潮白河再生水补给河道对周边浅层地下水影响的数值模拟研究

姜瑞雪, 韩冬梅, 宋献方, 李炳华. 潮白河再生水补给河道对周边浅层地下水影响的数值模拟研究[J]. 水文地质工程地质, 2022, 49(6): 43-54. doi: 10.16030/j.cnki.issn.1000-3665.202201044
引用本文: 姜瑞雪, 韩冬梅, 宋献方, 李炳华. 潮白河再生水补给河道对周边浅层地下水影响的数值模拟研究[J]. 水文地质工程地质, 2022, 49(6): 43-54. doi: 10.16030/j.cnki.issn.1000-3665.202201044
JIANG Ruixue, HAN Dongmei, SONG Xianfang, LI Binghua. Numerical modeling of the impacts of reclaimed water recharge to the Chaobai River channel on the ambient shallow groundwater[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 43-54. doi: 10.16030/j.cnki.issn.1000-3665.202201044
Citation: JIANG Ruixue, HAN Dongmei, SONG Xianfang, LI Binghua. Numerical modeling of the impacts of reclaimed water recharge to the Chaobai River channel on the ambient shallow groundwater[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 43-54. doi: 10.16030/j.cnki.issn.1000-3665.202201044

潮白河再生水补给河道对周边浅层地下水影响的数值模拟研究

  • 基金项目: 北京市自然科学基金项目(8212035);国家重点研发计划项目(2021YFC3200502);国家自然科学基金重点项目(41730749)
详细信息
    作者简介: 姜瑞雪(1995-),女,硕士,助理工程师,主要从事再生水利用与地下水补给过程研究。E-mail:ruixue_jiang@163.com
    通讯作者: 韩冬梅(1978-),女,博士,研究员,主要从事流域水循环及地下水水文过程研究。E-mail:handm@igsnrr.ac.cn
  • 中图分类号: P641.2

Numerical modeling of the impacts of reclaimed water recharge to the Chaobai River channel on the ambient shallow groundwater

More Information
  • 再生水在北京被广泛用于补给河道,2007年底至2017年共有2.3×108 m3再生水补给至潮白河顺义段。其污染物本底值较高(Cl浓度约62~122 mg/L),通过河床入渗补给到周边的含水层中,对周边地下水产生一定影响,尤其是浅层地下水。为了定量评价再生水补给河道对周边浅层地下水的影响,基于10年(2007—2017)的地下水监测数据,建立了再生水补给河道周边的地下水水流和溶质运移模型,模拟了受水区浅层地下水的水位和Cl浓度的变化,分析了浅层地下水水量、Cl负荷和NO3-N负荷的变化。结果表明,再生水补给河道后的前2年(2007—2009),河道周边浅层地下水水位迅速抬升了3~4 m,之后在再生水的持续补给下保持稳定。但受深层地下水开采影响,2007—2014年研究区整体浅层地下水的水量仍在下降。2014年底实施地下水压采措施后,浅层地下水水量从2014年底的3.76×108 m3恢复到了2017年底的3.85×108 m3。周边浅层地下水中的Cl浓度从再生水补给前的5~75 mg/L变化到了补给后的50~130 mg/L,之后保持稳定。浅层地下水水质受再生水影响的范围从2008年底的11.7 km2扩大到2017年的26.7 km2,影响区内的Cl负荷从2008年底的1.8×103 t增加到2017年底的3.8×103 t,NO3-N负荷从2008年的29.8 t下降到2017年的11.9 t。尽管研究显示影响范围外的浅层地下水质受再生水影响不明显,但潜在的咸化和污染的隐患不容忽视,需要在后续研究中进一步明确。

  • 加载中
  • 图 1  研究区位置和地下水采样点分布示意图

    Figure 1. 

    图 2  研究区水文地质剖面图

    Figure 2. 

    图 3  (a)模型边界及(b)水文地质参数分区

    Figure 3. 

    图 4  浅层地下水水位和Cl-浓度监测值与模拟值拟合及验证曲线

    Figure 4. 

    图 5  2017年12月模拟和监测(a)浅层地下水水位等值线图和(b)氯离子浓度等值线图

    Figure 5. 

