Threshold value of ecological water table and dual control technology of the water table and its quantity in the salinized farmland around wetland in arid areas
-
摘要:
西北旱区湿地周边农田易盐渍化,合理实时控制和降低地下水水位是实现湿地保护及其周边农田盐渍化防控“双赢”的有效途径。选取西北石羊河流域邓马营湖湿地与农田之间过渡带为示范研究区,通过分析地下水埋深变化特征及其与表层土壤盐分的协同关系,确定生态水位阈值,并基于该阈值研发了由虹吸辐射井群为支撑的地下水“水位-水量”智能双控技术,其关键点是:采用一井虹吸联通多个辐射井,用于增大弱透水层区单井涌水量,实现水位面状控制;利用电系统、信号系统和控制器集成智能控制子系统,实现地下水水位和水量的实时控制。该技术示范应用结果表明:随地下水埋深增大,农田盐渍化风险和湿地植被芦苇覆盖率均降低,农田盐渍化防控和湿地保护的地下水埋深阈值为1.9~3.0 m;每年7—8月的潜水蒸发阶段是表层土壤主要积盐时段,期间智能双控系统可将地下水埋深调控在水位阈限范围;该双控作用不仅能够控降灌溉引起的表层土壤电导率的增大幅度,而且还能有效降低表层土壤的积盐速率;相对微咸水,淡水灌溉条件下智能双控技术的淋盐和控盐效果更明显。因此,这项技术能够实现地下水水位精准调控,对旱区湿地保护及其周边农田盐渍化防控具有重要的现实意义。
Abstract:The farmland around wetland in the arid areas in northwest China is easily salinized. Reasonably controlling and reducing groundwater levels in real time is an effective way of protecting wetland and preventing and controlling farmland salinization. The typical demonstration zone is selected in the transitional zone of wetland and farmland near the Dengmaying Lake of the Shiyang River Basin in the arid area. The dynamic characteristics of groundwater depth and the synergic relationship between groundwater depth and salt content of topsoil are analyzed. The threshold value of the ecological water table is confirmed. The Intelligentized dual control technology of water table and its quantity is developed, which is based on groups of radial wells connected by siphons. The key points of the technology are as follows: one well collecting many radial wells by siphons is used for increasing the water yield of the well in the aquitard and contributing to control the water level in the form of a plane. The subsystem consisting of the electricity system, signal system and controllers is used to control the groundwater level and water yield in real time. Demonstration test of the key technology application is carried out and the application effect is remarkable. The results show that when the groundwater depth increases, the risk of salinization and bulrush coverage fraction in wetland decreases. The threshold value of groundwater depth for protecting wetland and preventing and controlling farmland salinization ranges from 1.9 to 3.0 m. The intelligentized regulatory system could make the groundwater depth stay in the suitable ecological range in the stage of evaporation from phreatic water in July and August of each year, when is the critical period of topsoil salification. The regulation not only can decrease the increasing amplitude of soil conductivity caused by irrigation, but also reduce the speed of topsoil salification. The effect of dissolving and controlling salt by the dual control technology of water table and its quantity is more obvious under the condition of fresh water irrigation than under the condition of brackish water. The technology can help realize the accurate regulation and control of groundwater level and it is of realistic significance for wetland protection and preventing and controlling farmland salinization in arid areas.
-
表 1 旱区湿地芦苇适宜生态水位埋深
Table 1. Suitable ecological groundwater depth of the wetland bulrush in arid areas
地区 疏勒河流域 塔里木河下游 黑河流域下游 石羊河下游 水位埋深/m 1.0~3.0 1.0~3.0 <3.0 2.91 表 2 示范区周边不同水位埋深下主要植被类型
Table 2. Key vegetational forms in diverse groundwater depths around the demonstration area
水位埋深/m 0.5~2.2 2.2~3.0 3.0~5.0 植被类型 芦苇 芦苇、盐爪爪 盐爪爪、骆驼刺 表 3 主井和辐射井主要参数
Table 3. Key parameters of the main pumping and radical wells
井类型 数量/口 深度/m 井管内径/cm 滤水管埋深/m 主井 1 8 50.0 2~8 辐射井 3 6 31.5 2~6 表 4 示范区主要监测指标
Table 4. Main monitoring indicators in the demonstration zone
监测对象 气象 包气带 地下水 监测指标 温度、雨量、
风向、风速等温度、含水率和电导率 水位、水温和电导率 监测设备 HOBO气象站 5TE、MPS-6传感器 地下水三参数监测仪 设备数量 1台 4组 20台 监测频率 每30 min监测1次 -
[1] 周远刚, 赵锐锋, 赵海莉, 等. 黑河中游湿地不同恢复方式对土壤和植被的影响: 以张掖国家湿地公园为例[J]. 生态学报,2019,39(9):3333 − 3343. [ZHOU Yuangang, ZHAO Ruifeng, ZHAO Haili, et al. Effects of different fallow and wetting methods on soil and vegetation properties in the middle reaches of the Heihe River: A case study of Zhangye National Wetland Park[J]. Acta Ecologica Sinica,2019,39(9):3333 − 3343. (in Chinese with English abstract)
[2] ZHANG F, YUSHANJIANG A, WANG D F. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics[J]. Environmental Earth Sciences,2018,77(13):1 − 16.
