基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究

刘凡, 邓亚虹, 慕焕东, 钱法桥. 基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究[J]. 水文地质工程地质, 2023, 50(5): 146-158. doi: 10.16030/j.cnki.issn.1000-3665.202207050
引用本文: 刘凡, 邓亚虹, 慕焕东, 钱法桥. 基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究[J]. 水文地质工程地质, 2023, 50(5): 146-158. doi: 10.16030/j.cnki.issn.1000-3665.202207050
LIU Fan, DENG Yahong, MU Huandong, QIAN Faqiao. A study of the stability evaluation method of rainfall-induced shallow loess landslides based on the Maxent-Sinmap slope model[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 146-158. doi: 10.16030/j.cnki.issn.1000-3665.202207050
Citation: LIU Fan, DENG Yahong, MU Huandong, QIAN Faqiao. A study of the stability evaluation method of rainfall-induced shallow loess landslides based on the Maxent-Sinmap slope model[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 146-158. doi: 10.16030/j.cnki.issn.1000-3665.202207050

基于最大熵-无限边坡模型的降雨诱发浅层黄土滑坡稳定性评价方法研究

  • 基金项目: 陕西省公益性地质调查项目(202101);国家自然科学基金项目(41772275);陕西省教育厅科学研究计划专项项目(20JK0801);陕西省自然科学基础研究计划一般项目(2022JQ-289);
详细信息
    作者简介: 刘凡(1997-),男,博士研究生,主要从事地质灾害防治研究工作。E-mail:2020126091@chd.edu.cn
    通讯作者: 邓亚虹(1978-),男,教授,博士研究生导师,主要从事工程地质与地质灾害防治研究工作。E-mail:dgdyh@chd.edu.cn
  • 中图分类号: P642.22

A study of the stability evaluation method of rainfall-induced shallow loess landslides based on the Maxent-Sinmap slope model

More Information
  • 无限边坡(Sinmap)模型在评价降雨作用下浅层黄土滑坡稳定性时精度较低。针对这一问题,基于最大熵(Maxent)模型对Sinmap模型评价进行改进,构建了最大熵-无限边坡(Maxent-Sinmap)模型,评价降雨作用下区域性浅层降雨型黄土滑坡稳定性。以黄土滑坡高发区的陕西省志丹县为例,利用野外及室内相关工作获取地形、岩土体力学参数及地质灾害等相关数据,通过Maxent模型获取主要环境变量,再根据主要环境变量进行分区,通过Sinmap模型对降雨作用下不同分区的浅层黄土滑坡稳定性进行评价。研究结果表明:基于Maxent模型得到志丹县内滑坡主要受坡度、降雨量、地貌、道路缓冲区及归一化植被覆盖指数等5个指标影响,对历史灾点的贡献率分别为27.1%、20.3%、18.8%、18.7%、6.2%。相较于传统Sinmap模型,该模型不稳定区域灾点密度在小雨、中雨、大雨、暴雨和大暴雨情况下分别提高了17.26%、16.54%、17.39%、14.20%、12.96%。Maxent-Sinmap模型计算结果相较于Sinmap模型计算结果具有更大的稳定区域,且稳定区的扩大区无历史灾点分布。表明该模型具有更高精度及更可靠的结果,可以更好的为区域性浅层降雨型滑坡评价提供科学依据。

  • 加载中
  • 图 1  志丹县历史滑坡分布图

    Figure 1. 

    图 2  志丹县地质灾害易发性评价图

    Figure 2. 

    图 3  模型验证ROC曲线图

    Figure 3. 

    图 4  影响因子贡献率图

    Figure 4. 

    图 5  主要影响因子响应曲线

    Figure 5. 

    图 6  志丹县校准区图

    Figure 6. 

    图 7  分区情况下不同降雨下面积变化

    Figure 7. 

    图 8  分区计算模型地表稳定性指数图

    Figure 8. 

    图 9  未分区情况下不同降雨下面积变化

    Figure 9. 

    图 11  研究区滑坡稳定性评价结果验证

    Figure 11. 

    图 10  未分区计算模型地表稳定性指数图

    Figure 10. 

