张掖盆地地热资源赋存特征及成因分析

尹政, 柳永刚, 张旭儒, 李玉山, 冯嘉兴. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质, 2023, 50(1): 168-178. doi: 10.16030/j.cnki.issn.1000-3665.202202050
引用本文: 尹政, 柳永刚, 张旭儒, 李玉山, 冯嘉兴. 张掖盆地地热资源赋存特征及成因分析[J]. 水文地质工程地质, 2023, 50(1): 168-178. doi: 10.16030/j.cnki.issn.1000-3665.202202050
YIN Zheng, LIU Yonggang, ZHANG Xuru, LI Yushan, FENG Jiaxing. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 168-178. doi: 10.16030/j.cnki.issn.1000-3665.202202050
Citation: YIN Zheng, LIU Yonggang, ZHANG Xuru, LI Yushan, FENG Jiaxing. An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin[J]. Hydrogeology & Engineering Geology, 2023, 50(1): 168-178. doi: 10.16030/j.cnki.issn.1000-3665.202202050

张掖盆地地热资源赋存特征及成因分析

  • 基金项目: 第二次青藏科考“重大工程扰动灾害及风险”项目(2019QZKK0904);甘肃省2022年省级基础地质调查项目(202241);甘肃省地矿局2021年度创新资金项目(2021CX08)
详细信息
    作者简介: 尹政(1969-),男,本科,正高级工程师,主要从事地下水资源勘查、环境地质及地热资源评价等工作。E-mail:zyyz8029@163.com
    通讯作者: 柳永刚(1970-),男,本科,正高级工程师,主要从事地质项目技术管理及矿床研究。E-mail:527709711@qq.com
  • 中图分类号: P314

An analysis of the endowment characteristics and geneses of geothermal resources in the Zhangye Basin

More Information
  • 张掖盆地地处甘肃省河西走廊黑河流域中游地区,地势南东高北西低。已有勘探资料显示,张掖盆地赋存丰富的水热型地热资源。通过研究该区域地球物理勘探、钻探、地温测量及水文地球化学等成果资料,分析了张掖盆地地热资源赋存特征,探讨了其成因模式。张掖盆地地热田属沉积盆地型中低温地热田,热储为呈层状分布的新近系白杨河组砂岩、砂砾岩,选择钾镁地球化学温标计算热储温度为47~82 °C,盖层为新近系上新统疏勒河组泥岩及第四系松散地层;地热水类型主要为碎屑岩类孔隙水,根据氢氧同位素特征推断其主要补给来源为南部祁连山区大气降水;祁连山北缘深大断裂和盆地内NNW向基底断裂是地热流体深循环良好的导水通道,地下水接受补给后沿导水断裂带或岩层孔隙裂隙运移,在深部热传导的增温作用下,赋存于碎屑岩类孔隙之中形成了本区的地热资源。水质分析结果表明:本区地热水属于溶滤型的陆相沉积水,水化学类型为Cl·SO4—Na型,F、SiO2、溶解性总固体、总硬度含量随水温的升高而增大;区内地热水3H值普遍小于2.0 TU,说明形成年代较早;14C分析结果进一步证实,区域地热水形成年龄超过20 ka,反映出地热流体补给路径长、径流缓慢的特点。研究成果可为张掖盆地地热资源勘查和开发利用提供重要参考。

  • 加载中
  • 图 1  张掖盆地地震推断构造图(改编自文献[20])

    Figure 1. 

    图 2  张掖盆地地热地质剖面图

    Figure 2. 

    图 3  白杨河组间泉子段厚度等值线图(改编自文献[20])

    Figure 3. 

    图 4  滨河新区ZYDR1井测温曲线

    Figure 4. 

    图 5  Piper地热水水化学类型三线图

    Figure 5. 

    图 6  张掖城区及外围部分水样δD、δ18O与H·Craigh降水直线关系图

    Figure 6. 