[3] 王宇, 李均力, 郭木加甫, 等. 1989—2014年赛里木湖水面面积的时序变化特征[J]. 干旱区地理,2016,39(4):851 − 860. [WANG Yu, LI Junli, GUOMU Jiafu, et al. Time-series analysis of Sayram Lake area changes during 1989-2014[J]. Arid Land Geography,2016,39(4):851 − 860. (in Chinese with English abstract)
[4] 夏积德, 吴发启, 张青峰, 等. 基于粮食安全视角的西北六省耕地压力评价[J]. 陕西农业科学,2016,62(8):95 − 98. [XIA Jide, WU Faqi, ZHANG Qingfeng, et al. Evaluation of farmland pressure in six northwestern provinces based on visual angle of food security[J]. Shaanxi Journal of Agricultural Sciences,2016,62(8):95 − 98. (in Chinese) doi: 10.3969/j.issn.0488-5368.2016.08.033
[5] 胡立堂, 郭建丽, 张寿全, 等. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质,2020,47(5):5 − 11. [HU Litang, GUO Jianli, ZHANG Shouquan, et al. Response of groundwater regime to ecological water replenishment of the Yongding River[J]. Hydrogeology & Engineering Geology,2020,47(5):5 − 11. (in Chinese with English abstract)
[6] LIU J T, SUN J C, ZHU L, et al. Analysis of groundwater environmental conditions and influencing factors in typical city in northwest China[J]. Journal of Groundwater Science and Engineering,2013,1(2):60 − 73.
[7] ZHANG C C, LI X Q, GAO M, et al. Exploitation of groundwater resources and protection of wetland in the Yuqia Basin[J]. Journal of Groundwater Science and Engineering,2017,5(3):222 − 234.
[8] 查恩爽, 肖霄. 吉林省西部潜水资源与生态环境风险分析[J]. 水文地质工程地质,2021,48(1):36 − 43. [ZHA Enshuang, XIAO Xiao. Assessment of resources and ecological risks induced by groundwater utilization in the unconfined aquifer in the western Jilin Province: A case study in the Taoer River catchment[J]. Hydrogeology & Engineering Geology,2021,48(1):36 − 43. (in Chinese with English abstract)
[9] 孔东, 史海滨, 霍再林, 等. 河套灌区不同盐分含量土壤对向日葵生长的影响[J]. 沈阳农业大学学报, 2004, 35(增刊1): 414 − 416
KONG Dong, SHI Haibin, HUO Zailin, et al. Effects on growth of sunflower under different saline soils in the Hetao irrigation area[J]. Journal of Shenyang Agricultural University, 2004, 35(Sup 1): 414 − 416. (in Chinese with English abstract)
[10] 童文杰, 陈中督, 陈阜, 等. 河套灌区玉米耐盐性分析及生态适宜区划分[J]. 农业工程学报,2012,28(10):131 − 137. [TONG Wenjie, CHEN Zhongdu, CHEN Fu, et al. Analysis of maize salt tolerance in Hetao irrigation district and its ecological adaptable region[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(10):131 − 137. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-6819.2012.10.021
[11] ZHANG W, SHI J S, XU J M, et al. Dynamic influence of Holocene characteristics on vadose water in typical region of central North China Plain[J]. Journal of Groundwater Science and Engineering,2016,4(3):247 − 258.
