A study of the kinematic characteristics and energy conversion of waves generated by granular landslide
-
摘要:
滑坡涌浪灾害造成的伤亡和损失一般远超滑坡灾害本身,已引起广泛关注。针对该类灾害的预测评价一直是研究的难点,精细刻画滑坡涌浪运动特征和能量转化规律是解决问题的关键和前提。因此,以天然碎石模拟散粒体滑坡,建立缩尺的矩形水槽滑坡涌浪三维物理试验模型,研究滑坡体积、速度和水深对堆积体形态和涌浪特征的影响以及滑体与水体能量转化规律。研究结论包括:(1)滑体通过冲击、挤压和抬升水体形成涌浪的特征受滑体规模和形态影响显著;厚度大且速度快的滑体趋向产生非线性过渡波,厚度小且速度低的滑体一般产生非线性震荡波;(2)基于试验提出的体积效应和速度效应揭示了一定水深的涌浪规模与滑坡体积和速度呈正相关规律,水深效应则解释了一定波能的涌浪在波形和速度上的分布差异,结果表明浅水比深水工况涌浪高度平均高出67%、波速平均高出51.17%;(3)基于试验的数值反演总结了滑体势能与波能转化率为1.00%~3.07%,由于三维试验中滑体与水体在水平和环向的扩散造成更多能量耗散,相较二维试验转化率较低。通过探讨散粒体滑坡运动过程和首浪产生、传播及爬高特征,揭示滑体-水体能量转化基本规律,研究成果对滑坡涌浪防灾减灾工作具有一定的理论价值和意义。
Abstract:The consequences of landslide waves are far beyond the landslide itself that has attracted widespread attention. The prediction and evaluation of this kind of disaster has always been difficult, and the precise description of landslide surge motion characteristics and energy conversion law is the key and premise to solve the problem. In this paper, we use gravel to mimic granular landslide and establish a 3D landslide wave model in a rectangular flume, aiming to analyze how the landslide volume, velocity and water depth affect landslide accumulation, wave characteristics and energy conversion. The results show that (1) the waves generated by solid impacting the water are affected by the landslide size and shape. Slides with larger thickness and faster speed tend to produce nonlinear transition wave, and thin and slow slides generally produce nonlinear oscillation wave. (2) The volume effect and velocity effect based on the test reveal that the surge scale of a certain water depth is positively correlated with the landslide volume and velocity. The water depth effect explains the differences of waveform and velocity under a certain wave energy. Statistic results show that under the shallow water conditions, surge height on average is 67% higher and wave speed on average is 51.17% higher than those under the deep water conditions. (3) The conversion rate between landslide energy and wave energy ranges from 1.00% to 3.07%. 3D experiments encounter more energy dissipation due to diffusion and its conversion rate is lower than that in the 2D experiments. This study discusses the kinematic characteristics of granular landslide, first wave generation, propagation and inundation, and proposes the basic law of energy conversion between landslide and water. It id of certain value and significance for landslide wave hazard prevention and mitigation.
-
表 1 W1水位工况下的能量转化率
Table 1. Energy conversion rate at W1 water level
工况 最大总波能/J 滑体势能/J 能量转化率/% K1V1W1 7.32 238.64 3.07 K1V2W1 10.76 364.88 2.95 K1V3W1 10.83 455.81 2.38 K2V1W1 13.04 510.06 2.56 K2V2W1 14.31 759.51 1.88 K2V3W1 9.37 940.57 1.00 K3V1W1 23.97 1179.35 2.03 K3V2W1 23.25 1608.39 1.45 K3V3W1 60.82 2083.75 2.92 -
[1] 黄波林,殷跃平,陈小婷,等. 地质灾害涌浪研究综述[J]. 水文地质工程地质,2014,41(1):112 − 118. [HUANG Bolin,YIN Yueping,CHEN Xiaoting,et al. A review on impulse wave generated by geohazards[J]. Hydrogeology & Engineering Geology,2014,41(1):112 − 118. (in Chinese with English abstract)
HUANG Bolin, YIN Yueping, CHEN Xiaoting, et al. A review on impulse wave generated by geohazards[J]. Hydrogeology & Engineering Geology, 2014, 41(1): 112-118. (in Chinese with English abstract)
[2] 汤明高,吴川,吴辉隆,等. 水库滑坡地下水动态响应规律及浸润线计算模型—以石榴树包滑坡为例[J]. 水文地质工程地质,2022,49(2):115 − 125. [TANG Minggao,WU Chuan,WU Huilong,et al. Dynamic response and phreatic line calculation model of groundwater in a reservoir landslide:Exemplified by the Shiliushubao landslide[J]. Hydrogeology & Engineering Geology,2022,49(2):115 − 125. (in Chinese with English abstract)