    图 7  张掖盆地地热田概念模型示意图

    Figure 7. 

    表 1  张掖盆地地热勘探孔地层时代及厚度对比表

    Table 1.  Geological age and thickness of strata tapped by geothermal exploration holes in the Zhangye Basin

    地层或侵入岩时代厚度/m
    临泽LZDR1井民参1井张掖
    ZYDR1井
    民参2井甘浚
    ZYDR2井
    体育公园
    ZYDR3井
    民乐
    MLDR1井
    第四系(Q)412.85669.10651.60685.00598.00590.00644.00
    新近系上新统(N2287.15806.00808.401117.00592.001055.001154.00
    新近系中新统(N1304.10328.00344.50358.00319.10375.00390.00
    白垩系(K)缺失3244.20
    (未揭穿)
    796.72
    (未揭穿)
    1660.00
    (未揭穿)
    120.60154.03
    (未揭穿)
    缺失
    奥陶系(O)未揭露未揭露未揭露未揭露423.38
    (未揭穿)
    未揭露未揭露
    加里东期侵入岩496.49
    (未揭穿)
    未揭露未揭露未揭露未揭露未揭露81.18
    (未揭穿)
    下载: 导出CSV

    表 2  张掖盆地地热勘探孔孔隙型热储统计表

    Table 2.  Statistics of geothermal reservoirs of pore type tapped by geothermal exploration holes in the Zhangye Basin

    孔号位置井深
    /m
    水头埋深
    /m
    孔隙型热储岩性热储底界
    埋深/m
    孔隙型热储总厚度/m热储底界测温/°C
    LZDR1临泽县城南部1500.5962.00砂岩、砂砾岩1004.40134.5540.00
    ZYDR1甘州区滨河新区2601.2216.35砂岩、砂砾岩1804.50174.5049.70
    ZYDR2甘州区甘浚镇2053.08212.00砂岩、砂砾岩1509.10165.4041.50
    ZYDR3沙漠体育公园2174.00147.00砂岩、砂砾岩2020.00175.4858.64
    MLDR1民乐县新天镇2269.1869.51砂岩、砂砾岩2188.00193.0564.60
    下载: 导出CSV

    表 3  张掖盆地地下热水水化学分析结果

    Table 3.  Hydrochemical analyses of geothermal waters in the Zhangye Basin

    孔号温度
    /°C
    TDS
    /(mg∙L−-1
    总硬度
    /(mg∙L−1
    pHρ/(mg∙L−1
    偏硅酸偏硼酸游离
    CO2
    LZDR1453 432374.87.68.01 04484.239.90217.11 293701.66.21.428.3612.05.840.230.0010.061.166.98
    ZYDR1564 497286.78.513.71 40956.235.623.8743.01 331828.03.72.135.420.23.770.62<0.0020.022.208.40
    ZYDR2463 513509.47.612.11 017142.937.00167.51 285804.63.51.931.116.05.410.87<0.0010.330.777.63
    ZYDR3765 427487.97.146.01 58688.564.80773.11 4491 242.029.23.564.226.35.591.48<0.0020.581.4051.80
    MLDR1775 8101 131.07.761.71 522250.0123.00596.01 7541 408.037.23.659.83.210.801.040.027<0.02<0.01106.00
    下载: 导出CSV

    表 4  张掖盆地水样氢、氧同位素分析结果

    Table 4.  Results of hydrogen and oxygen isotope analyses of geothermal water in the Zhangye Basin