    图 12  不同降雨条件下稳定区扩大区示意图

    Figure 12. 

    表 1  稳定性分级

    Table 1.  Stability classification

    稳定性级别稳定性指数稳定性
    1SI≥1.5极稳定区
    21.5≥SI>1.25稳定区
    31.25≥SI>1.0基本稳定区
    41.0≥SI>0.5潜在不稳定区
    50.5≥SI>0不稳定区
    6SI=0极不稳定区
    下载: 导出CSV

    表 2  不同降雨量下的T/R参数值

    Table 2.  T/R parameter values under different rainfall

    降雨级别降雨量值/(mm·d−1T/R下限T/R上限
    小雨0.1~9.910003000
    中雨10~24.95731270
    大雨25~49.93441032
    暴雨50~99.9172516
    大暴雨100~20086258
    下载: 导出CSV

    表 3  研究区分区岩土体物理力学参数

    Table 3.  Physical and mechanical parameters of rock and soil mass in the study area

    区域湿度/%黏聚力内摩擦角/(°)土体密度
    /(kg·m−3
    上限下限上限下限
    低降雨黄土丘陵区150.20.425401750
    低降雨土石山区150.280.5431551870
    高降雨黄土丘陵区180.20.430501520
    高降雨土石山区180.280.5431551870
    下载: 导出CSV

    表 4  研究区总区域岩土体物理力学参数

    Table 4.  Physical and mechanical parameters of rock and soil mass in the study area

    区域湿度/%黏聚力内摩擦角/(°)土体密度
    /(kg·m−3
    上限下限上限下限
    研究区160.20.5425551728
    下载: 导出CSV

    表 5  研究区分区计算结果汇总

    Table 5.  Summary of zonal calculation results in the study area

    稳定性等级R=8.6 mmR=15 mmR=25 mmR=50 mmR=100 mm
    面积/km2滑坡数/处面积/km2滑坡数/处面积/km2滑坡数/处面积/km2滑坡数/处面积/km2滑坡数/处
    极稳定2266.3592108.9451917.2391655.7291435.521
    稳定478.946496.943507.827487.620413.113
    基本稳定471.736515.146551.653567.544581.626
    潜在不稳定409.258488.764614.275819.789984.3101
    不稳定56.71171.11288.716142.926243.744
    极不稳定5.316.717.4112.1323.26
    下载: 导出CSV

    表 6  研究区未分区计算结果汇总

    Table 6.  Summary of calculation results without partitions in the study area

    稳定性等级R=8.6mmR=15mmR=25mmR=50mmR=100mm
    面积/km2滑坡数/处面积/km2滑坡数/处面积/km2滑坡数/处面积/km2滑坡数/处面积/km2滑坡数/处
    极稳定2128.4551970.3421782.3351545.8271354.620
    稳定508.146516.74451730476.720392.514
    基本稳定527.839568.947591.654579.745564.326
    潜在不稳定554.670660.476822.1891099.01131361.4141
    不稳定5.818.4211.7323.4651.710
    极不稳定0000000.100.20
    下载: 导出CSV
  • [1]

    刘东生,安芷生,文启忠,等. 中国黄土的地质环境[J]. 科学通报,1978,23(1):1 − 9. [LIU Dongsheng,AN Zhisheng,WEN Qizhong,et al. Geological environment of loess in China[J]. Chinese Science Bulletin,1978,23(1):1 − 9. (in Chinese) doi: 10.1360/csb1978-23-1-1

    LIU Dongsheng, AN Zhisheng, WEN Qizhong, et al. Geological environment of loess in China[J]. Chinese Science Bulletin, 1978, 23(1): 1-9. (in Chinese) doi: 10.1360/csb1978-23-1-1

    [2]

    索安宁,李金朝,王天明,等. 黄土高原流域土地利用变化的水土流失效应[J]. 水利学报,2008,39(7):767 − 772. [SUO Anning,LI Jinchao,WANG Tianming,et al. Effects of land use changes on river basin soil and water loss in loess plateau[J]. Journal of Hydraulic Engineering,2008,39(7):767 − 772. (in Chinese with English abstract) doi: 10.13243/j.cnki.slxb.2008.07.019