[12] 刘昌军, 赵华, 张顺福, 等. 台兰河地下水库辐射井抽水过程的非稳定渗流场的有限元分析[J]. 吉林大学学报(地球科学版),2013,43(3):922 − 930. [LIU Changjun, ZHAO Hua, ZHANG Shunfu, et al. Finite element analysis on unsteady seepage field of groundwater reservoir of tailan river during the pumping water of the radiation well[J]. Journal of Jilin University (Earth Science Edition),2013,43(3):922 − 930. (in Chinese with English abstract)
[13] 张金龙, 刘明, 钱红, 等. 漫灌淋洗暗管排水协同改良滨海盐土水盐时空变化特征[J]. 农业工程学报,2018,34(6):98 − 103. [ZHANG Jinlong, LIU Ming, QIAN Hong, et al. Spatial-temporal variation characteristics of water-salt movement in coastal saline soil improved by flooding and subsurface drainage[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(6):98 − 103. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2018.06.012
[14] BOŽOVIĆ Đ, POLOMČIĆ D, BAJIĆ D, et al. Hydrodynamic analysis of radial collector well ageing at Belgrade well field[J]. Journal of Hydrology,2020,582:124463. doi: 10.1016/j.jhydrol.2019.124463
[15] COLLINS S L, HOUBEN G J. Horizontal and radial collector wells: simple tools for a complex problem[J]. Hydrogeology Journal,2020,28(5):1925 − 1935. doi: 10.1007/s10040-020-02120-2
[16] AMELI A A, CRAIG J R. Semi-analytical 3D solution for assessing radial collector well pumping impacts on groundwater –surface water interaction[J]. Hydrology Research,2018,49(1):17 − 26. doi: 10.2166/nh.2017.201
[17] BANERJEE G. Groundwater abstraction through river-bed collector well: A case study based on geophysical and hydrological investigation[J]. Clean Technologies and Environmental Policy,2012,14(4):573 − 587. doi: 10.1007/s10098-011-0417-6
[18] 李山. 灌区控制排水条件下水盐调控及农田湿地盐分动态研究[D]. 西安: 西安理工大学, 2017
LI Shan. Water and salinity management and its dynamic of wetland under controlled drainage in irrigated area[D]. Xi’an: Xi’an University of Technology, 2017. (in Chinese with English abstract)
[19] 贾忠华, 罗纨, 方树星, 等. 双重排水条件下控制措施对银南灌区水稻田水盐关系的影响分析[J]. 干旱区资源与环境,2006,20(5):213 − 216. [JIA Zhonghua, LUO Wan, FANG Shuxing, et al. Water and salt dynamics in rice fields under dual-drainage in Yinnan irrigation district, China[J]. Journal of Arid Land Resources and Environment,2006,20(5):213 − 216. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-7578.2006.05.042
[20] 刘少玉, 靳盛海, 韩双平, 等. 华北东部平原浅层高矿化弱渗透地下水的开发技术示范研究[J]. 吉林大学学报(地球科学版),2010,40(1):114 − 120. [LIU Shaoyu, JIN Shenghai, HAN Shuangping, et al. Development and utilization mode of high salinity shallow groundwater from low permeability aquifer in eastern North China plain[J]. Journal of Jilin University (Earth Science Edition),2010,40(1):114 − 120. (in Chinese with English abstract)
[21] 魏玉涛, 刘德玉, 张伟, 等. 荒漠-湿地生态系统区盐渍土特征及空间变异性[J]. 水文地质工程地质,2020,47(2):183 − 190. [WEI Yutao, LIU Deyu, ZHANG Wei, et al. Characteristics and spatial variability of saline soil in desert-wet ecosystem area, Gansu Province, China[J]. Hydrogeology & Engineering Geology,2020,47(2):183 − 190. (in Chinese with English abstract)
[22] 孙自永, 王俊友, 葛孟琰, 等. 基于水稳定同位素的地下水型陆地植被识别:研究进展、面临挑战及未来研究展望[J]. 地质科技通报,2020,39(1):11 − 20. [SUN Ziyong, WANG Junyou, GE Mengyan, et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation:Progress, challenges, and prospects for future research[J]. Bulletin of Geological Science and Technology,2020,39(1):11 − 20. (in Chinese with English abstract)
[23] 郭占荣. 西北内陆盆地地下水的生态环境效应研究[D]. 北京: 中国地质科学院, 2000
GUO Zhanrong. Study on the eco-environmental effect of groundwater development in the inland basins of northwest China[D]. Beijing: Chinese Academy of Geological Sciences, 2000. (in Chinese with English abstract)
[24] 马兴华, 王桑. 甘肃疏勒河流域植被退化与地下水水位及矿化度的关系[J]. 甘肃林业科技,2005,30(2):53 − 54. [MA Xinghua, WAMG Sang. Relationship between vegetation degradation and groundwater table and degree of mineralization in the ShuLe river Basin in Gansu Province[J]. Journal of Gansu Forestry Science and Technology,2005,30(2):53 − 54. (in Chinese) doi: 10.3969/j.issn.1006-0960.2005.02.015
[25] 白玉锋, 陈超群, 徐海量, 等. 塔里木河下游荒漠植被地上生物量空间分布与地下水埋深关系[J]. 林业科学,2016,52(11):1 − 10. [BAI Yufeng, CHEN Chaoqun, XU Hailiang, et al. Relationship between spatial distribution of aboveground biomass of desert vegetation and groundwater depth in the lower reaches of Tarim River, Xinjiang, China[J]. Scientia Silvae Sinicae,2016,52(11):1 − 10. (in Chinese with English abstract) doi: 10.11707/j.1001-7488.20161101
[26] LIU M, NIE Z L, CAO L, et al. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed[J]. Journal of Groundwater Science and Engineering,2021,9(4):326 − 340.
[27] 史海滨, 郭珈玮, 周慧, 等. 灌水量和地下水调控对干旱地区土壤水盐分布的影响[J]. 农业机械学报,2020,51(4):268 − 278. [SHI Haibin, GUO Jiawei, ZHOU Hui, et al. Effects of irrigation amounts and groundwater regulation on soil water and salt distribution in arid region[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(4):268 − 278. (in Chinese with English abstract) doi: 10.6041/j.issn.1000-1298.2020.04.031