冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构

柴寿喜, 张琳, 魏丽, 田萌萌. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质, 2022, 49(5): 96-105. doi: 10.16030/j.cnki.issn.1000-3665.20212026
引用本文: 柴寿喜, 张琳, 魏丽, 田萌萌. 冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构[J]. 水文地质工程地质, 2022, 49(5): 96-105. doi: 10.16030/j.cnki.issn.1000-3665.20212026
CHAI Shouxi, ZHANG Lin, WEI Li, TIAN Mengmeng. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96-105. doi: 10.16030/j.cnki.issn.1000-3665.20212026
Citation: CHAI Shouxi, ZHANG Lin, WEI Li, TIAN Mengmeng. Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 96-105. doi: 10.16030/j.cnki.issn.1000-3665.20212026

冻融作用下纤维加筋固化盐渍土的抗压性能与微观结构

  • 基金项目: 天津市科技计划项目(20YDTPJC00930);天津市科技支撑重点项目(19YFZCSF00820)
详细信息
    作者简介: 柴寿喜(1962-),男,博士,教授,主要从事盐渍土改性固化研究。E-mail:chaishouxi@163.com
    通讯作者: 张琳(1996-),女,硕士研究生,主要从事盐渍土加筋固化研究。E-mail:17839166834@163.com
  • 中图分类号: TU411.6;TU411.92

Compressive properties and microstructure of saline soil added fiber and lime under freezing-thawing cycles

More Information
  • 冬季冻结与春季融化引起北方滨海盐渍土的工程性质劣化。为研究纤维加筋对固化土的抗压性能、抗冻融性能与微观结构变化,开展了石灰固化盐渍土和纤维与石灰加筋固化盐渍土的冻融试验、无侧限抗压试验、扫描电镜试验、核磁共振试验和压汞试验,系统分析冻融后纤维加筋固化盐渍土的抗压强度与孔隙特征间的相关性、抗冻融性能及其变化规律。结果表明:随冻融次数增加,石灰固化土和纤维与石灰加筋固化土的抗压强度、孔隙体积、孔隙率均呈阶段性变化,即冻融1~3次、冻融4~7次、冻融8~10次、冻融11~15次共4个阶段。随冻融次数增加,破坏应变增大。相同冻融次数下,2种土的破坏应变均随压实度的增大而增大,且纤维与石灰加筋固化土的抗压强度、破坏应变均大于石灰固化土,孔隙率则反之。加筋土越密实,筋土摩擦作用越强,土的抗压性能越好;纤维在土中随机分布与交织分布,对土起到了空间约束作用,提高了加筋土的抗冻融性能。研究成果可为北方盐渍土的工程利用提供理论和技术指导。

  • 加载中
  • 图 1  3个石灰掺量固化盐渍土的应力-应变

    Figure 1. 

    图 2  2种土在3个压实度下抗压强度随冻融次数的变化

    Figure 2. 

    图 3  2种固化土的抗压强度随冻融次数的下降率

    Figure 3. 

    图 4  不同冻融次数时2种土在3种压实度下的轴向应力-轴向应变

    Figure 4. 

    图 5  不同冻融次数石灰固化土和纤维与石灰加筋固化土试样的抗压破坏形态

    Figure 5. 

    图 6  石灰固化土和纤维与石灰加筋固化土的扫描电镜影像

    Figure 6. 

    图 7  3种压实度石灰固化土和纤维与石灰加筋固化土的孔隙半径与孔隙体积占比

    Figure 7. 

    图 8  不同冻融次数石灰固化土孔隙分布特征

    Figure 8. 

    图 9  不同冻融次数纤维与石灰加筋固化土孔隙分布特征

    Figure 9. 

    表 1  不同冻融次数3个压实度2种土的孔隙体积占比

    Table 1.  Volume proportion of the lime-soil and fiber-lime-soil in three compactness under some freezing-thawing cycles /%

    孔隙
    类型

    冻融

    次数
    压实度90%压实度93%压实度96%
    石灰土加筋土石灰土加筋土石灰土加筋土


    063.9457.6476.7272.1682.5084.28
    162.0154.5271.7069.8978.9383.61
    257.5654.4470.2368.2476.2780.57
    553.0048.5065.7463.9372.3876.24
    752.8146.0262.2860.6267.1272.38
    1054.8954.2865.7061.1866.3567.56
    1256.3152.4164.2262.5866.9066.85
    1555.4951.4264.1359.2966.9965.27


    016.4615.9413.1514.5210.899.85
    118.5718.7815.8016.3812.6610.54
    222.1320.0717.0818.0314.4612.44
    523.1423.2219.9520.5817.2415.16
    725.1624.0321.0821.7919.7118.17
    1023.6723.3521.0823.2721.2620.02
    1223.2823.7521.1022.0020.6419.86
    1523.7224.2220.9623.1720.8720.18


    013.3414.687.839.014.754.05
    114.8617.0310.0210.486.204.33
    216.1617.0010.3511.047.095.43
    518.3018.6811.9412.448.406.86
    719.9719.8613.6514.0510.699.61
    1017.3217.1711.5813.1210.4110.09
    1216.5817.6612.2712.6710.1110.07
    1516.5318.1311.8313.979.8810.69


