Research on regional evapotranspiration in the Zhangcheng area based on the SEBS model
-
摘要:
张家口承德地区是京津冀城市群生态安全的重要屏障,针对该地区长时间序列实际蒸散的时空变化研究较少,以张家口承德地区为研究区,基于表面能量平衡模型(SEBS)结合MODIS和GLDAS数据反演了研究区2001年1月—2020年12月逐月的蒸散量,将反演结果与MOD16A2数据在趋势上进行了对比,并用2021年7月的野外实测数据在像元尺度上对其进行验证,利用Sen+MannKendall显著性检验方法对其时空趋势变化进行了分析,用相关性分析研究了其影响因素。结果表明:模型蒸散量反演结果与MOD16A2数据在月尺度上相关性良好,与野外实测数据的相对误差小于15%,具有较高的可靠性;研究区的年蒸散量在20 a间呈现波动上升趋势,最大值为2013年的545 mm,最小值为2002年的348 mm,且承德地区的蒸散量明显高于张家口地区;20 a间研究区75.41%的区域蒸散量基本稳定不变,5.13%的区域蒸散量增加,1.11%的区域蒸散量显著降低,18.35%的区域蒸散量轻微降低;气温、植被对蒸散量的影响具有显著的正相关性,不同土地用地类型下蒸散量由高到低的顺序为:林地>水体>草地>耕地>建设用地>未利用土地。
-
关键词:
- SEBS模型 /
- 蒸散发 /
- Sen+MannKendall显著性检验 /
- 张家口承德地区 /
- 相关性分析
Abstract:Evapotranspiration (ET) is the main process of water and energy conversion in the hydrosphere, atmosphere and biosphere. Accurately estimation of ET is of great significance in ecological environment protection. The city of Chengde and Zhangjiakou, taken as the study area, is an important barrier for the ecological security of the Beijing-Tianjin-Hebei urban areas. There have been fewer studies of actual evapotranspiration for long-term sequences in the region. In this paper, the monthly actual ET in the study area from January, 2001 to December, 2020 is simulated based on the SEBS model using MODIS and GLDAS data. The SEBS results are compared with the MOD16A2 data in trend, and the field measurements on July 2021 are also used for validation at the pixel scale. The method of Sen+MannKendall test is used to analyze the temporal and spatial trend changes, and the correlation analysis was used to discuss the influencing factors on ET change. The results show that the monthly SEBS ET has a good correlation with the mod16A2 data, and the relative error with the field measurement is less than 15%. Therefore, the reliability of the SEBS result is validated to be relatively high. The actual ET of the study area has shown a fluctuating upward trend in the past 20 years. The maximum value of ET appeared in 2013 with the value of 545 mm, and the minimum value was 348 mm in 2002; and the evapotranspiration in Chengde was significantly higher than that in Zhangjiakou; In the past 20 years, the ET of 75.41% of the study area was basically stable, 5.13% of the area increased, 1.11% of the region was significantly decreased and 18.35% of the area was slightly decreased. The temperature and vegetation change have a significant positive correlation with evapotranspiration variation. The ET of different land use types is: forest land>water>grass land>arable land>construction land>unused land.