    SUO Anning, LI Jinchao, WANG Tianming, et al. Effects of land use changes on river basin soil and water loss in loess plateau[J]. Journal of Hydraulic Engineering, 2008, 39(7): 767-772. (in Chinese with English abstract) doi: 10.13243/j.cnki.slxb.2008.07.019

    [3]

    QIU Haijun, CUI Peng,REGMI A D,et al. Slope height and slope gradient controls on the loess slide size within different slip surfaces[J]. Physical Geography,2017,38(4):303 − 317. doi: 10.1080/02723646.2017.1284581

    [4]

    彭建兵,林鸿州,王启耀,等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报,2014,22(4):684 − 691. [PENG Jianbing,LIN Hungchou,WANG Qiyao,et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology,2014,22(4):684 − 691. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2014.04.014

    PENG Jianbing, LIN Hungchou, WANG Qiyao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684-691. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2014.04.014

    [5]

    陈林万,张晓超,裴向军,等. 降雨诱发直线型黄土填方边坡失稳模型试验[J]. 水文地质工程地质,2021,48(6):151 − 160. [CHEN Linwan,ZHANG Xiaochao,PEI Xiangjun,et al. Model test of the linear loess fill slope instability induced by rainfall[J]. Hydrogeology & Engineering Geology,2021,48(6):151 − 160. (in Chinese with English abstract)

    CHEN Linwan, ZHANG Xiaochao, PEI Xiangjun, et al. Model test of the linear loess fill slope instability induced by rainfall[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 151-160. (in Chinese with English abstract)

    [6]

    刘朋飞. 黄土高原地区环境变迁与地质灾害关系研究——以延安地区滑坡为例[D]. 西安: 长安大学, 2010

    LIU Pengfei. Study on the environmental change and geological disasters of the loess plateau region: Take the landslide of Yan’an as an example[D]. Xi’an: Changan University, 2010. (in Chinese with English abstract)

    [7]

    卢永兴,陈剑,霍志涛,等. 降雨与开挖作用下黄土滑坡失稳过程分析—以关中地区长武县杨厂村老庙滑坡为例[J]. 地质科技通报,2022,41(6):95 − 104. [LU Yongxing,CHEN Jian,HUO Zhitao,et al. Analysis of instability process of the loess landslides under rainfall and excavation actions:A case study of Laomiao landslide at Yangchang Village in Changwu County, Guanzhong area[J]. Bulletin of Geological Science and Technology,2022,41(6):95 − 104. (in Chinese with English abstract)

    [LU Yongxing, CHEN Jian, HUO Zhitao, et al. Analysis of instability process of the loess landslides under rainfall and excavation actions: a case study of Laomiao landslide at Yangchang Village in Changwu County, Guanzhong area[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 95-104.(in Chinese with English abstract)

    [8]

    杨志华,吴瑞安,郭长宝,等. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质,2022,49(2):355 − 368. [YANG Zhihua,WU Ruian,GUO Changbao,et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China,2022,49(2):355 − 368. (in Chinese with English abstract)

    [YANG Zhihua, WU Ruian, GUO Changbao, et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 2022, 49(2): 355-368.(in Chinese with English abstract)

    [9]

    VAN WESTEN C J,VAN ASCH T W J,SOETERS R. Landslide hazard and risk zonation—why is it still so difficult?[J]. Bulletin of Engineering Geology and the Environment,2006,65(2):167 − 184. doi: 10.1007/s10064-005-0023-0

    [10]

    田春山,刘希林,汪佳. 基于CF和Logistic回归模型的广东省地质灾害易发性评价[J]. 水文地质工程地质,2016,43(6):154 − 161. [TIAN Chunshan,LIU Xilin,WANG Jia. Geohazard susceptibility assessment based on CF model and logistic regression models in Guangdong[J]. Hydrogeology & Engineering Geology,2016,43(6):154 − 161. (in Chinese with English abstract)

    TIAN Chunshan, LIU Xilin, WANG Jia. Geohazard susceptibility assessment based on CF model and Logistic Regression models in Guangdong[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 154-161. (in Chinese with English abstract)

    [11]

    AYALEW L,YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains,Central Japan[J]. Geomorphology,2005,65(1/2):15 − 31.

