广州地区岩质边坡崩塌影响范围计算方法初探

曾启强, 王立朝, 刘伟, 张庆华, 陈凌伟, 楼康明, 刘羊, 樊亚男. 广州地区岩质边坡崩塌影响范围计算方法初探[J]. 水文地质工程地质, 2023, 50(5): 159-168. doi: 10.16030/j.cnki.issn.1000-3665.202208053
引用本文: 曾启强, 王立朝, 刘伟, 张庆华, 陈凌伟, 楼康明, 刘羊, 樊亚男. 广州地区岩质边坡崩塌影响范围计算方法初探[J]. 水文地质工程地质, 2023, 50(5): 159-168. doi: 10.16030/j.cnki.issn.1000-3665.202208053
ZENG Qiqiang, WANG Lichao, LIU Wei, ZHANG Qinghua, CHEN Lingwei, LOU Kangming, LIU Yang, FAN Yanan. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 159-168. doi: 10.16030/j.cnki.issn.1000-3665.202208053
Citation: ZENG Qiqiang, WANG Lichao, LIU Wei, ZHANG Qinghua, CHEN Lingwei, LOU Kangming, LIU Yang, FAN Yanan. Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 159-168. doi: 10.16030/j.cnki.issn.1000-3665.202208053

广州地区岩质边坡崩塌影响范围计算方法初探

  • 基金项目: 广东省重点领域研发计划项目(2020B0101130009);广东省自然资源厅科技项目(GDZRZYKJ2023004);广东省城市感知与监测预警企业重点实验室基金项目(2020B121202019);广州市城市规划勘测设计研究院科技基金项目(RDI2210204140;RDI2210204146)
详细信息
    作者简介: 曾启强(1995-),男,硕士,助理工程师,从事地质灾害调查评价与岩土工程勘察工作。E-mail:zengqiqiang@live.com
    通讯作者: 王立朝(1972-),男,博士,教授级高级工程师,从事地质灾害调查评价与地质灾害形成机理与防治研究。E-mail:wanglichao@mail.cgs.gov.cn
  • 中图分类号: P642.21

Calculation methods of the collapse influence range of a simple rock slope in the Guangzhou area

More Information
  • 边坡危岩体产生的岩质崩塌灾害突发性强、破坏能力强,是一种危害极大的地质灾害。防治边坡危岩体的关键在于划定危岩体的影响范围,准确评估边坡危岩体影响范围,提升边坡危岩体灾害防治能力,降低崩塌威胁,目前亟需完善边坡危岩体影响范围的计算模型。依据广州市危岩体调查成果归纳出常见边坡危岩体的类型和坡形特征,分类建立危岩体影响范围物理几何模型,综合考虑坡面摩擦力、块体碰撞、弹跳、碎裂、接触面覆盖物性质和恢复系数、地形条件、地震等崩塌运动过程的主要影响因素,通过概化运动过程要素建立起直线型、曲线型边坡在不同坡度条件下崩塌影响范围的计算模型,并根据地震力对崩塌体动能的影响求得地震工况下崩塌影响范围的扩大系数。该模型在前人研究基础上进一步归纳出坡形分类形成几何模型,依据运动过程推求出常见工况不同地形条件下边坡危岩体最大影响范围的计算模型,获取坡高、坡度和地表特征后可依据该模型计算得出危岩体影响范围。通过实际案例验证比对,计算结果相对误差较小,且能预留一定的安全距离,可用于常见坡形边坡危岩体影响范围评价,为边坡危岩体防治提供依据。

  • 加载中
  • 图 1  广州市南沙区大井天山石场边坡

    Figure 1. 

    图 2  广州市南沙区芦湾上街63号后侧边坡

    Figure 2. 

    图 3  广州市南沙区大岗镇砂岩质陡坡

    Figure 3. 

    图 4  直线型边坡崩塌块体运动过程概化图

    Figure 4. 

    图 5  地面向边坡方向倾斜运动过程概化图

    Figure 5. 

    图 6  地面向远离边坡方向倾斜运动过程概化图

    Figure 6. 

    图 7  曲线型边坡运动过程概化图

    Figure 7. 

