2020,47(2):183 − 190. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906021
[2] 魏丽. 纤维与石灰加筋固化滨海盐渍土的冻融损伤及力学性能退化研究[D]. 兰州: 兰州大学, 2021
WEI Li. Fabric damage and mechanical degradation of coastal saline soil reinforced with fiber and lime under freeze-thaw cycling[D]. Lanzhou: Lanzhou University, 2021. (in Chinese with English abstract)
[3] 姜宇波, 柴寿喜, 魏丽, 等. 四种因素对纤维加筋盐渍土抗压性能的影响[J]. 岩土力学, 2016, 37(增刊1): 233-239
JIANG Yubo, CHAI Shouxi, WEI Li, et al. Effect of four factors on compressive property of fiber-saline soil[J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 233-239. (in Chinese with English abstract)
[4] 齐吉琳,程国栋,VERMEER P A. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展,2005,20(8):887 − 894. [QI Jilin,CHENG Guodong,VERMEER P A. State-of-the-art of influence of freeze-thaw on engineering properties of soils[J]. Advance in Earth Sciences,2005,20(8):887 − 894. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2005.08.010
[5] 朱敏,倪万魁,李向宁,等. 黄土掺入聚丙烯纤维后的无侧限抗压强度和变形试验研究[J]. 科学技术与工程,2020,20(20):8337 − 8343. [ZHU Min,NI Wankui,LI Xiangning,et al. Study on unconfined compressive strength and deformation after incorporating polypropylene fiber into loess[J]. Science Technology and Engineering,2020,20(20):8337 − 8343. (in Chinese with English abstract)
[6] 吕前辉,柴寿喜,李敏. 多因素影响下石灰固化盐渍土抗剪性能的试验研究[J]. 水文地质工程地质,2017,44(6):89 − 95. [LYU Qianhui,CHAI Shouxi,LI Min. An experimental study of the shear properties of the solidified saline soil with lime concerning under the influence of multiple factors[J]. Hydrogeology & Engineering Geology,2017,44(6):89 − 95. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.06.14
[7] 唐朝生,施斌,顾凯. 纤维加筋土中筋/土界面相互作用的微观研究[J]. 工程地质学报,2011,19(4):610 − 614. [TANG Chaosheng,SHI Bin,GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil[J]. Journal of Engineering Geology,2011,19(4):610 − 614. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.04.026
[8] 徐敏普,孙明瑞,常成. 冻融循环作用下秸秆纤维加筋土抗压强度试验研究[J]. 盐城工学院学报(自然科学版),2021,34(2):6 − 10. [XU Minpu,SUN Mingrui,CHANG Cheng. Experimental study on compressive strength of straw fiber-reinforced soil under freeze-thaw cycles[J]. Journal of Yancheng Institute of Technology (Natural Science Edition),2021,34(2):6 − 10. (in Chinese with English abstract)
[9] 陈诚, 郭伟, 任宇晓. 冻融循环条件下木质素纤维改良土性质研究及微观分析[J]. 岩土工程学报, 2020, 42(增刊2): 135 − 140
CHEN Cheng, GUO Wei, REN Yuxiao. Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Sup 2): 135 − 140. (in Chinese with English abstract)
[10] 袁志辉,唐春,杨普济,等. 干湿循环下红土力学性质劣化的多尺度试验[J]. 水力发电学报,2022,41(2):79 − 91. [YUAN Zhihui,TANG Chun,YANG Puji,et al. Multi-scale experiment of mechanical property degradation of a laterite soil under dry-wet cycling[J]. Journal of Hydroelectric Engineering,2022,41(2):79 − 91. (in Chinese with English abstract) doi: 10.11660/slfdxb.20220209
[11] 安爱军, 廖靖云. 基于核磁共振和扫描电镜的蒙内铁路膨胀土改良细观结构研究[J]. 岩土工程学报, 2018, 40(增刊2): 152 − 156
AN Aijun, LIAO Jingyun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa-Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Sup 2): 152 − 156. (in Chinese with English abstract)
[12] 吕擎峰,周刚,王生新,等. 固化盐渍土核磁共振微观特征[J]. 岩土力学,2019,40(1):245 − 249. [LYU Qingfeng,ZHOU Gang,WANG Shengxin,et al. Microstructure characteristics of solidified saline soil based on nuclear magnetic resonance[J]. Rock and Soil Mechanics,2019,40(1):245 − 249. (in Chinese with English abstract) doi: 10.16285/j.rsm.2017.1152
[13] 丁建文,洪振舜,刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学,2011,32(12):3591 − 3596. [DING Jianwen,HONG Zhenshun,LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics,2011,32(12):3591 − 3596. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.12.010
[14] 张英,邴慧. 基于压汞法的冻融循环对土体孔隙特征影响的试验研究[J]. 冰川冻土,2015,37(1):169 − 174. [ZHANG Ying,BING Hui. Experimental study of the effect of freezing-thawing cycles on porosity characters of silty clay by using mercury intrusion porosimetry[J]. Journal of Glaciology and Geocryology,2015,37(1):169 − 174. (in Chinese with English abstract)
[15] 方秋阳,柴寿喜,李敏,等. 冻融循环对固化盐渍土的抗压强度与变形的影响[J]. 岩石力学与工程学报,2016,35(5):1041 − 1047. [FANG Qiuyang,CHAI Shouxi,LI Min,et al. Influence of freezing-thawing cycles on compressive strength and deformation of solidified saline soil[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):1041 − 1047. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2015.1078
[16] 柴寿喜. 固化滨海盐渍土的强度特性研究[D]. 兰州: 兰州大学, 2006
CHAI Shouxi. Study on the special properties of strength of solidified saline soil in inshore[D]. Lanzhou: Lanzhou University, 2006. (in Chinese with English abstract)
[17] 柴寿喜, 王晓燕, 王沛. 滨海盐渍土改性固化与加筋利用研究[M]. 天津: 天津大学出版社, 2011
CHAI Shouxi, WANG Xiaoyan, WANG Pei. Study on modification curing and reinforcement utilization of coastal saline soil [M]. Tianjin: Tianjin University Press, 2011. (in Chinese)
[18] 程良. 盐渍土强度体变特性及冻融循环对其结构性影响研究[D]. 西安: 西安理工大学, 2018
CHENG Liang. Study on strength deformation characteristics of saline soil and the influence of freeze-thaw cycle on its structure[D]. Xi’an: Xi’an University of Technology, 2018. (in Chinese with English abstract)
[19] 何攀,许强,刘佳良,等. 基于核磁共振与氮吸附技术的黄土含盐量对结合水膜厚度的影响研究[J]. 水文地质工程地质,2020,47(5):142 − 149. [HE Pan,XU Qiang,LIU Jialiang,et al. An experimental study of the influence of loess salinity on combined water film thickness based on NMR and nitrogen adsorption technique[J]. Hydrogeology & Engineering Geology,2020,47(5):142 − 149. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201910002
[20] 秦泳,徐彬,郑一峰. 掺加硅藻土混凝土孔隙结构冻融破坏试验研究[J]. 路基工程,2020(5):43 − 48. [QIN Yong,XU Bin,ZHENG Yifeng. Experimental study on freezing and thawing failure test of diatomite doped concrete with pore structure[J]. Subgrade Engineering,2020(5):43 − 48. (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202004005