包气带岩性结构对地下水生态功能影响特征

崔浩浩, 张光辉, 刘鹏飞, 王金哲, 田言亮, 王茜. 包气带岩性结构对地下水生态功能影响特征[J]. 水文地质工程地质, 2022, 49(5): 52-62. doi: 10.16030/j.cnki.issn.1000-3665.202202055
引用本文: 崔浩浩, 张光辉, 刘鹏飞, 王金哲, 田言亮, 王茜. 包气带岩性结构对地下水生态功能影响特征[J]. 水文地质工程地质, 2022, 49(5): 52-62. doi: 10.16030/j.cnki.issn.1000-3665.202202055
CUI Haohao, ZHANG Guanghui, LIU Pengfei, WANG Jinzhe, TIAN Yanliang, WANG Qian. Influences of lithology and structure of the vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 52-62. doi: 10.16030/j.cnki.issn.1000-3665.202202055
Citation: CUI Haohao, ZHANG Guanghui, LIU Pengfei, WANG Jinzhe, TIAN Yanliang, WANG Qian. Influences of lithology and structure of the vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 52-62. doi: 10.16030/j.cnki.issn.1000-3665.202202055

包气带岩性结构对地下水生态功能影响特征

  • 基金项目: 国家重点研发计划项目(2017YFC0406106);国家自然科学青年基金项目(41807217)
详细信息
    作者简介: 崔浩浩(1985-),男,助理研究员,博士研究生,从事水文地质工程地质研究。E-mail:cuihao924@126.com
    通讯作者: 王茜(1987-),女,助理研究员,博士,主要从事生态水文学研究。E-mail:wqianqian@mail.cgs.gov.cn
  • 中图分类号: P641.2

Influences of lithology and structure of the vadose zone on groundwater ecological function

More Information
  • 西北内陆流域下游区天然植被对地下水生态功能具有强烈依赖性,而包气带岩性结构对地下水生态功能具有明显影响,但是在目前的研究中,缺乏定量分析评判。以甘肃石羊河流域下游天然绿洲区为研究区,基于包气带岩性结构野外调查、室内土柱试验和Hydrus1-D数值模拟,研究包气带岩性结构与地下水耦合作用的生态效应,分析不同岩性结构包气带获取地下水供给水分和持水能力差异,定量对比不同包气带岩性结构对地下水生态功能影响特征,得到以下认识:(1)在地下水水位埋深增大和减小的情况下,不同包气带岩性结构对地下水生态功能影响不同;(2)当地下水水位埋深逐渐减小时,在相同植被条件下,包气带岩性颗粒越细,其支持毛细水上升高度和速度越大,土壤获得地下水的补给水分越快越多,对地表植被的生长越有利;(3)当地下水水位埋深大幅增大后,旱区包气带的有效持水量具有继续维持陆表植被存活的生态效应,中等岩性颗粒的有效持水量最大,对维持植被的生态效应最明显。与单一岩性相比,多种岩性的组合结构有效持水量较大,生态效应更强。研究结果加深了对包气带在地下水生态功能中调节作用的认识,可以为旱区水资源的精细化管理及生态保护提供科学依据。

  • 加载中
  • 图 1  旱区地下水生态功能维系天然植被生态机理简图

    Figure 1. 

    图 2  石羊河流域地形及研究区图

    Figure 2. 

    图 3  包气带岩性结构分布特征剖面图

    Figure 3. 

    图 4  验证试验(土柱)装置示意图

    Figure 4. 

    图 5  释水后包气带含水率减降变化特征

    Figure 5. 

    图 6  土柱剖面各监测点土壤含水率模拟值与实测值

    Figure 6. 

    图 7  不同岩性土壤水分特征曲线

    Figure 7. 

    图 8  不同岩性包气带获取地下水供给水分能力差异

    Figure 8. 

    图 9  不同岩性包气带持水能力差异

    Figure 9. 