-
Key words:
- SEBS /
- evapotranspiration (ET) /
- Sen+MannKendall test /
- Zhangjiakou-Chengde /
- correlation analysis
-
-
表 1 3个野外蒸发试验日蒸散发结果统计
Table 1. Statistics of daily evapotranspiration results of three field evaporation tests
地点 A筒 B筒 平均值/mm 反演值/mm 误差/mm 相对误差/% 最大值/mm 最小值/mm 最大值/mm 最小值/mm 王家楼 5.64 1.64 4.52 1.35 2.70 2.4 0.30 11.11 石庄屯 4.56 0.99 3.99 0.92 2.08 2.2 0.12 5.77 姚家庄 5.53 1.21 4.46 1.12 2.86 2.5 0.36 12.59 表 2 研究区蒸散量变化趋势分类标准
Table 2. Classification criteria for the trend of evapotranspiration in the study area
类型 |Z|>1.96 |Z|≤1.96 β>10 显著增长 轻微增长 0≤β≤10 基本不变 β<0 显著降低 轻微降低 表 3 研究区蒸散发空间变化趋势面积统计
Table 3. Area statistics of evapotranspiration spatial change trend in the study area
类别 面积/km2 占比/% 显著降低 842.91 1.11 轻微降低 13991.36 18.35 基本稳定 57498.81 75.41 轻微增长 7.36 0.01 显著增长 3901.95 5.12 表 4 张承地区2000—2020年不同土地利用类型的面积以及年均蒸散量统计
Table 4. Area statistics of different land use types from 2000 to 2020 and average annual evapotranspiration statistics of different land use types in the ZhangCheng area
地类 土地利用类型的统计面积/ km² 变化量/km² 年均蒸散量/mm 2000年 2005年 2010年 2015年 2020年 耕地 25729.5 25776.2 25143.9 25091.2 24734.7 −994.8 395.8 林地 26612.1 26623.0 26992.3 26938.1 26935.3 323.2 554.5 草地 20389.4 20312.5 20060.4 19941.2 19983.5 −405.9 483.2 水体 1099.7 1071.2 952.1 963.8 1046.2 −53.5 488.3 建筑用地 1118.8 1160.4 2180.3 2392.8 2641.2 1522.4 356.4 未利用地 1327.4 1335.0 949.5 950.2 935.9 −391.5 253.3 -
[1] PENMAN Howard Latimer. Natural evaporation from open water,bare soil and grass[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences,1948,193(1032):120 − 145.
[2] SEGUIN B,ITIER B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data[J]. International Journal of Remote Sensing,1983,4(2):371 − 383. doi: 10.1080/01431168308948554
[3] 高彦春,龙笛. 遥感蒸散发模型研究进展[J]. 遥感学报,2008,12(3):515 − 528. [GAO Yanchun,LONG Di. Progress in models for evapotranspiration estimation using remotely sensed data[J]. Journal of Remote Sensing,2008,12(3):515 − 528. (in Chinese with English abstract) doi: 10.11834/jrs.20080369
[4] 尹剑,欧照凡,付强,等. 区域尺度蒸散发遥感估算:反演与数据同化研究进展[J]. 地理科学,2018,38(3):448 − 456. [YIN Jian,OU Zhaofan,FU Qiang,et al. Review of current methodologies for regional evapotranspiration estimation:Inversion and data assimilation[J]. Scientia Geographica Sinica,2018,38(3):448 − 456. (in Chinese with English abstract)
[5] SU Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and Earth System Sciences,2002,6(1):85 − 100. doi: 10.5194/hess-6-85-2002
[6] SU Z. Remote sensing of land use and vegetation for mesoscale hydrological studies[J]. International Journal of Remote Sensing,2000,21(2):213 − 233. doi: 10.1080/014311600210803
[7] 郑倩倩,代鹏超,张金燕,等. 基于SEBS模型的精河流域蒸散发研究[J]. 干旱区研究,2020,37(6):1378 − 1387. [ZHENG Qianqian,DAI Pengchao,ZHANG Jinyan,et al. Evapotranspiration in the Jinghe River Basin based on the surface energy balance system[J]. Arid Zone Research,2020,37(6):1378 − 1387. (in Chinese with English abstract) doi: 10.13866/j.azr.2020.06.02