    [12]

    孙长明,马润勇,尚合欣,等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming,MA Runyong,SHANG Hexin,et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract)

    SUN Changming, MA Runyong, SHANG Hexin, et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 173-181. (in Chinese with English abstract)

    [13]

    LEE S,RYU J H,WON J S,et al. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network[J]. Engineering Geology,2004,71(3/4):289 − 302.

    [14]

    PRADHAN B. A comparative study on the predictive ability of the decision tree,support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS[J]. Computers & Geosciences,2013,51:350 − 365.

    [15]

    牛瑞卿,彭令,叶润青,等. 基于粗糙集的支持向量机滑坡易发性评价[J]. 吉林大学学报(地球科学版),2012,42(2):430 − 439. [NIU Ruiqing,PENG Ling,YE Runqing,et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):430 − 439. (in Chinese with English abstract)

    NIU Ruiqing, PENG Ling, YE Runqing, et al. Landslide susceptibility assessment based on rough sets and support vector machine[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2): 430-439. (in Chinese with English abstract)

    [16]

    SAITO H,NAKAYAMA D,MATSUYAMA H. Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence:The Akaishi Mountains,Japan[J]. Geomorphology,2009,109(3/4):108 − 121.

    [17]

    杜国梁,杨志华,袁颖,等. 基于逻辑回归-信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质,2021,48(5):102 − 111. [DU Guoliang,YANG Zhihua,YUAN Ying,et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology,2021,48(5):102 − 111. (in Chinese with English abstract)

    DU Guoliang, YANG Zhihua, YUAN Ying, et al. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 102-111. (in Chinese with English abstract)

    [18]

    兰恒星,周成虎,伍法权,等. GIS支持下的降雨型滑坡危险性空间分析预测[J]. 科学通报,2003,48(5):507 − 512. [LAN Hengxing,ZHOU Chenghu,WU Faquan,et al. Spatial analysis and prediction of rainfall landslide risk based on GIS[J]. Chinese Science Bulletin,2003,48(5):507 − 512. (in Chinese) doi: 10.3321/j.issn:0023-074X.2003.05.021

    LAN Hengxing, ZHOU Chenghu, WU Faquan, et al. Spatial analysis and prediction of rainfall landslide risk based on GIS[J]. Chinese Science Bulletin, 2003, 48(5): 507-512. (in Chinese) doi: 10.3321/j.issn:0023-074X.2003.05.021

    [19]

    武利. 基于SINMAP模型的区域滑坡危险性定量评估及模型验证[J]. 地理与地理信息科学,2012,28(2):35 − 39. [WU Li. A SINMAP-based quantitative assessment and model verification of regional landslide hazard[J]. Geography and Geo-Information Science,2012,28(2):35 − 39. (in Chinese with English abstract)

    WU Li. A SINMAP-based quantitative assessment and model verification of regional landslide hazard[J]. Geography and Geo-Information Science, 2012, 28(2): 35-39. (in Chinese with English abstract)

    [20]

    李艳杰,唐亚明,邓亚虹,等. 降雨型浅层黄土滑坡危险性评价与区划—以山西柳林县为例[J]. 中国地质灾害与防治学报,2022,33(2):105 − 114. [LI Yanjie,TANG Yaming,DENG Yahong,et al. Hazard assessment of shallow loess landslides induced by rainfall:A case study of Liulin County of Shanxi ProvinceFull text replacement[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):105 − 114. (in Chinese with English abstract)

    LI Yanjie, TANG Yaming, DENG Yahong, et al. Hazard assessment of shallow loess landslides induced by rainfall: a case study of Liulin County of Shanxi ProvinceFull text replacement[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 105-114. (in Chinese with English abstract)

    [21]

    HE Jianyin, QIU Haijun, QU Feihang,et al. Prediction of spatiotemporal stability and rainfall threshold of shallow landslides using the TRIGRS and Scoops3D models[J]. CATENA,2021,197:104999. doi: 10.1016/j.catena.2020.104999

    [22]