    图 10  不同结构包气带获取地下水供给水分能力差异

    Figure 10. 

    图 11  不同结构包气带持水能力差异

    Figure 11. 

    图 12  天然植被区地下水水位埋深动态变化规律

    Figure 12. 

    表 1  模拟模型岩性确定依据

    Table 1.  Lithology of the simulation model

    岩性厚度
    /cm
    不同岩性粒径占比/%干容重
    /(g·cm−3
    0.05~2 mm0.002~0.05
    mm
    < 0.002 mm
    亚砂土4075.722.02.31.35
    亚黏土4046.051.62.41.44
    粉细砂2086.211.91.91.51
    细 砂50> 0.075 mm,占比85.7%;≤ 0.075 mm,占比14.3%1.60
    下载: 导出CSV

    表 2  校正识别后不同岩性土壤水力特性参数

    Table 2.  Corrected hydraulic characteristic parameters of different lithology soils

    岩性残余含水率/%饱和含水率/%进气值倒数形状系数饱和渗透系数/(cm·d−1凋萎含水率/%
    亚砂土3.0735.990.02391.52117.334.62
    亚黏土5.3534.270.0051.4647.859.32
    粉细砂1.7937.910.0451.55305.672.79
    细 砂1.44350.0751.5642.982.44
    下载: 导出CSV

    表 3  释水50 d后不同岩性包气带有效持水量

    Table 3.  Effective water holding capacity in the vadose zone of different lithologies after 50 days of water release /cm

    岩性亚黏土亚砂土粉细砂细砂
    土壤凋萎含水量46.6023.1013.9512.20
    土壤持水量113.0092.7877.8766.67
    土壤有效持水量66.4069.6863.9254.47
    注:土壤凋萎含水量=包气带厚度×凋萎含水率;土壤有效持水量=土壤持水量-土壤凋萎含水量。
    下载: 导出CSV

    表 4  释水50 d后不同结构包气带有效持水量

    Table 4.  Effective water holding capacity in the vadose zone of different structures after 50 days of water release /cm

    岩性结构上粗
    下细
    上细
    下粗
    细粒
    夹层
    粗粒
    夹层
    土壤凋萎含水量29.4029.4019.0839.72
    土壤持水量86.14102.9781.24114.68
    土壤有效持水量56.7473.5762.1674.96
    注:土壤凋萎含水量=包气带厚度×凋萎含水率;土壤有效持水量=土壤持水量-土壤凋萎含水量。
    下载: 导出CSV
  • [1]

    孙自永,王俊友,葛孟琰,等. 基于水稳定同位素的地下水型陆地植被识别:研究进展、面临挑战及未来研究展望[J]. 地质科技情报,2020,39(1):11 − 20. [SUN Ziyong,WANG Junyou,GE Mengyan,et al. Isotopic approaches to identify groundwater dependent terrestrial vegetation:Progress,challenges,and prospects for future research[J]. Geological Science and Technology Information,2020,39(1):11 − 20. (in Chinese with English abstract) doi: 10.19509/j.cnki.dzkq.2020.0102

    [2]

    王文科,宫程程,张在勇,等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展,2018,33(7):702 − 718. [WANG Wenke,GONG Chengcheng,ZHANG Zaiyong,et al. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science,2018,33(7):702 − 718. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2018.07.0702

    [3]

    武选民, 史生胜, 黎志恒, 等. 西北黑河下游额济纳盆地地下水系统研究(上)[J]. 水文地质工程地质, 2002, 29(1): 16 − 20. [WU Xuanmin, SHI Shengsheng, LI Zhiheng, et al. The study on the groundwater flow system of Ejina Basin in lower reaches of the Heihe River in Northwest China[J]. Hydrogeology & Engineering Geology, 2002, 29(1): 16 − 20. (in Chinese with English abstract)

    [4]

    凤蔚,李文鹏,邵新民,等. 黑河流域中游盆地地下水动态特征及其调蓄能力分析[J]. 水文地质工程地质,2022,49(3):11 − 21. [FENG Wei,LI Wenpeng,SHAO Xinmin,et al. Research on the dynamic characteristics of groundwater and regulation capability of aquifers in the intermediate section of Heihe River Basin[J]. Hydrogeology & Engineering Geology,2022,49(3):11 − 21. (in Chinese with English abstract)

    [5]

    LIU M,NIE Z L,CAO L,et al. Comprehensive evaluation on the ecological function of groundwater in the Shiyang River watershed[J]. Journal of Groundwater Science and Engineering,2021,9(4):326 − 340.