    编号位置地下水
    类型
    δ18O
    /‰
    δD
    /‰
    3H
    /TU
    H2鹰落峡河水−9.7−6258
    H3新河大桥河水−7.9−6151
    H4乌江大桥河水−6.9−4649
    PQ1山丹河泉水−6.0−4755
    PQ2乌江四社泉水−7.4−5351
    Y36张掖龙渠潜水−7.6−5255
    Y37张掖甘浚潜水−6.9−5165
    Y5张掖新墩潜水−7.1−5057
    Y41张掖大满潜水−6.5−4447
    Y10张掖城区承压水−7.8−5639
    Y11张掖城区承压水−9.2−6321
    Y14张掖城区承压水−9.2−5816
    Y47张掖乌江承压水−9.9−6120
    LZDR1临泽沙河地下热水−10.5−771.5±0.7
    ZYDR1张掖滨河新区地下热水−10.4−76<1.0
    ZYDR2张掖甘浚地下热水−9.5−74<0.5
    ZYDR3张掖党寨地下热水−10.0−771.3±0.5
    MLDR1民乐新天镇地下热水−10.3−76<0.5
    下载: 导出CSV

    表 5  张掖盆地地下热水热储温度估算

    Table 5.  Estimated temperature of geothermal reservoirs in the Zhangye Basin

    孔号LZDR1ZYDR1ZYDR2ZYDR3MLDR1
    ρ(K+)/(mg·L−18.0513.7312.0646.0461.70
    ρ(Mg2+)/(mg·L−139.9235.5837.0464.80123.00
    实测井口温度/°C45.0056.0046.0078.0077.00
    估算热储温度/°C47.8260.2957.0481.4980.80
    下载: 导出CSV

    表 6  张掖盆地地热勘探孔推测热水循环深度

    Table 6.  Estimated circulation depth of geothermal water in geothermal exploration holes in the Zhangye Basin

    孔号孔深/m测温深度/m测温/°C地温梯度
    /(°C·100−1·m−1
    热储底界
    埋深/m
    推测热水循
    环深度/m
    LZDR11500.591500.0045.602.581004.401588.91
    ZYDR12601.222600.0067.142.321804.502301.12
    ZYDR22053.082000.0047.702.041509.102453.53
    ZYDR32174.002120.0063.402.672020.002797.42
    MLDR12269.182200.0064.602.632188.002813.27
    下载: 导出CSV
  • [1]

    汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015

    WANG Jiyang. Geothermics and its applications[M]. Beijing: Science Press, 2015. (in Chinese)

    [2]

    周总瑛,刘世良,刘金侠. 中国地热资源特点与发展对策[J]. 自然资源学报,2015,30(7):1210 − 1221. [ZHOU Zongying,LIU Shiliang,LIU Jinxia. Study on the characteristics and development strategies of geothermal resources in China[J]. Journal of Natural Resources,2015,30(7):1210 − 1221. (in Chinese with English abstract) doi: 10.11849/zrzyxb.2015.07.013

    [3]

    拓明明,周训,郭娟,等. 重庆温泉及地下热水的分布及成因[J]. 水文地质工程地质,2018,45(1):165 − 172. [TA Mingming,ZHOU Xun,GUO Juan,et al. Occurrence and formation of the hot springs and thermal groundwater in Chongqing[J]. Hydrogeology & Engineering Geology,2018,45(1):165 − 172. (in Chinese with English abstract)

    [4]

    张薇,王贵玲,刘峰,等. 中国沉积盆地型地热资源特征[J]. 中国地质,2019,46(2):255 − 268. [ZHANG Wei,WANG Guiling,LIU Feng,et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China,2019,46(2):255 − 268. (in Chinese with English abstract)

    [5]

    王贵玲,刘彦广,朱喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1 − 9. [WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1 − 9. (in Chinese with English abstract) doi: 10.13745/j.esf.2020.1.1

    [6]

    王寿川,刘亚强,张楷,等. 我国地热的开发现状和前景探讨[J]. 制冷技术,2015,35(2):68 − 72. [WANG Shouchuan,LIU Yaqiang,ZHANG Kai,et al. Discussion on status and prospects of geothermal resource development in China[J]. Chinese Journal of Refrigeration Technology,2015,35(2):68 − 72. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-4468.2015.02.206

    [7]