    吕佼佼,范文,吕远强. 考虑土层深度分布的浅层滑坡危险性评价—以陕西秦巴山区为例[J]. 灾害学,2018,33(2):218 − 223. [LYU Jiaojiao,FAN Wen,LYU Yuanqiang. Hazard assessment of shallow landslide considering soil depth distribution—A case study of qinba mountains in Shaanxi Province[J]. Journal of Catastrophology,2018,33(2):218 − 223. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2018.02.038

    LYU Jiaojiao, FAN Wen, LYU Yuanqiang. Hazard assessment of shallow landslide considering soil depth distribution—a case study of qinba mountains in Shaanxi Province[J]. Journal of Catastrophology, 2018, 33(2): 218-223. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2018.02.038

    [23]

    姚杰,李秀珍,徐瑞池. 降雨条件下拟建川藏铁路典型段潜在滑坡三维稳定性动态识别研究[J]. 防灾减灾工程学报,2021,41(3):422 − 431. [YAO Jie,LI Xiuzhen,XU Ruichi. Dynamic identification of three-dimensional stability of potential landslides in a typical section of the proposed Sichuan-Tibet railway under rainfall conditions[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(3):422 − 431. (in Chinese with English abstract)

    YAO Jie, LI Xiuzhen, XU Ruichi. Dynamic identification of three-dimensional stability of potential landslides in a typical section of the proposed Sichuan-Tibet railway under rainfall conditions[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(3): 422-431. (in Chinese with English abstract)

    [24]

    WEIDNER L,DEPREKEL K,OOMMEN T,et al. Investigating large landslides along a river valley using combined physical,statistical,and hydrologic modeling[J]. Engineering Geology,2019,259:105169. doi: 10.1016/j.enggeo.2019.105169

    [25]

    PACK R T, TARBOTON D G, GOODWIN C N. The SINMAP approach to terrain stability mapping. Proceedings of the 8th congress of the International Association of Engineering Geology. Netherlands: A Balkema Publisher, 1998. 1157-1165.

    [26]

    武利,张万昌,张东,等. 基于遥感与地理信息系统的分布式斜坡稳定性定量评估模型[J]. 地理科学,2004,24(4):458 − 464. [WU Li,ZHANG Wanchang,ZHANG Dong,et al. Remote sensing & GIS-based distributed hillslope stability:quantitative evaluation model[J]. Scientia Geographica Sinica,2004,24(4):458 − 464. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0690.2004.04.012

    WU Li, ZHANG Wanchang, ZHANG Dong, et al. Remote sensing & GIS-based distributed hillslope stability: quantitative evaluation model[J]. Scientia Geographica Sinica, 2004, 24(4): 458-464. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0690.2004.04.012

    [27]

    康超,谌文武,张帆宇. 基于DEM的分布式斜坡稳定性模型在黄土沟壑区浅层滑坡中的应用[J]. 中南大学学报(自然科学版),2010,41(5):1987 − 1992. [KANG Chao,CHEN Wenwu,ZHANG Fanyu. Application of distributed hillslope stability model based on DEM to stability of shallow landslide of the loess gully area[J]. Journal of Central South University (Science and Technology),2010,41(5):1987 − 1992. (in Chinese with English abstract)

    KANG Chao, CHEN Wenwu, ZHANG Fanyu. Application of distributed hillslope stability model based on DEM to stability of shallow landslide of the loess gully area[J]. Journal of Central South University (Science and Technology), 2010, 41(5): 1987-1992. (in Chinese with English abstract)

    [28]

    麦鉴锋,冼宇阳,刘桂林. 气候变化情景下广东省降雨诱发型滑坡灾害潜在分布及预测[J]. 地球信息科学学报,2021,23(11):2042 − 2054. [MAI Jianfeng,XIAN Yuyang,LIU Guilin. Predicting potential rainfall-triggered landslides sites in Guangdong Province(China)using MaxEnt model under climate changes scenarios[J]. Journal of Geo-Information Science,2021,23(11):2042 − 2054. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2021.210182

    MAI Jianfeng, XIAN Yuyang, LIU Guilin. Predicting potential rainfall-triggered landslides sites in Guangdong Province(China)using MaxEnt model under climate changes scenarios[J]. Journal of Geo-Information Science, 2021, 23(11): 2042-2054. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2021.210182

