旱区湿地周边盐渍化农田生态水位阈值与“水位-水量”双控技术

刘鹏飞, 张光辉, 崔尚进, 刘少玉, 聂振龙. 旱区湿地周边盐渍化农田生态水位阈值与“水位-水量”双控技术[J]. 水文地质工程地质, 2022, 49(5): 42-51. doi: 10.16030/j.cnki.issn.1000-3665.202202054
引用本文: 刘鹏飞, 张光辉, 崔尚进, 刘少玉, 聂振龙. 旱区湿地周边盐渍化农田生态水位阈值与“水位-水量”双控技术[J]. 水文地质工程地质, 2022, 49(5): 42-51. doi: 10.16030/j.cnki.issn.1000-3665.202202054
LIU Pengfei, ZHANG Guanghui, CUI Shangjin, LIU Shaoyu, NIE Zhenlong. Threshold value of ecological water table and dual control technology of the water table and its quantity in the salinized farmland around wetland in arid areas[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 42-51. doi: 10.16030/j.cnki.issn.1000-3665.202202054
Citation: LIU Pengfei, ZHANG Guanghui, CUI Shangjin, LIU Shaoyu, NIE Zhenlong. Threshold value of ecological water table and dual control technology of the water table and its quantity in the salinized farmland around wetland in arid areas[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 42-51. doi: 10.16030/j.cnki.issn.1000-3665.202202054

旱区湿地周边盐渍化农田生态水位阈值与“水位-水量”双控技术

  • 基金项目: 国家重点研发计划项目(2017YFC0406100);河北省青年科学基金项目(D2021504040);中国地质调查局基本科研业务费项目(SK202215);中国地质调查局地质调查项目(DD20221752)
详细信息
    作者简介: 刘鹏飞(1986-),男,硕士,助理研究员,主要从事干旱区土壤水盐调控理论与关键技术研究。E-mail:liupengfei0701@163.com
    通讯作者: 张光辉(1959-),男,二级研究员,博士生导师,长期从事水循环演化与水土资源合理开发利用研究。E-mail:Huanjing59@163.com
  • 中图分类号: P641;X173

Threshold value of ecological water table and dual control technology of the water table and its quantity in the salinized farmland around wetland in arid areas

More Information
  • 西北旱区湿地周边农田易盐渍化,合理实时控制和降低地下水水位是实现湿地保护及其周边农田盐渍化防控“双赢”的有效途径。选取西北石羊河流域邓马营湖湿地与农田之间过渡带为示范研究区,通过分析地下水埋深变化特征及其与表层土壤盐分的协同关系,确定生态水位阈值,并基于该阈值研发了由虹吸辐射井群为支撑的地下水“水位-水量”智能双控技术,其关键点是:采用一井虹吸联通多个辐射井,用于增大弱透水层区单井涌水量,实现水位面状控制;利用电系统、信号系统和控制器集成智能控制子系统,实现地下水水位和水量的实时控制。该技术示范应用结果表明:随地下水埋深增大,农田盐渍化风险和湿地植被芦苇覆盖率均降低,农田盐渍化防控和湿地保护的地下水埋深阈值为1.9~3.0 m;每年7—8月的潜水蒸发阶段是表层土壤主要积盐时段,期间智能双控系统可将地下水埋深调控在水位阈限范围;该双控作用不仅能够控降灌溉引起的表层土壤电导率的增大幅度,而且还能有效降低表层土壤的积盐速率;相对微咸水,淡水灌溉条件下智能双控技术的淋盐和控盐效果更明显。因此,这项技术能够实现地下水水位精准调控,对旱区湿地保护及其周边农田盐渍化防控具有重要的现实意义。

  • 加载中
  • 图 1  农田非调控区地下水埋深变化特征(G20监测孔)

    Figure 1. 

    图 2  7月初地下水埋深等值线及监测孔分布位置

    Figure 2. 

    图 3  自然植被区表层土壤盐分与地下水埋深协同变化关系

    Figure 3. 

    图 4  农田区不同潜水埋深下包气带剖面含盐量

    Figure 4. 