    胡志华,高洪雷,万汉平,等. 西藏羊八井地热田水热蚀变的时空演化特征[J]. 地质论评,2022,68(1):359 − 374. [HU Zhihua,GAO Honglei,WAN Hanping,et al. Temporal and spatial evolution of hydrothermal alteration in the Yangbajing geothermal field,Xizang(Tibet)[J]. Geological Review,2022,68(1):359 − 374. (in Chinese with English abstract) doi: 10.16509/j.georeview.2021.12.105

    [8]

    龙登红,周小龙,杨坤光,等. 青藏高原东北缘深部地质构造与地热资源分布关系研究[J]. 中国地质,2021,48(3):721 − 731. [LONG Denghong,ZHOU Xiaolong,YANG Kunguang,et al. Research on relationship between the deep structure and geothermal resource distribution in the Northeastern Tibetan Plateau[J]. Geology in China,2021,48(3):721 − 731. (in Chinese with English abstract)

    [9]

    卞跃跃,赵丹. 四川康定地热田地下热水成因研究[J]. 地球学报,2018,39(4):491 − 497. [BIAN Yueyue,ZHAO Dan. Genesis of Geothermal Waters in the Kangding geothermal field,Sichuan Province[J]. Acta Geoscientica Sinica,2018,39(4):491 − 497. (in Chinese with English abstract)

    [10]

    张七道,刘振南,尹林虎,等. 深变质岩区地热流体化学特征及成因—以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版),2021,51(6):1838 − 1852. [ZHANG Qidao,LIU Zhennan,YIN Linhu,et al. Chemical characteristics and genesis of geothermal fluid in deep metamorphic rock area:A case of hot springs in Longchuan Basin,Western Yunnan[J]. Journal of Jilin University(Earth Science Edition),2021,51(6):1838 − 1852. (in Chinese with English abstract)

    [11]

    赵振,秦光雄,罗银飞,等. 西宁盆地地热水特征及回灌结垢风险[J]. 水文地质工程地质,2021,48(5):193 − 204. [ZHAO Zhen,QIN Guangxiong,LUO Yinfei,et al. Characteristics of geothermal water in the Xining Basin and risk of reinjection scaling[J]. Hydrogeology & Engineering Geology,2021,48(5):193 − 204. (in Chinese with English abstract)

    [12]

    史杰,乃尉华,李明,等. 新疆曲曼高温地热田水文地球化学特征研究[J]. 水文地质工程地质,2018,45(3):165 − 172. [SHI Jie,NAI Weihua,LI Ming,et al. Study on the hydrogeo-chemical characteristics of the Quman high temperature geothermal field in Xinjiang[J]. Hydrogeology & Engineering Geology,2018,45(3):165 − 172. (in Chinese with English abstract)

    [13]

    史杰,汪美华,马小军,等. 新疆塔什库尔干县曲曼地热田地下热水同位素研究[J]. 地球学报,2022,43(5):645 − 653. [SHI Jie,WANG Meihua,MA Xiaojun,et al. Isotope and hydrogeochemical characteristics of the Quman high temperature geothermal field in Taxkorgan,Xinjiang[J]. Acta Geoscientica Sinica,2022,43(5):645 − 653. (in Chinese with English abstract) doi: 10.3975/cagsb.2022.040702

    [14]

    汪洋,张旭虎,蒲丛林,等. 河北廊坊南部地区地热水化学特征及成因机制[J]. 地质通报,2022,41(9):1698 − 1706. [WANG Yang,ZHANG Xuhu,PU Conglin,et al. The hydrochemical characteristics of geothermal water and its formation in the south Langfang,Hebei Province[J]. Geological Bulletin of China,2022,41(9):1698 − 1706. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2022.09.017

    [15]

    刘润川,任战利,叶汉青,等. 地热资源潜力评价—以鄂尔多斯盆地部分地级市和重点层位为例[J]. 地质通报,2021,40(4):565 − 576. [LIU Runchuan,REN Zhanli,YE Hanqing,et al. Potential evaluation of geothermal resources:Exemplifying some municipalities and key strata in Ordos Basin as a study case[J]. Geological Bulletin of China,2021,40(4):565 − 576. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2021.04.013