TANG Minggao, WU Chuan, WU Huilong, et al. Dynamic response and phreatic line calculation model of groundwater in a reservoir landslide: exemplified by the Shiliushubao landslide[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 115-125. (in Chinese with English abstract)
[3] 黄达,匡希彬,罗世林. 三峡库区藕塘滑坡变形特点及复活机制研究[J]. 水文地质工程地质,2019,46(5):127 − 135. [HUANG Da,KUANG Xibin,LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology,2019,46(5):127 − 135. (in Chinese with English abstract)
HUANG Da, KUANG Xibin, LUO Shilin. A study of the deformation characteristics and reactivation mechanism of the Outang landslide near the Three Gorges Reservoir of China[J]. Hydrogeology & Engineering Geology, 2019, 46(5): 127-135. (in Chinese with English abstract)
[4] 蒋权,陈希良,肖江剑,等. 云南黄坪库区滑坡运动及其失稳模式的离散元模拟[J]. 中国地质灾害与防治学报,2018,29(3):53 − 59. [JIANG Quan,CHEN Xiliang,XIAO Jiangjian,et al. Discrete element numerical simulation and analysis of Yunnan Huangping Reservoir Areas landslide and its failure mode[J]. The Chinese Journal of Geological Hazard and Control,2018,29(3):53 − 59. (in Chinese with English abstract)
JIANG Quan, CHEN Xiliang, XIAO Jiangjian, et al. Discrete element numerical simulation and analysis of Yunnan Huangping Reservoir Areas landslide and its failure mode[J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(3): 53-59. (in Chinese with English abstract)
[5] FRITZ H M, MOHAMMED F, YOO J. Lituya Bay Landslide Impact Generated Mega-Tsunami 50th Anniversary[M]//Tsunami Science Four Years after the 2004 Indian Ocean Tsunami, 2009: 153 − 175.
[6] 殷坤龙,杜娟,汪洋. 清江水布垭库区大堰塘滑坡涌浪分析[J]. 岩土力学,2008,29(12):3266 − 3270. [YIN Kunlong,DU Juan,WANG Yang. Analysis of surge triggered by Dayantang landslide in Shuibuya Reservoir of Qingjiang River[J]. Rock and Soil Mechanics,2008,29(12):3266 − 3270. (in Chinese with English abstract)
YIN Kunlong, DU Juan, WANG Yang. Analysis of surge triggered by Dayantang landslide in Shuibuya Reservoir of Qingjiang River[J]. Rock and Soil Mechanics, 2008, 29(12): 3266-3270. (in Chinese with English abstract)
[7] XIAO L L,WANG J J,WARD S N,et al. Numerical modeling of the June 24,2015,Hongyanzi landslide generated impulse waves in Three Gorges Reservoir,China[J]. Landslides,2018,15(12):2385 − 2398. doi: 10.1007/s10346-018-1057-2
[8] 罗冠枝,高文伟,王国卫,等. 库岸斜坡失稳及其涌浪灾害风险分析[J]. 中国地质灾害与防治学报,2020,31(1):8 − 17. [LUO Guanzhi,GAO Wenwei,WANG Guowei,et al. Risk analysis of surge disaster and slope instability on reservoir bank[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):8 − 17. (in Chinese with English abstract)
LUO Guanzhi, GAO Wenwei, WANG Guowei, et al. Risk analysis of surge disaster and slope instability on reservoir bank[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1): 8-17. (in Chinese with English abstract)
[9] 龙艳梅,宋章,王玉峰,等. 基于物理模型试验的碎屑流流态化运动特征分析[J]. 水文地质工程地质,2022,49(1):126 − 136. [LONG Yanmei,SONG Zhang,WANG Yufeng,et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology,2022,49(1):126 − 136. (in Chinese with English abstract)
LONG Yanmei, SONG Zhang, WANG Yufeng, et al. An analysis of flow-like motion of avalanches based on physical modeling experiments[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 126-136. (in Chinese with English abstract)
[10] KELFOUN K,GIACHETTI T,LABAZUY P. Landslide-generated tsunamis at réunion island[J]. Journal of Geophysical Research,2010,115(F4):F04012.
[11] LØVHOLT F,PEDERSEN G,HARBITZ C B,et al. On the characteristics of landslide tsunamis[J]. Philosophical Transactions of the Royal Society: Mathematical,Physical,and Engineering Sciences,2015,373(2053):20140376.