    图 5  基于虹吸辐射井群的“水位-水量”双控技术系统

    Figure 5. 

    图 6  示范区功能分区及监测点分布

    Figure 6. 

    图 7  调控区与非调控区地下水埋深动态变化(G06、G20监测孔)

    Figure 7. 

    图 8  灌后8 d地下水埋深等值线

    Figure 8. 

    图 9  调控区淡水(A剖面)、微咸水(B剖面)和非调控区淡水(D剖面)、微咸水(C剖面)灌后相对灌前电导率变幅

    Figure 9. 

    表 1  旱区湿地芦苇适宜生态水位埋深

    Table 1.  Suitable ecological groundwater depth of the wetland bulrush in arid areas

    地区疏勒河流域塔里木河下游黑河流域下游石羊河下游
    水位埋深/m1.0~3.01.0~3.0<3.02.91
    下载: 导出CSV

    表 2  示范区周边不同水位埋深下主要植被类型

    Table 2.  Key vegetational forms in diverse groundwater depths around the demonstration area

    水位埋深/m0.5~2.22.2~3.03.0~5.0
    植被类型芦苇芦苇、盐爪爪盐爪爪、骆驼刺
    下载: 导出CSV

    表 3  主井和辐射井主要参数

    Table 3.  Key parameters of the main pumping and radical wells

    井类型数量/口深度/m井管内径/cm滤水管埋深/m
    主井1850.02~8
    辐射井3631.52~6
    下载: 导出CSV

    表 4  示范区主要监测指标

    Table 4.  Main monitoring indicators in the demonstration zone

    监测对象气象包气带地下水
    监测指标温度、雨量、
    风向、风速等
    温度、含水率和电导率水位、水温和电导率
    监测设备HOBO气象站5TE、MPS-6传感器地下水三参数监测仪
    设备数量1台4组20台
    监测频率每30 min监测1次
    下载: 导出CSV
  • [1]

    周远刚, 赵锐锋, 赵海莉, 等. 黑河中游湿地不同恢复方式对土壤和植被的影响: 以张掖国家湿地公园为例[J]. 生态学报,2019,39(9):3333 − 3343. [ZHOU Yuangang, ZHAO Ruifeng, ZHAO Haili, et al. Effects of different fallow and wetting methods on soil and vegetation properties in the middle reaches of the Heihe River: A case study of Zhangye National Wetland Park[J]. Acta Ecologica Sinica,2019,39(9):3333 − 3343. (in Chinese with English abstract)

    [2]

    ZHANG F, YUSHANJIANG A, WANG D F. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics[J]. Environmental Earth Sciences,2018,77(13):1 − 16.

    [3]

    王宇, 李均力, 郭木加甫, 等. 1989—2014年赛里木湖水面面积的时序变化特征[J]. 干旱区地理,2016,39(4):851 − 860. [WANG Yu, LI Junli, GUOMU Jiafu, et al. Time-series analysis of Sayram Lake area changes during 1989-2014[J]. Arid Land Geography,2016,39(4):851 − 860. (in Chinese with English abstract)

    [4]

    夏积德, 吴发启, 张青峰, 等. 基于粮食安全视角的西北六省耕地压力评价[J]. 陕西农业科学,2016,62(8):95 − 98. [XIA Jide, WU Faqi, ZHANG Qingfeng, et al. Evaluation of farmland pressure in six northwestern provinces based on visual angle of food security[J]. Shaanxi Journal of Agricultural Sciences,2016,62(8):95 − 98. (in Chinese) doi: 10.3969/j.issn.0488-5368.2016.08.033

    [5]

    胡立堂, 郭建丽, 张寿全, 等. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质,2020,47(5):5 − 11. [HU Litang, GUO Jianli, ZHANG Shouquan, et al. Response of groundwater regime to ecological water replenishment of the Yongding River[J]. Hydrogeology & Engineering Geology,2020,47(5):5 − 11. (in Chinese with English abstract)

    [6]

    LIU J T, SUN J C, ZHU L, et al. Analysis of groundwater environmental conditions and influencing factors in typical city in northwest China[J]. Journal of Groundwater Science and Engineering,2013,1(2):60 − 73.