    [6]

    HUANG F,ZHANG Y,ZHANG D,et al. Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions:A review[J]. International Journal of Environmental Research and Public Health,2019,16:763.

    [7]

    王金哲,张光辉,王茜,等. 西北干旱区地下水生态功能评价指标体系构建与应用[J]. 地质学报,2021,95(5):1573 − 1581. [WANG Jinzhe,ZHANG Guanghui,WANG Qian,et al. Construction and application of evaluation index system of groundwater ecological function in northwest arid area[J]. Acta Geologica Sinica,2021,95(5):1573 − 1581. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5717.2021.05.018

    [8]

    崔浩浩,张冰,冯欣,等. 不同土体构型土壤的持水性能[J]. 干旱地区农业研究,2016,34(4):1 − 5. [CUI Haohao,ZHANG Bing,FENG Xin,et al. Soil water-holding properties of different soil body configuration[J]. Agricultural Research in the Arid Areas,2016,34(4):1 − 5. (in Chinese with English abstract) doi: 10.7606/j.issn.1000-7601.2016.04.01

    [9]

    葛建,黄德文,高旭,等. 分层土壤的持水性能研究[J]. 西南农业学报,2019,32(9):2126 − 2132. [GE Jian,HUANG Dewen,GAO Xu,et al. Water retention capacity of drained soil columns with grained layers[J]. Southwest China Journal of Agricultural Sciences,2019,32(9):2126 − 2132. (in Chinese with English abstract)

    [10]

    贾利民,郭中小,龙胤慧,等. 干旱区地下水生态水位研究进展[J]. 生态科学,2015,34(2):187 − 193. [JIA Limin,GUO Zhongxiao,LONG Yinhui,et al. Research advances in ecological groundwater level in arid areas[J]. Ecological Science,2015,34(2):187 − 193. (in Chinese with English abstract) doi: 10.14108/j.cnki.1008-8873.2015.02.028

    [11]

    赵文智,周宏,刘鹄. 干早区包气带土壤水分运移及其对地下水补给研究进展[J]. 地球科学进展,2017,32(9):908 − 918. [ZHAO Wenzhi,ZHOU Hong,LIU Hu. Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics[J]. Advances in Earth Science,2017,32(9):908 − 918. (in Chinese with English abstract) doi: 10.11867/j.issn.1001-8166.2017.09.0899

    [12]

    乔晓英,王文科,姜桂华,等. 西北干旱内陆盆地地下水生态功能的探讨[J]. 水资源保护,2005(5):6 − 10. [QIAO Xiaoying,WANG Wenke,JIANG Guihua,et al. Study on ecological function of groundwater in northwest arid inland basin[J]. Water Resources Protection,2005(5):6 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-6933.2005.05.002

    [13]

    陶正平,黄金廷,崔旭东. 鄂尔多斯盆地北部风积沙覆基岩型包气带结构的生态意义[J]. 地下水,2007(6):54 − 55. [TAO Zhengping,HUANG Jinting,CUI Xudong. The Eco-significance of the Sand-sandrock Vadose Zone Structure in the North of the Erdos Basin[J]. Groundwater,2007(6):54 − 55. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-1184.2007.06.017

    [14]