    06.2611.742.294.311.861.82
    14.579.682.493.252.221.52
    24.158.502.342.702.191.56
    55.569.612.363.041.971.75
    74.0610.102.993.542.492.65
    104.125.211.642.421.972.34
    123.836.182.422.762.353.22
    154.266.233.083.562.263.86
    下载: 导出CSV

    表 2  冻融前后石灰固化土和纤维与石灰加筋固化土的孔隙指标

    Table 2.  Pore indices of the lime-soil and fiber-lime-soil before and after freezing-thawing cycles

    冻融
    次数
    石灰固化土纤维与石灰加筋固化土
    孔隙面积/
    (m2·g−1)
    平均直径/
    μm
    孔隙率/
    %
    孔隙率
    增长率/%
    孔隙面积/
    (m2·g−1)
    平均直径/
    μm
    孔隙率/
    %
    孔隙率
    增长率/%
    022.1680.02526.790.020.8170.02325.390.0
    123.1620.02628.205.321.2570.02426.584.7
    223.2740.02728.877.821.3900.02627.086.7
    523.4950.02929.9811.921.5000.02727.759.3
    723.6680.03030.7314.721.5310.02828.2511.3
    1024.7620.03231.7718.622.1520.02929.0514.4
    1525.4130.03534.5228.922.9880.03030.8921.7
    下载: 导出CSV
  • [1]

    魏玉涛,刘德玉,张伟,等. 荒漠-湿地生态系统区盐渍土特征及空间变异性[J]. 水文地质工程地质,2020,47(2):183 − 190. [WEI Yutao,LIU Deyu,ZHANG Wei,et al. Characteristics and spatial variability of saline soil in desert-wet ecosystem area,Gansu Province,China[J]. Hydrogeology & Engineering Geology,2020,47(2):183 − 190. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906021

    [2]

    魏丽. 纤维与石灰加筋固化滨海盐渍土的冻融损伤及力学性能退化研究[D]. 兰州: 兰州大学, 2021

    WEI Li. Fabric damage and mechanical degradation of coastal saline soil reinforced with fiber and lime under freeze-thaw cycling[D]. Lanzhou: Lanzhou University, 2021. (in Chinese with English abstract)

    [3]

    姜宇波, 柴寿喜, 魏丽, 等. 四种因素对纤维加筋盐渍土抗压性能的影响[J]. 岩土力学, 2016, 37(增刊1): 233-239

    JIANG Yubo, CHAI Shouxi, WEI Li, et al. Effect of four factors on compressive property of fiber-saline soil[J]. Rock and Soil Mechanics, 2016, 37(Sup 1): 233-239. (in Chinese with English abstract)

    [4]

    齐吉琳,程国栋,VERMEER P A. 冻融作用对土工程性质影响的研究现状[J]. 地球科学进展,2005,20(8):887 − 894. [QI Jilin,CHENG Guodong,VERMEER P A. State-of-the-art of influence of freeze-thaw on engineering properties of soils[J]. Advance in Earth Sciences,2005,20(8):887 − 894. (in Chinese with English abstract) doi: 10.3321/j.issn:1001-8166.2005.08.010

    [5]

    朱敏,倪万魁,李向宁,等. 黄土掺入聚丙烯纤维后的无侧限抗压强度和变形试验研究[J]. 科学技术与工程,2020,20(20):8337 − 8343. [ZHU Min,NI Wankui,LI Xiangning,et al. Study on unconfined compressive strength and deformation after incorporating polypropylene fiber into loess[J]. Science Technology and Engineering,2020,20(20):8337 − 8343. (in Chinese with English abstract)

    [6]

    吕前辉,柴寿喜,李敏. 多因素影响下石灰固化盐渍土抗剪性能的试验研究[J]. 水文地质工程地质,2017,44(6):89 − 95. [LYU Qianhui,CHAI Shouxi,LI Min. An experimental study of the shear properties of the solidified saline soil with lime concerning under the influence of multiple factors[J]. Hydrogeology & Engineering Geology,2017,44(6):89 − 95. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2017.06.14

    [7]

    唐朝生,施斌,顾凯. 纤维加筋土中筋/土界面相互作用的微观研究[J]. 工程地质学报,2011,19(4):610 − 614. [TANG Chaosheng,SHI Bin,GU Kai. Microstructural study on interfacial interactions between fiber reinforcement and soil[J]. Journal of Engineering Geology,2011,19(4):610 − 614. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.04.026

    [8]

    徐敏普,孙明瑞,常成. 冻融循环作用下秸秆纤维加筋土抗压强度试验研究[J]. 盐城工学院学报(自然科学版),2021,34(2):6 − 10. [XU Minpu,SUN Mingrui,CHANG Cheng. Experimental study on compressive strength of straw fiber-reinforced soil under freeze-thaw cycles[J]. Journal of Yancheng Institute of Technology (Natural Science Edition),2021,34(2):6 − 10. (in Chinese with English abstract)

    [9]