[8] 朱晓倩,金晓媚,张绪财,等. 格尔木河流域山前平原区蒸散量的分布特征[J]. 水文地质工程地质,2019,46(5):55 − 64. [ZHU Xiaoqian,JIN Xiaomei,ZHANG Xucai,et al. Distribution characteristics of evapotranspiration in the valley piedmont plain of the Golmud River Basin[J]. Hydrogeology & Engineering Geology,2019,46(5):55 − 64. (in Chinese with English abstract)
[9] 薛阳,金晓媚,朱晓倩. 宁夏沿黄经济区蒸散量变化特征及水均衡方法验证[J]. 水文地质工程地质,2017,44(3):27 − 32. [XUE Yang,JIN Xiaomei,ZHU Xiaoqian. Variation of evapotranspiration of Ningxia Yellow River economic zone and the validation using water budget method[J]. Hydrogeology & Engineering Geology,2017,44(3):27 − 32. (in Chinese with English abstract)
[10] 金晓媚,万力,梁继运. 水均衡法验证蒸散量计算的可靠性:以张掖盆地为例[J]. 现代地质,2008,22(2):299 − 303. [JIN Xiaomei,WAN Li,LIANG Jiyun. Accuracy verification of evapotranspiration result using hydrological budget method—A case study of the Zhangye Basin[J]. Geoscience,2008,22(2):299 − 303. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2008.02.018
[11] 张圆,贾贞贞,刘绍民,等. 遥感估算地表蒸散发真实性检验研究进展[J]. 遥感学报,2020,24(8):975 − 999. [ZHANG Yuan,JIA Zhenzhen,LIU Shaomin,et al. Advances in validation of remotely sensed land surface evapotranspiration[J]. Journal of Remote Sensing,2020,24(8):975 − 999. (in Chinese with English abstract)
[12] 于占江. 气候变化对京津冀水资源的影响及对策[D]. 南京: 南京信息工程大学, 2019
YU Zhanjiang. Impacts of climate change on water resources in jing-Jin-ji region and countermeasures[D]. Nanjing: Nanjing University of Information Science & Technology, 2019. (in Chinese with English abstract)
[13] 石嘉丽,张晓龙,李红军,等. 河北坝上地区绿水时空变化及其驱动因素研究[J]. 中国生态农业学报(中英文),2021,29(6):1030 − 1041. [SHI Jiali,ZHANG Xiaolong,LI Hongjun,et al. Spatial-temporal changes in green water and its driving factors in the Bashang area of Hebei Province[J]. Chinese Journal of Eco-Agriculture,2021,29(6):1030 − 1041. (in Chinese with English abstract)
[14] 王佃来,刘文萍,黄心渊. 基于Sen+Mann-Kendall的北京植被变化趋势分析[J]. 计算机工程与应用,2013,49(5):13 − 17. [WANG Dianlai,LIU Wenping,HUANG Xinyuan. Trend analysis in vegetation cover in Beijing based on Sen+Mann-Kendall method[J]. Computer Engineering and Applications,2013,49(5):13 − 17. (in Chinese with English abstract) doi: 10.3778/j.issn.1002-8331.1206-0282
[15] HELSEL Dennis R,FRANS Lonna M. Regional Kendall test for trend[J]. Environmental Science & Technology,2006,40(13):4066 − 4073.
[16] LIBISELLER Claudia,GRIMVALL Anders. Performance of partial Mann-Kendall tests for trend detection in the presence of covariates[J]. Environmetrics,2002,13(1):71 − 84. doi: 10.1002/env.507
[17] YUE Sheng,PILON Paul,PHINNEY Bob,et al. The influence of autocorrelation on the ability to detect trend in hydrological series[J]. Hydrological Processes,2002,16(9):1807 − 1829. doi: 10.1002/hyp.1095
[18] 严丽坤. 相关系数与偏相关系数在相关分析中的应用[J]. 云南财贸学院学报,2003,19(3):78 − 80. [YAN Likun. Application of correlation coefficient and biased correlation coefficient in related analysis[J]. Journal of Yunnan Finance and Trade Institute,2003,19(3):78 − 80. (in Chinese with English abstract)
[19] 肖荣波,欧阳志云,李伟峰,等. 城市热岛的生态环境效应[J]. 生态学报,2005,25(8):2055 − 2060. [XIAO Rongbo,OUYANG Zhiyun,LI Weifeng,et al. A review of the eco-environmental consequences of urban heat Islands[J]. Acta Ecologica Sinica,2005,25(8):2055 − 2060. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-0933.2005.08.032
-