[12] MA Gangfeng,KIRBY J T,HSU T J,et al. A two-layer granular landslide model for tsunami wave generation:theory and computation[J]. Ocean Modelling,2015,93:40 − 55. doi: 10.1016/j.ocemod.2015.07.012
[13] 肖莉丽. 库岸滑坡涌浪数值模拟研究[D]. 武汉: 中国地质大学, 2015
XIAO Lili. Numerical simulation of landslide generated waves in reservoir[D]. Wuhan: China University of Geosciences, 2015. (in Chinese with English abstract)
[14] WANG Jiajia,WARD S N,XIAO Lili. Numerical modelling of rapid,flow-like landslides across 3-D terrains:a Tsunami Squares approach to El Picacho landslide,El Salvador,September 19,1982[J]. Geophysical Journal International,2015,201(3):1534 − 1544. doi: 10.1093/gji/ggv095
[15] XIAO Lili,WARD S N,WANG Jiajia. Tsunami squares approach to landslide-generated waves:application to Gongjiafang landslide,Three Gorges Reservoir,China[J]. Pure and Applied Geophysics,2015,172(12):3639 − 3654. doi: 10.1007/s00024-015-1045-6
[16] WANG Jiajia,WARD S N,XIAO Lili. Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan[J]. Engineering Geology,2019,256:121 − 137. doi: 10.1016/j.enggeo.2019.04.020
[17] 孙永福,黄波林,赵永波. 基于物理试验的海底滑坡涌浪研究[J]. 水文地质工程地质,2018,45(1):116 − 122. [SUN Yongfu,HUANG Bolin,ZHAO Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology,2018,45(1):116 − 122. (in Chinese with English abstract)
SUN Yongfu, HUANG Bolin, ZHAO Yongbo. A study of the submarine landslide-induced impulse wave based on physical experiments[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 116-122. (in Chinese with English abstract)
[18] FRITZ H M,HAGER W H,MINOR H E. Landslide generated impulse waves[J]. Experiments in Fluids,2003,35(6):505 − 519. doi: 10.1007/s00348-003-0659-0
[19] ATAIE-ASHTIANI B,NIK-KHAH A. Impulsive waves caused by subaerial landslides[J]. Environmental Fluid Mechanics,2008,8(3):263 − 280. doi: 10.1007/s10652-008-9074-7
[20] 殷坤龙,刘艺梁,汪洋,等. 三峡水库库岸滑坡涌浪物理模型试验[J]. 地球科学,2012,37(5):1067 − 1074. [YIN Kunlong,LIU Yiliang,WANG Yang,et al. Physical model experiments of landslide-induced surge in Three Gorges Reservoir[J]. Earth Science,2012,37(5):1067 − 1074. (in Chinese with English abstract)
YIN Kunlong, LIU Yiliang, WANG Yang, et al. Physical model experiments of landslide-induced surge in Three Gorges Reservoir[J]. Earth Science, 2012, 37(5): 1067-1074. (in Chinese with English abstract)
[21] 王梅力,祖福兴,王平义,等. 山区河道型水库滑坡涌浪首浪波能分析[J]. 水运工程,2020(4):79 − 83. [WANG Meili,ZU Fuxing,WANG Pingyi,et al. Study on head wave energy of landslide surge in mountainous river reservoir[J]. Port & Waterway Engineering,2020(4):79 − 83. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4972.2020.04.014
WANG Meili, ZU Fuxing, WANG Pingyi, et al. Study on head wave energy of landslide surge in mountainous river reservoir[J]. Port & Waterway Engineering, 2020(4): 79-83. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4972.2020.04.014
[22] HELLER V,HAGER W H,MINOR H E. Scale effects in subaerial landslide generated impulse waves[J]. Experiments in Fluids,2008,44(5):691 − 703. doi: 10.1007/s00348-007-0427-7
[23] FRITZ H M. Initial phase of landslide-generated impulse waves[D]. Zuerich: Eidgenoessische Technische Hochschule Zuerich, 2002.
[24] NODA E. Water waves generated by landslides[J]. Journal of the Waterways,Harbors and Coastal Engineering Division,1970,96(4):835 − 855. doi: 10.1061/AWHCAR.0000045
[25] LØVHOLT F,GLIMSDAL S,HARBITZ C B,et al. Tsunami hazard and exposure on the global scale[J]. Earth-Science Reviews,2012,110(1/2/3/4):58 − 73.
[26] WARD S N. Landslide tsunami[J]. Journal of Geophysical Research:Solid Earth,2001,106(B6):11201 − 11215. doi: 10.1029/2000JB900450
[27] WARD S N,DAY S. The 1958 lituya bay landslide and tsunami:A tsunami ball approach[J]. Journal of Earthquake and Tsunami,2010,4(4):285 − 319. doi: 10.1142/S1793431110000893
[28] MOHAMMED F,FRITZ H M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides[J]. Journal of Geophysical Research:Oceans,2012,117(C11):3221 − 3221.
[29] HELLER V. Landslide generated impulse waves: prediction of near field characteristics[D]. Southampton, South East England, UK: University of Southampton, 2008.
[30] WATTS P. Tsunami features of solid block underwater landslides[J]. Journal of Waterway,Port,Coastal,and Ocean Engineering,2000,126(3):144 − 152.