    图 8  曲线型边坡地面向边坡方向倾斜运动过程概化图

    Figure 8. 

    图 9  曲线型边坡地面向远离边坡方向倾斜运动过程概化图

    Figure 9. 

    图 10  大角一路北侧边坡剖面图

    Figure 10. 

    图 11  南沙区进港大道北侧边坡剖面图

    Figure 11. 

    表 1  常见坡面岩块滚动摩擦系数

    Table 1.  Rolling friction coefficients of common slope blocks

    坡面特征滚动摩擦系数
    光滑岩面、混凝土表面0.30~0.60
    软岩面、强风化硬岩面0.40~0.60
    块石堆积坡面0.55~0.70
    密实碎石堆积坡面、硬土坡面、(植被灌木从)发育0.55~0.85
    密实碎石堆积坡面、硬土坡面、植被不发育或少量杂草0.50~0.75
    松散碎石坡面、软土坡面、植被(灌木丛为主)发育0.50~0.85
    软土坡面、植被不发育或少量杂草0.50~0.85
    下载: 导出CSV

    表 2  崩塌防治工程勘察规范推荐岩块恢复系数

    Table 2.  Block springback coefficient recommended by the investigation code of collapse prevention engineering

    碰撞系数地面岩性
    硬岩软岩硬土普通土松土
    ${R}_{{\rm{n}}}$0.40.350.300.260.22
    ${R}_{{\rm{t}}}$0.860.840.810.750.65
    下载: 导出CSV

    表 3  铁道部运输局推荐岩块恢复系数

    Table 3.  Rock springback coefficient recommended by the Transportation Bureau of the Ministry of Railways

    坡面特征${{R} }_{\rm{n} }$
    光滑而坚硬的表面和铺砌面,如人行道或光滑的基岩面0.37~0.42
    多数为基岩和砾岩区的斜面0.33~0.37
    硬土边坡0.30~0.33
    软土边坡0.28~0.30
    坡面特征${{R} }_{\rm{t} }$
    光滑而坚硬的表面和铺砌面,如人行道或光滑的基岩面0.87~0.92
    多数为基岩和无植被覆盖的斜坡0.83~0.87
    多数为有少量植被的斜坡0.82~0.85
    植被覆盖的斜坡和有稀少植被覆盖的土质边坡0.80~0.83
    灌木林覆盖的土质边坡0.78~0.82
    下载: 导出CSV

    表 4  不同计算方法所得影响范围对照表

    Table 4.  Comparison of the influence range obtained with different calculation methods

    边坡名称南沙区大角一路北侧南沙进港大道北侧
    模型计算运动距离/m1.542.32
    模型计算影响范围/m5.523.7
    RocFall模型影响范围/m4.658.9
    实际崩塌体堆积范围/m3.652.6
    下载: 导出CSV
  • [1]

    胡厚田. 崩塌落石研究[J]. 铁道工程学报, 2005, 22(增刊1): 387 − 391

    HU Houtian. Research on the collapse and falling stone[J]. Journal of Railway Engineering Society, 2005, 22(Sup 1): 387 − 391. (in Chinese with English abstract)

    [2]

    刘传正. 中国崩塌滑坡泥石流灾害成因类型[J]. 地质论评,2014,60(4):858 − 868. [LIU Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review,2014,60(4):858 − 868. (in Chinese with English abstract) doi: 10.16509/j.georeview.2014.04.017

    LIU Chuanzheng. Genetic types of landslide and debris flow disasters in China[J]. Geological Review, 2014, 60(4): 858-868. (in Chinese with English abstract) doi: 10.16509/j.georeview.2014.04.017

    [3]

    亚南,王兰生,赵其华,等. 崩塌落石运动学的模拟研究[J]. 地质灾害与环境保护,1996,7(2):25 − 32. [YA Nan,WANG Lansheng,ZHAO Qihua,et al. Simulation study of rockfall kinematics[J]. Journal of Geological Hazards and Enveronment Preservation,1996,7(2):25 − 32. (in Chinese with English abstract)

