基于GSFLOW的青土湖生态输水量-湖水面积关系研究

郭云彤, 周妍, 崔亚莉, 邵景力. 基于GSFLOW的青土湖生态输水量-湖水面积关系研究[J]. 水文地质工程地质, 2022, 49(5): 32-41. doi: 10.16030/j.cnki.issn.1000-3665.202203036
引用本文: 郭云彤, 周妍, 崔亚莉, 邵景力. 基于GSFLOW的青土湖生态输水量-湖水面积关系研究[J]. 水文地质工程地质, 2022, 49(5): 32-41. doi: 10.16030/j.cnki.issn.1000-3665.202203036
GUO Yuntong, ZHOU Yan, CUI Yali, SHAO Jingli. A study of the relationship between ecological water conveyance and water surface area of the Qingtu Lake based on GSFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 32-41. doi: 10.16030/j.cnki.issn.1000-3665.202203036
Citation: GUO Yuntong, ZHOU Yan, CUI Yali, SHAO Jingli. A study of the relationship between ecological water conveyance and water surface area of the Qingtu Lake based on GSFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 32-41. doi: 10.16030/j.cnki.issn.1000-3665.202203036

基于GSFLOW的青土湖生态输水量-湖水面积关系研究

  • 基金项目: 国家重点研发计划项目(2017YFC04061)
详细信息
    作者简介: 郭云彤(1990-),女,博士研究生,主要从事地下水数值模拟,地下水资源评价及开发利用研究。E-mail:252040048@qq.com
    通讯作者: 崔亚莉(1962-),女,博士,教授,主要从事地下水循环与更新能力研究、地下水资源评价与管理、地下水数值模拟技术与应用研究。E-mail:cuiyl@cugb.edu.cn
  • 中图分类号: P641.2

A study of the relationship between ecological water conveyance and water surface area of the Qingtu Lake based on GSFLOW

More Information
  • 西北地区水资源匮乏,生态环境脆弱,如何科学处理生产用水与生态用水的关系一直是西北干旱区水资源开发利用中关注和研究的热点难点课题之一。关于流域中上游生态输水与尾闾湖水域面积(或湿地面积)关系的定量化研究较少。以我国西北干旱区河西走廊石羊河流域的尾闾湖—青土湖为例,利用GSFLOW建立了区域地表水-地下水耦合模型,其中采用LAK模块及SFR2模块分别处理湖泊和输水渠道,在此基础上预测了不同生态输水方案下湖泊湖面面积的变化情况,分析了青土湖生态输水量-湖水面积关系,确定了青土湖生态输水的合理范围。研究结果显示:当前3100×104 m3/a的生态输水量可以保证青土湖维持年内最高湖水水位1212.23 m(平均水位1211.68 m),稳定最大面积可达16.27 km2;当输水量为2000×104~3700×104 m3/a时,随输水量增大水面面积线性增加,面积变化率相对稳定;当输水量为3700×104~4500×104 m3/a时,水面面积随生态输水量增多,面积增大率逐渐减小;当输水量大于4500×104 m3/a时,水面面积随生态输水增多增大幅度很小,特别是当生态输水量大于5500×104 m3/a时,面积变化率趋近于0。从维持当前青土湖水面面积和向青土湖生态输水的效益考虑,红崖山水库向青土湖的生态输水量应保持在3100×104~4500×104 m3/a。研究成果对于确定西北干旱区合理生态需水,协调生态、经济、社会用水可持续发展具有一定的参考价值。

  • 加载中
  • 图 1  红崖山水库、民勤盆地与青土湖

    Figure 1. 

    图 2  水体、芦苇面积及入湖水量变化

    Figure 2. 

    图 3  青土湖水面面积与水位关系

    Figure 3. 

    图 4  PRMS与MODFLOW耦合模式[20]

    Figure 4. 

    图 5  模型范围与空间离散

    Figure 5. 

    图 6  湖区钻孔分布及地层剖面[19]

    Figure 6. 

    图 7  青土湖模拟水位与实际水位变化

    Figure 7. 

    图 8  观测孔分布图

    Figure 8. 

    图 9  观测孔拟合图

    Figure 9. 

    图 10  民勤盆地1960—2019年降水、蒸发量变化

    Figure 10. 

    图 11  不同输水方案下湖水水位变化图

    Figure 11. 

    图 12  不同方案下V01观测孔地下水水位变化图

    Figure 12. 

    图 13  不同输水量条件下最大水面面积变化图

    Figure 13. 