    陈敏建,张秋霞,汪勇,等. 西辽河平原地下水补给植被的临界埋深[J]. 水科学进展,2019,30(1):24 − 33. [CHEN Minjian,ZHANG Qiuxia,WANG Yong,et al. Critical depth of recharge of the vegetation by groundwater in the West Liaohe Plain[J]. Advances in Water Science,2019,30(1):24 − 33. (in Chinese with English abstract) doi: 10.14042/j.cnki.32.1309.2019.01.003

    [15]

    周宏. 干旱区包气带土壤水分运移能量关系及驱动力研究评述[J]. 生态学报,2019,39(18):6586 − 6597. [ZHOU Hong. Review of studies on the relationship between soil water movement and energyand their driving forces in the vadose zone of arid regions[J]. Acta Ecologica Sinica,2019,39(18):6586 − 6597. (in Chinese with English abstract)

    [16]

    钱鞠, 常娟, 马海燕, 等. 民勤县水资源综合规划报告[R]. 兰州: 兰州大学, 2013

    QIAN Ju, CHANG Juan, MA Haiyan, et al. Comprehensive water resources planning of Minqin County[R]. Lanzhou: Lanzhou University, 2013. (in Chinese)

    [17]

    HUANG F,OCHOA C G,CHEN X,et al. Modeling oasis dynamics driven by ecological water diversion and implications for oasis restoration in arid endorheic basins[J]. Journal of Hydrology ,2021,593:125774.

    [18]

    曹乐,聂振龙,刘敏,等. 民勤绿洲天然植被生长与地下水埋深变化关系[J]. 水文地质工程地质,2020,47(3):25 − 33. [CAO Le,NIE Zhenlong,LIU Min,et al. Changes in natural vegetation growth and groundwater depth and their relationship in the Minqin oasis in the Shiyang River Basin[J]. Hydrogeology & Engineering Geology,2020,47(3):25 − 33. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201907010

    [19]

    王金哲, 张光辉, 严明疆, 等. 干旱区地下水功能评价与区划体系指标权重解析[J]. 农业工程学报. 2020, 36(22): 133 − 143

    WANG Jinzhe, ZHANG Guanghui, YAN Mingjiang, et al. Index weight analysis of groundwater function evaluation and zoning system in arid areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 133 − 143. (in Chinese with English abstract)

    [20]

    王金哲, 张光辉, 崔浩浩, 等. 适宜西北内陆区地下水功能区划的体系指标属性与应用[J]. 水利学报. 2020, 51(7): 796 − 804

    WANG Jinzhe, ZHANG Guanghui, CUI Haohao, et al. System index attribute and application of groundwater function zoning in northwest inland area of China[J]. Journal of Hydraulic Engineering, 2020, 51(7): 796 − 804. (in Chinese with English abstract)

    [21]

    王国帅,史海滨,李仙岳,等. 基于HYDRUS-1D模型的荒漠绿洲水盐运移模拟与评估[J]. 农业工程学报,2021,37(8):87 − 98. [WANG Guoshuai,SHI Haibin,LI Xianyue,et al. Simulation and evaluation of soil water and salt transport in desert oases of Hetao Irrigation District using HYDRUS-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(8):87 − 98. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.08.010

    [22]

    钟韵,费良军,傅渝亮,等. 多因素影响下土壤上升毛管水运动特性HYDRUS模拟及验证[J]. 农业工程学报,2018,34(5):83 − 89. [ZHONG Yun,FEI Liangjun,FU Yuliang,et al. HYDRUS simulation and verification of movement characteristics of upward capillary water flow in soil as affected by multi-factor[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(5):83 − 89. (in Chinese with English abstract)

    [23]

    乔照华. 土壤凋萎系数的影响因素研究[J]. 水资源与水工程学报,2008(2):82 − 84. [QIAO Zhaohua. Study on the influence factors of wilting point[J]. Journal of Water Resources and Water engineering,2008(2):82 − 84. (in Chinese with English abstract)

    [24]

    TA SAN S,DEMIR Y. Comparative Analysis of MLR,ANN,and ANFIS Models for Prediction of Field Capacity and Permanent Wilting Point for Bafra Plain Soils[J]. Communications in Soil Science and Plant Analysis,2020,51:604 − 621.