    [16]

    汪新伟,王婷灏,李海泉,等. 太原盆地岩溶地热系统的形成演化及其地热资源潜力[J]. 中国地质,2022,49(3):716 − 731. [WANG Xinwei,WANG Tinghao,LI Haiquan,et al. Evolution of karst geothermal system and its geothermal resource potential in Taiyuan Basin[J]. Geology in China,2022,49(3):716 − 731. (in Chinese with English abstract)

    [17]

    刘峰,王贵玲,张薇,等. 江西宁都县北部大地热流特征及地热资源成因机制[J]. 地质通报,2020,39(12):1883 − 1890. [LIU Feng,WANG Guiling,ZHANG Wei,et al. Terrestrial heat flow and geothermal genesis mechanism of geothermal resources in northern Ningdu County,Jiangxi Province[J]. Geological Bulletin of China,2020,39(12):1883 − 1890. (in Chinese with English abstract) doi: 10.12097/j.issn.1671-2552.2020.12.002

    [18]

    尹政, 田辽西, 张旭儒, 等. 张掖城区及外围地热资源普查报告[R]. 兰州: 甘肃省地矿局水文地质工程地质勘察院, 2018.

    YIN Zheng, TIAN Liaoxi, ZHANG Xuru, et al. Geothermal resources survey in Zhangye city and its periphery [R]. Lanzhou: Institute of Hydrogeoloical and Engineering Geology, Gansu Provincial Bureau of Geology and Mineral Exploration and Development, 2018. (in Chinese)

    [19]

    刘宝睿,杨克绳,刘东艳. 论河西走廊陆盆的演化和最终形成期[J]. 地质论评,2009,55(1):25 − 31. [LIU Baorui,YANG Kesheng,LIU Dongyan. A discussion on evolution and final forming time of the Hexi Corridor continental basin[J]. Geological Review,2009,55(1):25 − 31. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2009.01.003

    [20]

    玉门油田石油地质志编写组. 中国石油地质志-卷十三-玉门油田[M]. 北京: 石油工业出版社, 1989: 236 − 261

    Compilation group of petroleum geology in Yumen Oilfield. Yumen Oilfield, petroleum geology of China (Vol. 13) [M]. Beijing: Petroleum Industry Press, 1989: 236 − 261. (in Chinese)

    [21]

    魏红军,李百祥. 张掖—民乐盆地地质构造特征与张掖市地热资源开发可行性分析[J]. 甘肃地质,2007,16(4):73 − 76. [WEI Hongjun,LI Baixiang. Characteristics of geological structures in Zhangye—Minle Basin and feasibility study of geothermal resources in Zhangye City[J]. Gansu Geology,2007,16(4):73 − 76. (in Chinese with English abstract)

    [22]

    汪集旸, 熊亮萍, 庞忠和. 中低温对流型地热系统[M]. 北京: 科学出版社, 1993: 117 − 132

    WANG Jiyang, XIONG Liangping, PANG Zhonghe. Low-medium temperature geo-thermal system of convective type[M]. Beijing: Science Press, 1993: 117 − 132. (in Chinese)

    [23]

    尹政,柳永刚,张旭儒,等. 张掖—民乐盆地中新生界地层结构及对地热的控制作用[J]. 甘肃地质,2021,30(3):49 − 56. [YIN Zheng,LIU Yonggang,ZHANG Xuru,et al. Mesozoic cenozoic stratigraphic structure and its control on geothermal energy in Zhangye— Minle Basin[J]. Gansu Geology,2021,30(3):49 − 56. (in Chinese with English abstract)

    [24]