    表 1  不同生态输水方案下2039年预测湖泊水均衡情况

    Table 1.  Predicted lake water balance in 2039 under different ecological water conveyance schemes /104 m3

    生态
    输水量
    补给项排泄项均衡量
    降水量生态入湖输水量蒸散发量湖泊补给地下水量
    31001472170255014−247
    45001623150281046340
    6000165420028621518−15
    下载: 导出CSV
  • [1]

    孙自永,王俊友,葛孟琰,等. 基于水稳定同位素的地下水型陆地植被识别:研究进展、面临挑战及未来研究展望[J]. 地质科技通报,2020,39(1):11 − 20. [SUN Ziyong,WANG Junyou,GE Mengyan,et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation:Progress,challenges,and prospects for future research[J]. Bulletin of Geological Science and Technology,2020,39(1):11 − 20. (in Chinese with English abstract)

    [2]

    张晓晓,张钰,徐浩杰,等. 河西走廊三大内陆河流域出山径流变化特征及其影响因素分析[J]. 干旱区资源与环境,2014,28(4):66 − 72. [ZHANG Xiaoxiao,ZHANG Yu,XU Haojie,et al. Mountainous runoff change in three inland river basin in Hexi Corridor and its influencing factors[J]. Journal of Arid Land Resources and Environment,2014,28(4):66 − 72. (in Chinese with English abstract) doi: 10.13448/j.cnki.jalre.2014.04.034

    [3]

    赵军,杨建霞,朱国锋. 生态输水对青土湖周边区域植被覆盖度的影响[J]. 干旱区研究,2018,35(6):1251 − 1261. [ZHAO Jun,YANG Jianxia,ZHU Guofeng. Effect of ecological water conveyance on vegetation coverage in surrounding area of the qingtu lake[J]. Arid Zone Research,2018,35(6):1251 − 1261. (in Chinese with English abstract) doi: 10.13866/j.azr.2018.06.01

    [4]

    刘淑娟,袁宏波,刘世增,等. 石羊河尾闾水面形成区土壤颗粒的分形特征[J]. 水土保持通报,2013,33(6):285 − 289. [LIU Shujuan,YUAN Hongbo,LIU Shizeng,et al. Characteristics of soil particle fractal dimension after formation of water area in tail-streams of Shiyang River[J]. Bulletin of Soil and Water Conservation,2013,33(6):285 − 289. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2013.06.051

    [5]

    刘淑娟,马剑平,刘世增,等. 青土湖水面形成过程对荒漠植物多样性的影响[J]. 水土保持通报,2016,36(1):27 − 32. [LIU Shujuan,MA Jianping,LIU Shizeng,et al. Effects of qingtu lake water area formation on diversity of plants in desert region[J]. Bulletin of Soil and Water Conservation,2016,36(1):27 − 32. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.2016.01.006

    [6]

    陈政融,刘世增,刘淑娟,等. 青土湖水面形成对区域典型植被分布的影响[J]. 中国农学通报,2015,31(21):177 − 183. [CHEN Zhengrong,LIU Shizeng,LIU Shujuan,et al. Effect of water body forming on the distribution of typical vegetation in qingtu lake[J]. Chinese Agricultural Science Bulletin,2015,31(21):177 − 183. (in Chinese with English abstract)

    [7]

    QIAO S F,MA R,SUN Z Y,et al. The effect of water transfer during non-growing season on the wetland ecosystem via surface and groundwater interactions in arid northwestern China[J]. Remote Sensing,2020,12(16):2516. doi: 10.3390/rs12162516

    [8]

    林勇,李丰顺. 估算地下水补给量的新方法-SWATMOD耦合模型简介[J]. 科技视界,2017(3):251. [LIN Yong,LI Fengshun. Estimation of groundwater recharge by the new method-SWATMOD coupling model introduction[J]. Science & Technology Vision,2017(3):251. (in Chinese with English abstract) doi: 10.19694/j.cnki.issn2095-2457.2017.03.191

    [9]

    PERKINS S P,SOPHOCLEOUS M. Development of a comprehensive watershed model applied to study stream yield under drought conditions[J]. Ground Water,1999,37(3):418 − 426. doi: 10.1111/j.1745-6584.1999.tb01121.x

    [10]

    雷凯文,卢宏玮. 基于MIKESHE的流域表层土壤含水量时空变化特征分析[J]. 安徽农业科学,2020,48(6):50 − 54. [LEI Kaiwen,LU Hongwei. Spatial and temporal variation of surface soil moisture content based on MIKESHE[J]. Journal of Anhui Agricultural Sciences,2020,48(6):50 − 54. (in Chinese with English abstract)

    [11]

    GRAHAM N, REFSGAARD A. MIKE SHE: A distributed physically based modelling system for surface water/groundwater interactions[C]//Proceedings of MODFLOW 2001 and other modelling odysseys. Golden: Colorado, 2001: 321 − 327.