    [7]

    ZHANG C C, LI X Q, GAO M, et al. Exploitation of groundwater resources and protection of wetland in the Yuqia Basin[J]. Journal of Groundwater Science and Engineering,2017,5(3):222 − 234.

    [8]

    查恩爽, 肖霄. 吉林省西部潜水资源与生态环境风险分析[J]. 水文地质工程地质,2021,48(1):36 − 43. [ZHA Enshuang, XIAO Xiao. Assessment of resources and ecological risks induced by groundwater utilization in the unconfined aquifer in the western Jilin Province: A case study in the Taoer River catchment[J]. Hydrogeology & Engineering Geology,2021,48(1):36 − 43. (in Chinese with English abstract)

    [9]

    孔东, 史海滨, 霍再林, 等. 河套灌区不同盐分含量土壤对向日葵生长的影响[J]. 沈阳农业大学学报, 2004, 35(增刊1): 414 − 416

    KONG Dong, SHI Haibin, HUO Zailin, et al. Effects on growth of sunflower under different saline soils in the Hetao irrigation area[J]. Journal of Shenyang Agricultural University, 2004, 35(Sup 1): 414 − 416. (in Chinese with English abstract)

    [10]

    童文杰, 陈中督, 陈阜, 等. 河套灌区玉米耐盐性分析及生态适宜区划分[J]. 农业工程学报,2012,28(10):131 − 137. [TONG Wenjie, CHEN Zhongdu, CHEN Fu, et al. Analysis of maize salt tolerance in Hetao irrigation district and its ecological adaptable region[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(10):131 − 137. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2012.10.021

    [11]

    ZHANG W, SHI J S, XU J M, et al. Dynamic influence of Holocene characteristics on vadose water in typical region of central North China Plain[J]. Journal of Groundwater Science and Engineering,2016,4(3):247 − 258.

    [12]

    刘昌军, 赵华, 张顺福, 等. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版),2013,43(3):922 − 930. [LIU Changjun, ZHAO Hua, ZHANG Shunfu, et al. Finite element analysis on unsteady seepage field of groundwater reservoir of tailan river during the pumping water of the radiation well[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):922 − 930. (in Chinese with English abstract)

    [13]

    张金龙, 刘明, 钱红, 等. 漫灌淋洗暗管排水协同改良滨海盐土水盐时空变化特征[J]. 农业工程学报,2018,34(6):98 − 103. [ZHANG Jinlong, LIU Ming, QIAN Hong, et al. Spatial-temporal variation characteristics of water-salt movement in coastal saline soil improved by flooding and subsurface drainage[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(6):98 − 103. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2018.06.012

    [14]

    BOŽOVIĆ Đ, POLOMČIĆ D, BAJIĆ D, et al. Hydrodynamic analysis of radial collector well ageing at Belgrade well field[J]. Journal of Hydrology,2020,582:124463. doi: 10.1016/j.jhydrol.2019.124463

    [15]

    COLLINS S L, HOUBEN G J. Horizontal and radial collector wells: simple tools for a complex problem[J]. Hydrogeology Journal,2020,28(5):1925 − 1935. doi: 10.1007/s10040-020-02120-2

    [16]

    AMELI A A, CRAIG J R. Semi-analytical 3D solution for assessing radial collector well pumping impacts on groundwater –surface water interaction[J]. Hydrology Research,2018,49(1):17 − 26. doi: 10.2166/nh.2017.201

    [17]

    BANERJEE G. Groundwater abstraction through river-bed collector well: A case study based on geophysical and hydrological investigation[J]. Clean Technologies and Environmental Policy,2012,14(4):573 − 587. doi: 10.1007/s10098-011-0417-6

    [18]

    李山. 灌区控制排水条件下水盐调控及农田湿地盐分动态研究[D]. 西安: 西安理工大学, 2017

    LI Shan. Water and salinity management and its dynamic of wetland under controlled drainage in irrigated area[D]. Xi’an: Xi’an University of Technology, 2017. (in Chinese with English abstract)