    YA Nan, WANG Lansheng, ZHAO Qihua, et al. Simulation study of rockfall kinematics[J]. Journal of Geological Hazards and Enveronment Preservation, 1996, 7(2): 25-32. (in Chinese with English abstract)

    [4]

    肖智勇. 高陡边坡崩塌危岩体运动轨迹及冲击能量分析[J]. 路基工程,2021(2):187 − 192. [XIAO Zhiyong. Analysis of movement trajectory and impact energy of dangerous rock mass in high and steep slope collapse[J]. Subgrade Engineering,2021(2):187 − 192. (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202011017

    XIAO Zhiyong. Analysis of movement trajectory and impact energy of dangerous rock mass in high and steep slope collapse[J]. Subgrade Engineering, 2021(2): 187-192. (in Chinese with English abstract) doi: 10.13379/j.issn.1003-8825.202011017

    [5]

    廖俊展. 地质灾害治理设计中崩塌落石的运动特征分析[J]. 山西建筑,2021,47(19):72 − 75. [LIAO Junzhan. Analysis on the motion characteristic of rockfall in the designing about geological disaster treatment[J]. Shanxi Architecture,2021,47(19):72 − 75. (in Chinese with English abstract) doi: 10.13719/j.cnki.1009-6825.2021.19.027

    LIAO Junzhan. Analysis on the motion characteristic of rockfall in the designing about geological disaster treatment[J]. Shanxi Architecture, 2021, 47(19): 72-75. (in Chinese with English abstract) doi: 10.13719/j.cnki.1009-6825.2021.19.027

    [6]

    王伟才. 崩塌落石运动特征评判及量化分析[J]. 西部探矿工程,2021,33(8):15 − 18. [WANG Weicai. Evaluation and quantitative analysis of the characteristics of rockfall movement[J]. West-China Exploration Engineering,2021,33(8):15 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-5716.2021.08.005

    WANG Weicai. Evaluation and quantitative analysis of the characteristics of rockfall movement[J]. West-China Exploration Engineering, 2021, 33(8): 15-18. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-5716.2021.08.005

    [7]

    李娟,何亮,荀晓慧. 强震作用下崩塌滚石冲击耗能损伤演化分析[J]. 水文地质工程地质,2022,49(2):157 − 163. [LI Juan,HE Liang,XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology,2022,49(2):157 − 163. (in Chinese with English abstract)

    LI Juan, HE Liang, XUN Xiaohui. An evolution analysis of the impact energy damage of collapsed rolling stones under strong earthquakes[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 157-163. (in Chinese with English abstract)

    [8]

    WANG Xing,XIA Yongxu,ZHOU Tianyue. Theoretical analysis of rockfall impacts on the soil cushion layer of protective structures[J]. Advances in Civil Engineering,2018,2018:1 − 18.

    [9]

    王林峰,刘丽,唐芬,等. 基于落石棚洞冲击试验的落石冲击力研究[J]. 防灾减灾工程学报,2018,38(6):973 − 979. [WANG Linfeng,LIU Li,TANG Fen,et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(6):973 − 979. (in Chinese with English abstract) doi: 10.13409/j.cnki.jdpme.2018.06.011

    WANG Linfeng, LIU Li, TANG Fen, et al. Study on impact force of rockfall impact experiment on shed tunnel[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(6): 973-979. (in Chinese with English abstract) doi: 10.13409/j.cnki.jdpme.2018.06.011

    [10]

    吴建利,胡卸文,梅雪峰,等. 落石冲击混凝土板与缓冲层组合结构的动力响应[J]. 水文地质工程地质,2021,48(1):78 − 87. [WU Jianli,HU Xiewen,MEI Xuefeng,et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology,2021,48(1):78 − 87. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202004029

    WU Jianli, HU Xiewen, MEI Xuefeng, et al. Dynamic response of RC slab with cushion layer composed of sandy soil to rockfall impact[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 78-87. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202004029

    [11]

    ZHU Chun,WANG Dongsheng,XIA Xing,et al. The effects of gravel cushion particle size and thickness on the coefficient of restitution in rockfall impacts[J]. Natural Hazards and Earth System Sciences,2018,18(6):1811 − 1823. doi: 10.5194/nhess-18-1811-2018