    [12]

    吴斌,王赛,王文祥,等. 基于地表水-地下水耦合模型的未来气候变化对西北干旱区水资源影响研究:以黑河中游为例[J]. 中国地质,2019,46(2):369 − 380. [WU Bin,WANG Sai,WANG Wenxiang,et al. Impact of future climate change on water resources in the arid regions of Northwest China based on surface water-groundwater coupling model:a case study of the middle reaches of the Heihe River[J]. Geology in China,2019,46(2):369 − 380. (in Chinese with English abstract)

    [13]

    何君. 基于GSFLOW的片麻岩地区地表水和地下水耦合作用分析[J]. 陕西水利,2018(6):17 − 19. [HE Jun. Analysis of coupling effect of surface water and groundwater in gneiss area based on GSFLOW[J]. Shaanxi Water Resources,2018(6):17 − 19. (in Chinese with English abstract) doi: 10.16747/j.cnki.cn61-1109/tv.2018.06.006

    [14]

    MARKSTROM S L, NISWONGER R G, REGAN R S, et al. GSFLOW—coupled groundwater and surface-water flow model based on the integration of the precipitation-runoff modeling system (PRMS) and the modular ground-water flow model (MODFLOW-2005): US Geological Survey Techniques and Methods 6-D1[M]. Reston: US Geological Survey, 2008: 240.

    [15]

    陈喜. 生态脆弱区地下水合理开发及生态功能退变防控机制与基础研究[R]. 天津: 天津大学, 2021

    CHEN Xi. Mechanism and basic research on rational development of groundwater and prevention and control of ecological function degeneration in ecologically fragile areas[R]. Tianjin: Tianjin University, 2021. (in Chinese)

    [16]

    CHEN P P,LIU H M,WANG Z M,et al. Vegetation dynamic assessment by NDVI and field observations for sustainability of China ’s Wulagai River Basin[J]. International Journal of Environmental Research and Public Health,2021,18(5):2528. doi: 10.3390/ijerph18052528

    [17]

    屈慧慧,裴亮,桑学锋,等. 基于MNDWI特征空间的水体追踪识别方法研究[J]. 测绘工程,2021,30(2):32 − 35. [QU Huihui,PEI Liang,SANG Xuefeng,et al. A method of water body tracking and recognition based on feature space of MNDWI[J]. Engineering of Surveying and Mapping,2021,30(2):32 − 35. (in Chinese with English abstract) doi: 10.19349/j.cnki.issn1006-7949.2021.02.006

    [18]

    邵景力. 生态脆弱区地下水合理开发与生态保护的监控-预警与对策综合研究[R]. 北京: 中国地质大学, 2021

    SHAO Jingli. Comprehensive research on monitoring-early warning and countermeasure of reasonable groundwater development and ecological protection in ecologically fragile areas [R]. Beijing: China University of Geosciences, 2021. (in Chinese)

    [19]

    马瑞. 重要湿地地下水调控及水生态功能保护关键技术与示范[R]. 武汉: 中国地质大学, 2021

    MA Rui. Key technologies and demonstration of groundwater regulation and protection of water ecology function in important wetlands [R]. Wuhan: China University of Geosciences, 2021. (in Chinese)

    [20]

    HARBAUGH AW. MODFLOW-2005, the US geological survey modular ground-water model-the ground-water flow process: US geological survey techniques and methods 6-A16[M]. Reston: US Geological Survey, 2005.

    [21]

    MICHAEL L, MERRITT, LEONARD F, et al. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground-water flow model and the MOC3D solute-transport model: US Geological Survey Water Resources Investigations Report 00-4167[R]. Reston: US Geological Survey, 2001: 146.

    [22]

    MERRITT M L, KONIKOW L F. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground water flow model and the MOC3D solute-transport model[R]. Reston: US Geological Survey, 2000.

    [23]

    GUO Y T,SHAO J L,ZHANG Q L,et al. Relationship between water surface area of qingtu lake and ecological water delivery:A case study in northwest China[J]. Sustainability,2021,13(9):4684. doi: 10.3390/su13094684

  • 加载中

(13)

(1)

计量
  • 文章访问数:  646
  • PDF下载数:  53
  • 施引文献:  0
出版历程
收稿日期:  2022-03-15
修回日期:  2022-05-06
刊出日期:  2022-09-15

目录