    王卫星,孙玉东,杨永江,等. 天津市东丽湖地热对井的地质与水文地球化学特征[J]. 物探与化探,2010,34(1):44 − 48. [WANG Weixing,SUN Yudong,YANG Yongjiang,et al. Geological and hydrogeochemical characteristics geothermal paired wells in Dongli Lake area Tianjin[J]. Geophysical and Geochemical Exploration,2010,34(1):44 − 48. (in Chinese with English abstract)

    [25]

    PAYNE B R. Water balance of Lake Chala and its relation to groundwater from tritium and stable isotope data[J]. Journal of Hydrology,1970,11(1):47 − 58. doi: 10.1016/0022-1694(70)90114-9

    [26]

    冯欣,张亚哲. 深州地区地下水离子比例系数分析研究[J]. 中国农村水利水电,2014(4):18 − 20. [FENG Xin,ZHANG Yazhe. An analysis of the ions ratio coefficients of groundwater in Shenzhou area[J]. China Rural Water and Hydropower,2014(4):18 − 20. (in Chinese with English abstract) doi: 10.3969/j.issn.1007-2284.2014.04.006

    [27]

    尹政,张旭儒,王春磊,等. 张掖—民乐盆地地热田热矿水化学特征及理疗作用研究[J]. 甘肃地质,2022,31(1):72 − 78. [YIN Zheng,ZHANG Xuru,WANG Chunlei,et al. Chemical characteristics and physiotherapy effects of thermal mineral water in Zhangye Basin[J]. Gansu Geology,2022,31(1):72 − 78. (in Chinese with English abstract)

    [28]

    黄锦忠,谭红兵,王若安,等. 我国西北地区多年降水的氢氧同位素分布特征研究[J]. 水文,2015,35(1):33 − 39. [HUANG Jinzhong,TAN Hongbing,WANG Ruoan,et al. Hydrogen and oxygen isotopic analysis of perennial meteoric water in northwest China[J]. Journal of China Hydrology,2015,35(1):33 − 39. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0852.2015.01.006

    [29]

    CHEN Jiansheng,ZHAO Xia,FAN Zhechao,et al. Isotope method for confined groundwater recharge of the lower reaches of the Heihe River,Inner Mongolia,China[J]. Acta Geologica Sinica,2007,81(4):668 − 673. doi: 10.1111/j.1755-6724.2007.tb00990.x

    [30]

    MONTOROI J P,GRÜNBERGER O,NASRI S. Groundwater geochemistry of a small reservoir catchment in Central Tunisia[J]. Applied Geochemistry,2002,17(8):1047 − 1060. doi: 10.1016/S0883-2927(02)00076-8

    [31]

    张人权. 国外水文地质研究中应用同位素方法的现状[J]. 水文地质工程地质,1981,8(6):55 − 57. [ZHANG Renquan. Application of isotope method in hydrogeological research abroad[J]. Hydrogeology & Engineering Geology,1981,8(6):55 − 57. (in Chinese) doi: 10.16030/j.cnki.issn.1000-3665.1981.06.023

    [32]

    王莹,周训,于湲,等. 应用地热温标估算地下热储温度[J]. 现代地质,2007,21(4):605 − 612. [WANG Ying,ZHOU Xun,YU Yuan,et,al. Application of geothermemeters to calculation of temperature of geothermal reservoirs[J]. Geoscience,2007,21(4):605 − 612. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2007.04.003

    [33]

    汪集旸,熊亮萍,庞忠和. 利用地热资料确定地下热水循环深度[J]. 科学通报,1990,35(5):378 − 380. [WANG Jiyang,XIONG Liangping,PANG Zhonghe,et al. Using geothermal data to determine the circulation depth of underground hot water[J]. Chinses Science Bulletin,1990,35(5):378 − 380. (in Chinese with English abstract) doi: 10.1360/csb1990-35-5-378

  • 加载中

(7)

(6)

计量
  • 文章访问数:  854
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2022-02-28
修回日期:  2022-05-07
刊出日期:  2023-01-15

目录