    图 6  浅层地下水的水量变化及Cl和NO3-N负荷变化

    Figure 6. 

    图 7  有再生水补给和无再生水补给条件下的浅层地下水水位差

    Figure 7. 

    图 8  浅层地下水质受再生水影响的范围变化

    Figure 8. 

    图 9  不同情境下的浅层地下水水位变化预测结果

    Figure 9. 

    表 1  校准后的模型参数

    Table 1.  Hydrogeological parameters used in the calibrated model

    水文地质单元K/(10−4 m·s−1SnαL/mαT/m
    潜水含水层0.1~9.50.11~0.260.11~0.261.5~120.1~1.2
    第1弱透水层3×10−5~5×10−41.1×10−4~1.5×10−40.07~0.110.5~0.70.05~0.07
    第1承压含水层0.5~9.93×10−6~1.4×10−40.08~0.241~120.1~1.2
    第2、3弱透水层9×10−5~0.11×10−5~1.5×10−40.07~0.160.5~0.850.05~0.08
    第2、3承压含水层0.6~92×10−5~4×10−40.11~0.241.2~120.12~1.2
    下载: 导出CSV

    表 2  模型预测情景设计

    Table 2.  Scenario design for the groundwater model

    情景降水量
    /(mm·a−1
    地下水开采量
    /(107 m3·a−1
    再生水补给量
    /(107 m3·a−1
    基准情景592.8~1053.14.262.89
    1454.84.262.89
    2574.64.262.89
    3710.94.262.89
    4592.8~1053.13.572.89
    5592.8~1053.14.942.89
    6592.8~1053.14.260
    下载: 导出CSV

    表 3  2007年底至2017年底潜水含水层水均衡统计

    Table 3.  Groundwater budget in the unconfined aquifer from December, 2007 to Deccember, 2017

    补给水量/(108 m3比例排泄水量/(108 m3比例
    降水入渗7.5784.6%越流9.9797.4%
    侧向流入0.788.7%侧向流出0.232.2%
    再生水入渗0.596.7%蒸发0.040.4%
    补给总量8.94100%排泄总量10.24100.0%
    总补排差/(108 m3−1.30
    下载: 导出CSV
  • [1]

    WENDLING Z A, EMERSON J W, DE SHERBININ A, et al. 2020 environmental performance index[J/OL]. New Haven, CT: Yale Center for Environmental Law & Policy, 2020(2021-01-12)[2021-04-23]. epi. yale. edu.

    [2]

    ANGELAKIS A N,GIKAS P. Water reuse:Overview of current practices and trends in the world with emphasis on EU states[J]. Water Utility Journal,2014,8(67):e78.

    [3]

    DENG S,YAN X,ZHU Q,et al. The utilization of reclaimed water:Possible risks arising from waterborne contaminants[J]. Environmental Pollution,2019,254:113020. doi: 10.1016/j.envpol.2019.113020

    [4]

    ZHU Z,DOU J. Current status of reclaimed water in China:An overview[J]. Journal of Water Reuse and Desalination,2018,8(3):293 − 307. doi: 10.2166/wrd.2018.070

    [5]

    周军,杜炜,张静慧,等. 北京市再生水行业的现状与发展[J]. 中国建设信息(水工业市场),2009(9):12 − 14. [ZHOU Jun,DU Wei,ZHANG Jinghui,et al. Status and development of Beijing reclaimed water industry[J]. Information of China Construction Water-Industry Market,2009(9):12 − 14. (in Chinese)

    [6]

    北京市水务局. 北京市水资源公报(2003年度)[R]. 北京: 北京市水务局, 2004

    Beijing Water Authority. Beijing water resources bulletin (2003)[R]. Beijing: Beijing Water Authority, 2004. (in Chinese)

    [7]

    北京市水务局. 北京市水资源公报(2020年度)[R]. 北京: 北京市水务局, 2021

    Beijing Water Authority. Beijing water resources bulletin (2021)[R]. Beijing: Beijing Water Authority, 2021. (in Chinese)

    [8]