    陈诚, 郭伟, 任宇晓. 冻融循环条件下木质素纤维改良土性质研究及微观分析[J]. 岩土工程学报, 2020, 42(增刊2): 135 − 140

    CHEN Cheng, GUO Wei, REN Yuxiao. Properties and microscopic analysis of lignin fiber-reinforced soils under freeze-thaw cycles[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(Sup 2): 135 − 140. (in Chinese with English abstract)

    [10]

    袁志辉,唐春,杨普济,等. 干湿循环下红土力学性质劣化的多尺度试验[J]. 水力发电学报,2022,41(2):79 − 91. [YUAN Zhihui,TANG Chun,YANG Puji,et al. Multi-scale experiment of mechanical property degradation of a laterite soil under dry-wet cycling[J]. Journal of Hydroelectric Engineering,2022,41(2):79 − 91. (in Chinese with English abstract) doi: 10.11660/slfdxb.20220209

    [11]

    安爱军, 廖靖云. 基于核磁共振和扫描电镜的蒙内铁路膨胀土改良细观结构研究[J]. 岩土工程学报, 2018, 40(增刊2): 152 − 156

    AN Aijun, LIAO Jingyun. Modified mesostructure of Standard Gange Railway expansive soils of Mombasa-Nairobi based on nuclear magnetic resonance and scanning electron microscope[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Sup 2): 152 − 156. (in Chinese with English abstract)

    [12]

    吕擎峰,周刚,王生新,等. 固化盐渍土核磁共振微观特征[J]. 岩土力学,2019,40(1):245 − 249. [LYU Qingfeng,ZHOU Gang,WANG Shengxin,et al. Microstructure characteristics of solidified saline soil based on nuclear magnetic resonance[J]. Rock and Soil Mechanics,2019,40(1):245 − 249. (in Chinese with English abstract) doi: 10.16285/j.rsm.2017.1152

    [13]

    丁建文,洪振舜,刘松玉. 疏浚淤泥流动固化土的压汞试验研究[J]. 岩土力学,2011,32(12):3591 − 3596. [DING Jianwen,HONG Zhenshun,LIU Songyu. Microstructure study of flow-solidified soil of dredged clays by mercury intrusion porosimetry[J]. Rock and Soil Mechanics,2011,32(12):3591 − 3596. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.12.010

    [14]

    张英,邴慧. 基于压汞法的冻融循环对土体孔隙特征影响的试验研究[J]. 冰川冻土,2015,37(1):169 − 174. [ZHANG Ying,BING Hui. Experimental study of the effect of freezing-thawing cycles on porosity characters of silty clay by using mercury intrusion porosimetry[J]. Journal of Glaciology and Geocryology,2015,37(1):169 − 174. (in Chinese with English abstract)

    [15]

    方秋阳,柴寿喜,李敏,等. 冻融循环对固化盐渍土的抗压强度与变形的影响[J]. 岩石力学与工程学报,2016,35(5):1041 − 1047. [FANG Qiuyang,CHAI Shouxi,LI Min,et al. Influence of freezing-thawing cycles on compressive strength and deformation of solidified saline soil[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(5):1041 − 1047. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2015.1078

    [16]

    柴寿喜. 固化滨海盐渍土的强度特性研究[D]. 兰州: 兰州大学, 2006

    CHAI Shouxi. Study on the special properties of strength of solidified saline soil in inshore[D]. Lanzhou: Lanzhou University, 2006. (in Chinese with English abstract)

    [17]

    柴寿喜, 王晓燕, 王沛. 滨海盐渍土改性固化与加筋利用研究[M]. 天津: 天津大学出版社, 2011

    CHAI Shouxi, WANG Xiaoyan, WANG Pei. Study on modification curing and reinforcement utilization of coastal saline soil [M]. Tianjin: Tianjin University Press, 2011. (in Chinese)

    [18]

    程良. 盐渍土强度体变特性及冻融循环对其结构性影响研究[D]. 西安: 西安理工大学, 2018

    CHENG Liang. Study on strength deformation characteristics of saline soil and the influence of freeze-thaw cycle on its structure[D]. Xi’an: Xi’an University of Technology, 2018. (in Chinese with English abstract)

    [19]

    何攀,许强,刘佳良,等. 基于核磁共振与氮吸附技术的黄土含盐量对结合水膜厚度的影响研究[J]. 水文地质工程地质,2020,47(5):142 − 149. [HE Pan,XU Qiang,LIU Jialiang,et al. An experimental study of the influence of loess salinity on combined water film thickness based on NMR and nitrogen adsorption technique[J]. Hydrogeology & Engineering Geology,2020,47(5):142 − 149. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201910002

    [20]

    秦泳,徐彬,郑一峰. 掺加硅藻土混凝土孔隙结构冻融破坏试验研究[J]. 路基工程,2020(5):43 − 48. [QIN Yong,XU Bin,ZHENG Yifeng. Experimental study on freezing and thawing failure test of diatomite doped concrete with pore structure[J]. Subgrade Engineering,2020(5):43 − 48. (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202004005

  • 加载中

(9)

(2)

计量
  • 文章访问数:  820
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2021-12-13
修回日期:  2022-01-22
刊出日期:  2022-09-15

目录