    [25]

    OSTOVARI Y,ASGARI K,CORNELIS W. Performance evaluation of pedotransfer functions to predict field capacity and perma-nent wilting point using UNSODA and HYPRES Dataset[J]. Arid Land Research and Management,2015,29:383 − 398.

    [26]

    王鑫,肖武,刘慧芳,等. 锡林浩特矿区土壤水分特征曲线和有效含水量预测[J]. 煤炭科学技术,2020,48(4):169 − 177. [WANG Xin,XIAO Wu,LIU Huifang,et al. Soil moisture characteristic curve and prediction of available water content of overburden in Xilinhot Mining Area[J]. Coal Science and Technology,2020,48(4):169 − 177. (in Chinese with English abstract) doi: 10.13199/j.cnki.cst.2020.04.018

    [27]

    WIECHETECK L H,GIAROLA N F B,DE LIMA R P,et al. Comparing the classical permanent wilting point concept of soil (−15,000 hPa) to biological wilting of wheat and barley plants under contrasting soil textures[J]. Agricultural Water Management,2020,230:105965.

    [28]

    白致威,段兴武,丁剑宏,等. 土壤有效含水量的经验估算模型—以黑土为例[J]. 中国农学通报,2015,31(20):153 − 159. [BAI Zhiwei,DUAN Xingwu,DING Jianhong,et al. Experience estimation model of soil available water-holding capacity:A case study of black soil[J]. Chinese Agricultural Science Bulletin,2015,31(20):153 − 159. (in Chinese with English abstract) doi: 10.11924/j.issn.1000-6850.casb15030063

    [29]

    CUI H,ZHANG G,WANG J,et al. Influence of multi-layered structure of vadose zone on ecological effect of groundwater in arid area:A case study of Shiyang River Basin,Northwest China[J]. Water,2022,14:59.

    [30]

    张阳阳,陈喜,高满,等. 内陆干旱区典型旱生植物蒸腾耗水量模拟研究[J]. 生态学报,2021,41(19):7751 − 7762. [ZHANG Yangyang,CHEN Xi,GAO Man,et al. Simulation of transpiration for typical xeromorphic plants in inland arid region of Northwestern China[J]. Acta Ecologica Sinica,2021,41(19):7751 − 7762. (in Chinese with English abstract)

    [31]

    张阳阳,陈喜,高满,等. 基于元数据分析的西北干旱区生态地下水水位埋深及其影响因素[J]. 南水北调与水利科技,2020,18(5):57 − 65. [ZHANG Yangyang,CHEN Xi,GAO Man,et al. Meta-analysis of ecological depth to groundwater table and its influencing factors in aird region of northwest China[J]. South-to-North Water Transfers and Water Science & Technology,2020,18(5):57 − 65. (in Chinese with English abstract)

    [32]

    邵明安, 王全九, 黄明斌. 土壤物理学[M]. 北京: 高等教育出版社, 2006

    SHAO Mingan, WANG Quanjiu, HUANG Mingbin. Soil physics[M]. Beijing: Higher Education Press, 2006. (in Chinese)

    [33]

    史文娟,沈冰,汪志荣,等. 层状土壤毛管水最大上升高度分析[J]. 干旱地区农业研究,2007,25(1):94 − 97. [SHI Wenjuan,SHEN Bing,WANG Zhirong,et al. Maximum height of upward capillary water movement in layered soil[J]. Agricultural Research in the Arid Areas,2007,25(1):94 − 97. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-7601.2007.01.019

  • 加载中

(12)

(4)

计量
  • 文章访问数:  1015
  • PDF下载数:  39
  • 施引文献:  0
出版历程
收稿日期:  2022-02-15
修回日期:  2022-03-17
刊出日期:  2022-09-15

目录