    胡立堂,郭建丽,张寿全,等. 永定河生态补水的地下水水位动态响应[J]. 水文地质工程地质,2020,47(5):5 − 11. [HU Litang,GUO Jianli,ZHANG Shouquan,et al. Response of groundwater regime to ecological water replenishment of the Yongding River[J]. Hydrogeology & Engineering Geology,2020,47(5):5 − 11. (in Chinese with English abstract)

    [9]

    HE Z,HAN D,SONG X,et al. Variations of groundwater dynamics in alluvial aquifers with reclaimed water restoring the overlying river,Beijing,China[J]. Water,2021,13(6):806. doi: 10.3390/w13060806

    [10]

    姜瑞雪,韩冬梅,宋献方,等. 再生水补给河道周边水体特征—以北京潮白河顺义段为例[J]. 资源科学,2020,42(12):2419 − 2433. [JIANG Ruixue,HAN Dongmei,SONG Xianfang,et al. Impacts of reclaimed water recharge to a river channel on ambient water bodies:A case study of the Chaobai River in Beijing[J]. Resources Science,2020,42(12):2419 − 2433. (in Chinese with English abstract) doi: 10.18402/resci.2020.12.13

    [11]

    李丛舟. 再生水河道渗透补给下的地下水水质演化特征分析[D]. 北京: 中国地质大学, 2019

    LI Congzhou. Analysis of evolution characteristics of groundwater quality under river infiltration recharge with reclaimed water[D]. Beijing: China University of Geosciences, 2020. (in Chinese with English abstract)

    [12]

    刘立才,单悦,黄俊雄,等. 河道再生水入渗的水岩相互作用机理研究[J]. 水资源保护,2018,34(1):31 − 35. [LIU Licai,SHAN Yue,HUANG Junxiong,et al. Interaction mechanism experiment of water and rocks in infiltration of reclaimed water[J]. Water Resources Protection,2018,34(1):31 − 35. (in Chinese with English abstract) doi: 10.3880/j.issn.1004-6933.2018.01.06

    [13]

    LI J, FU J, ZHANG H, et al. Spatial and seasonal variations of occurrences and concentrations of endocrine disrupting chemicals in unconfined and confined aquifers recharged by reclaimed water: A field study along the Chaobai River, Beijing[J]. Science of The Total Environment, 2013, 450–451: 162–168.

    [14]

    吴苗苗. 再生水回灌过程中典型磺胺类抗生素的行为特性研究[D]. 北京: 清华大学, 2015

    WU Miaomiao. The behavior of typical sulfanomides in soil by groundwater recharge with reclaimed water[D]. Beijing: Tsinghua University, 2015. (in Chinese with English abstract)

    [15]

    北京市水务局. 北京市水资源公报(2007年度)[R]. 北京: 北京市水务局, 2008

    Beijing Water Authority. Beijing water resources bulletin (2007)[R]. Beijing: Beijing Water Authority, 2008. (in Chinese)

    [16]

    北京市水科学技术研究院. 引温济潮工程受水区地表地下水环境监测评价(2017年度)[R]. 北京: 北京市水科学技术研究院, 2017

    Beijing Water Science And Technology Institution. Environmental monitoring and assessment of surface water and groundwater in the water receiving area of the “Yin Wen Ji Chao” Project (2017)[R]. Beijing: Beijing Water Science and Technology Institution, 2017 . (in Chinese)

    [17]

    熊燕娜. 再生水入渗过程中三氮迁移转化模拟柱实验研究[D]. 北京: 中国地质大学, 2009

    XIONG Yanna. The simulated columns tests on the nitrogen transformation and biodegradation during the reclaimed water Infiltration through the vadose[D]. Beijing: China University of Geosciences, 2009. (in Chinese with English abstract)

    [18]

    国家气象科学数据中心. 中国地面气候资料月值数据集[EB/OL]. (2019-11-07)[2021-02-22]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html

    China Meteorological Administration Data Center. Monthly Data Set of Surface Climatological Data for Beijing[EB/OL]. (2019-11-07)[2021-02-22]. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MON.html.(in Chinese)

    [19]

    霍思远. 潜水位下降对入渗补给的影响研究[D]. 武汉: 中国地质大学, 2015

    HUO Siyuan. Research on the effect of water table decline on vertical groundwater recharge[D]. Wuhan: China University of Geosciences, 2015. (in Chinese with English abstract)