    [19]

    贾忠华, 罗纨, 方树星, 等. 双重排水条件下控制措施对银南灌区水稻田水盐关系的影响分析[J]. 干旱区资源与环境,2006,20(5):213 − 216. [JIA Zhonghua, LUO Wan, FANG Shuxing, et al. Water and salt dynamics in rice fields under dual-drainage in Yinnan irrigation district, China[J]. Journal of Arid Land Resources and Environment,2006,20(5):213 − 216. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-7578.2006.05.042

    [20]

    刘少玉, 靳盛海, 韩双平, 等. 华北东部平原浅层高矿化弱渗透地下水的开发技术示范研究[J]. 吉林大学学报(地球科学版),2010,40(1):114 − 120. [LIU Shaoyu, JIN Shenghai, HAN Shuangping, et al. Development and utilization mode of high salinity shallow groundwater from low permeability aquifer in eastern North China plain[J]. Journal of Jilin University (Earth Science Edition),2010,40(1):114 − 120. (in Chinese with English abstract)

    [21]

    魏玉涛, 刘德玉, 张伟, 等. 荒漠-湿地生态系统区盐渍土特征及空间变异性[J]. 水文地质工程地质,2020,47(2):183 − 190. [WEI Yutao, LIU Deyu, ZHANG Wei, et al. Characteristics and spatial variability of saline soil in desert-wet ecosystem area, Gansu Province, China[J]. Hydrogeology & Engineering Geology,2020,47(2):183 − 190. (in Chinese with English abstract)

    [22]

    孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别:研究进展、面临挑战及未来研究展望[J]. 地质科技通报,2020,39(1):11 − 20. [SUN Ziyong, WANG Junyou, GE Mengyan, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation:Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology,2020,39(1):11 − 20. (in Chinese with English abstract)

    [23]

    郭占荣. 西北内陆盆地地下水的生态环境效应研究[D]. 北京: 中国地质科学院, 2000

    GUO Zhanrong. Study on the eco-environmental effect of groundwater development in the inland basins of northwest China[D]. Beijing: Chinese Academy of Geological Sciences, 2000. (in Chinese with English abstract)

    [24]

    马兴华, 王桑. 甘肃疏勒河流域植被退化与地下水水位及矿化度的关系[J]. 甘肃林业科技,2005,30(2):53 − 54. [MA Xinghua, WAMG Sang. Relationship between vegetation degradation and groundwater table and degree of mineralization in the ShuLe river Basin in Gansu Province[J]. Journal of Gansu Forestry Science and Technology,2005,30(2):53 − 54. (in Chinese) doi: 10.3969/j.issn.1006-0960.2005.02.015

    [25]

    白玉锋, 陈超群, 徐海量, 等. 塔里木河下游荒漠植被地上生物量空间分布与地下水埋深关系[J]. 林业科学,2016,52(11):1 − 10. [BAI Yufeng, CHEN Chaoqun, XU Hailiang, et al. Relationship between spatial distribution of aboveground biomass of desert vegetation and groundwater depth in the lower reaches of Tarim River, Xinjiang, China[J]. Scientia Silvae Sinicae,2016,52(11):1 − 10. (in Chinese with English abstract) doi: 10.11707/j.1001-7488.20161101

    [26]

    LIU M, NIE Z L, CAO L, et al. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed[J]. Journal of Groundwater Science and Engineering,2021,9(4):326 − 340.

    [27]

    史海滨, 郭珈玮, 周慧, 等. 灌水量和地下水调控对干旱地区土壤水盐分布的影响[J]. 农业机械学报,2020,51(4):268 − 278. [SHI Haibin, GUO Jiawei, ZHOU Hui, et al. Effects of irrigation amounts and groundwater regulation on soil water and salt distribution in arid region[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):268 − 278. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.04.031

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1252
  • PDF下载数:  37
  • 施引文献:  0
出版历程
收稿日期:  2022-02-22
修回日期:  2022-03-18
刊出日期:  2022-09-15

目录