    [29]

    CHEN W,POURGHASEMI H R,KORNEJADY A,et al. Landslide spatial modeling:introducing new ensembles of ANN,MaxEnt,and SVM machine learning techniques[J]. Geoderma,2017,305:314 − 327. doi: 10.1016/j.geoderma.2017.06.020

    [30]

    万洋,郭捷,马凤山,等. 基于最大熵模型的中尼交通廊道滑坡易发性分析[J]. 中国地质灾害与防治学报,2022,33(2):88 − 95. [WAN Yang,GUO Jie,MA Fengshan,et al. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control,2022,33(2):88 − 95. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.02-11

    WAN Yang, GUO Jie, MA Fengshan, et al. Landslide susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic corridor[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 88-95. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.2022.02-11

    [31]

    PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231 − 259.

    [32]

    YANG Jilin,DONG Jinwei,XIAO Xiangming,et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China[J]. Remote Sensing of Environment,2019,233:111395. doi: 10.1016/j.rse.2019.111395

    [33]

    杨文璐,邱海军,裴艳茜,等. 典型黄土丘陵区浅层黄土滑坡稳定性评价—以延安市志丹县为例[J]. 第四纪研究,2019(2):408 − 419. [YANG Wenlu,QIU Haijun,PEI Yanqian,et al. Evalution of shallow loess landslide stability in typical loess hilly region:a case study of Zhidan County in Yan'an area of Shaanxi Province[J]. Quaternary Sciences,2019(2):408 − 419. (in Chinese with English abstract) doi: 10.11928/j.issn.1001-7410.2019.02.13

    YANG Wenlu, QIU Haijun, PEI Yanqian, et al. Evalution of shallow loess landslide stability in typical loess hilly region: a case study of Zhidan County in Yan'an area of Shaanxi Province[J]. Quaternary Sciences, 2019(2): 408-419. (in Chinese with English abstract) doi: 10.11928/j.issn.1001-7410.2019.02.13

    [34]

    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 降水量等级: GB/T 28592—2012[S]. 北京: 中国标准出版社, 2012

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People’s Republic of China. Grade of precipitation: GB/T 28592—2012[S]. Beijing: Standards Press of China, 2012. (in Chinese)

    [35]

    王丽英,王红梅,郭盈盈,等. 基于不同建模数据的陕西省志丹县滑坡易发性分区[J]. 人民长江,2021,52(12):99 − 106. [WANG Liying,WANG Hongmei,GUO Yingying,et al. Landslide susceptibility mapping based on differentiated modeling data in Zhidan County,Shaanxi Province[J]. Yangtze River,2021,52(12):99 − 106. (in Chinese with English abstract)

    WANG Liying, WANG Hongmei, GUO Yingying, et al. Landslide susceptibility mapping based on differentiated modeling data in Zhidan County, Shaanxi Province[J]. Yangtze River, 2021, 52(12): 99-106. (in Chinese with English abstract)

    [36]

    谢定义, 邢义川. 黄土土力学[M]. 北京: 高等教育出版社, 2016

    XIE Dingyi, XING Yichuan. Soil mechanics for loess soils[M]. Beijing: Higher Education Press, 2016. (in Chinese)

    [37]

    郭靖,骆亚生,郭鸿,等. 不同地区黄土的结构性试验研究[J]. 水土保持通报,2010,30(1):89 − 92. [GUO Jing,LUO Yasheng,GUO Hong,et al. Experimental study on structural characteristics of loess in different regions[J]. Bulletin of Soil and Water Conservation,2010,30(1):89 − 92. (in Chinese with English abstract)

    GUO Jing, LUO Yasheng, GUO Hong, et al. Experimental study on structural characteristics of loess in different regions[J]. Bulletin of Soil and Water Conservation, 2010, 30(1): 89-92. (in Chinese with English abstract)

  • 加载中

(12)

(6)

计量
  • 文章访问数:  1389
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2022-07-29
修回日期:  2022-10-13
录用日期:  2022-10-21
刊出日期:  2023-09-15

目录