    [20]

    郑凡东. 再生水作为河湖景观用水的地下水环境效应研究——以潮白河为例[D]. 北京: 中国地质大学, 2012

    ZHENG Fandong. A case study on effects of reclaimed water use for scenic water on groundwater environment in Chaobai River[D]. Beijing: China University of Geosciences, 2012. (in Chinese with English abstract)

    [21]

    ZHANG Y,YU Y. Evaluating the impact of percolated reclaimed water from river-channel reservoir on groundwater using tracers in Beijing,Northern China[J]. Environmental Earth Sciences,2021,80(4):138. doi: 10.1007/s12665-021-09449-1

    [22]

    刘庄,晁建颖,张丽,等. 中国非点源污染负荷计算研究现状与存在问题[J]. 水科学进展,2015,26(3):432 − 442. [LIU Zhuang,CHAO Jianying,ZHANG Li,et al. Current status and problems of non-point source pollution load calculation in China[J]. Advances in water science,2015,26(3):432 − 442. (in Chinese with English abstract)

    [23]

    LI S,BIAN R,LI B,et al. Hyporheic zone geochemistry of a multi-aquifer system used for managed aquifer recharge in Beijing,China[J]. Applied Geochemistry,2021,131:105032. doi: 10.1016/j.apgeochem.2021.105032

    [24]

    中华人民共和国国家卫生健康委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社, 2006

    National Health Commission of the People’s Republic of China. Sanitary standards of drinking water: GB 5749-2006 [S]. Beijing: China Quality and Standards Publishing & Media Co. Ltd. , 2006. (in Chinese)

    [25]

    PAN W,HUANG Q,HUANG G. Nitrogen and organics removal during riverbank filtration along a reclaimed water restored river in Beijing,China[J]. Water,2018,10(4):491. doi: 10.3390/w10040491

    [26]

    LI C,LI B,BI E. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water:A case study in north China[J]. Science of The Total Environment,2019,668:1030 − 1037. doi: 10.1016/j.scitotenv.2019.02.375

    [27]

    熊凯, 宫兆宁, 张磊, 等. 再生水补水条件下土壤全氮空间分布特征[J]. 吉林大学学报(地球科学版),2017,47(6):1829 − 1837. [XIONG Kai, GONG Zhaoning, ZHANG Lei, et al. Spatial distribution of total soil nitrogen under reclaimed water recharge[J]. Journal of Jilin University (Earth Science Edition),2017,47(6):1829 − 1837. (in Chinese with English abstract)

    [28]

    TRAUTH N,MUSOLFF A,KNÖLLER K,et al. River water infiltration enhances denitrification efficiency in riparian groundwater[J]. Water Research,2018,130:185 − 199. doi: 10.1016/j.watres.2017.11.058

    [29]

    刘鑫,左锐,王金生,等. 地下水水位波动带三氮迁移转化过程研究进展[J]. 水文地质工程地质,2021,48(2):27 − 36. [LIU Xin,ZUO Rui,WANG Jinsheng,et al. Advances in researches on ammonia,nitrite and nitrate on migration and transformation in the groundwater level fluctuation zone[J]. Hydrogeology & Engineering Geology,2021,48(2):27 − 36. (in Chinese with English abstract)

    [30]

    夏绮文,李炳华,何江涛,等. 潮白河再生水生态补给河道区浅层地下水氮转化[J]. 环境科学研究,2020,34(3):618 − 628. [XIA Qiwen,LI Binghua,HE Jiangtao,et al. Nitrogen transformation of shallow groundwater in the river area of ecological recharge of reclaimed water in Chaobai River[J]. Research of Environmental Sciences,2020,34(3):618 − 628. (in Chinese with English abstract) doi: 10.13198/j.issn.1001-6929.2020.07.22

    [31]

    BÖHLKE J K,SMITH R L,MILLER D N. Ammonium transport and reaction in contaminated groundwater:Application of isotope tracers and isotope fractionation studies[J]. Water Resources Research,2006,42(5):W05411.

  • 加载中

(9)

(3)

计量
  • 文章访问数:  1208
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2022-01-25
修回日期:  2022-02-23
刊出日期:  2022-11-15

目录