    [12]

    ZHANG Yulong,LIU Zaobao,SHI Chong,et al. Three-dimensional reconstruction of block shape irregularity and its effects on block impacts using an energy-based approach[J]. Rock Mechanics and Rock Engineering,2018,51(4):1173 − 1191. doi: 10.1007/s00603-017-1385-x

    [13]

    CAVIEZEL A,DEMMEL S E,RINGENBACH A,et al. Reconstruction of four-dimensional rockfall trajectories using remote sensing and rock-based accelerometers and gyroscopes[J]. Earth Surface Dynamics,2019,7(1):199 − 210. doi: 10.5194/esurf-7-199-2019

    [14]

    AZZONI A,LA BARBERA G,ZANINETTI A. Analysis and prediction of rockfalls using a mathematical model[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics,1995,32(7):709 − 724.

    [15]

    CROSTA G B,AGLIARDI F. A methodology for physically based rockfall hazard assessment[J]. Natural Hazards and Earth System Sciences,2003,3(5):407 − 422. doi: 10.5194/nhess-3-407-2003

    [16]

    HUNGR O,EVANS S G,BOVIS M J,et al. A review of the classification of landslides of the flow type[J]. Environmental and Engineering Geoscience,2001,7(3):221 − 238. doi: 10.2113/gseegeosci.7.3.221

    [17]

    BOURRIER F,LAMBERT S,BAROTH J. A reliability-based approach for the design of rockfall protection fences[J]. Rock Mechanics and Rock Engineering,2015,48(1):247 − 259. doi: 10.1007/s00603-013-0540-2

    [18]

    DORREN L, BERGER F. New approaches for 3D rockfall modelling with or without the effect of forest in Rockyfor3D[C]//EGU General Assembly Conference Abstracts. 2010.

    [19]

    彭卫平,刘伟. 广州城市地质研究与城市可持续发展[J]. 城市勘测,2005(6):51 − 53. [PENG Weiping,LIU Wei. Guangzhou urban geological research and urban sustainable development[J]. Urban Geotechnical Investigation & Surveying,2005(6):51 − 53. (in Chinese with English abstract)

    PENG Weiping, LIU Wei. Guangzhou urban geological research and urban sustainable development[J]. Urban Geotechnical Investigation & Surveying, 2005(6): 51-53. (in Chinese with English abstract)

    [20]

    曾志林. 广东省广州市黄埔区保利林语山庄会所后山崩塌地质灾害勘查报告[R]. 广州: 广东省有色矿山地质灾害防治中心, 2019

    Zeng Zhilin. Geological disaster investigation report of the collapse of the back mountain of the Baoli Linyu Villa Club in Huangpu District, Guangzhou City, Guangdong Province[R]. Guangzhou: Guangdong non-ferrous mine geological disaster prevention center, 2019. (in Chinese)

    [21]

    吕庆,孙红月,翟三扣,等. 边坡滚石运动的计算模型[J]. 自然灾害学报,2003,12(2):79 − 84. [吕庆LÜ Qing,SUN Hongyue,ZHAI Sankou,et al. Evaluation models of rockfall trajectory[J]. Journal of Natural Disasters,2003,12(2):79 − 84. (in Chinese with English abstract) doi: 10.13577/j.jnd.2003.0214

    吕庆LÜ Qing, SUN Hongyue, ZHAI Sankou, et al. Evaluation models of rockfall trajectory[J]. Journal of Natural Disasters, 2003, 12(2): 79-84. (in Chinese with English abstract) doi: 10.13577/j.jnd.2003.0214

    [22]

    韩振华,陈鑫,王学良,等. 四川罗家青杠岭崩塌风险的定量评价研究[J]. 工程地质学报,2017,25(2):520 − 530. [HAN Zhenhua,CHEN Xin,WANG Xueliang,et al. Risk assessment for luojiaqinggangling rockfall[J]. Journal of Engineering Geology,2017,25(2):520 − 530. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017.02.032

    HAN Zhenhua, CHEN Xin, WANG Xueliang, et al. Risk assessment for luojiaqinggangling rockfall[J]. Journal of Engineering Geology, 2017, 25(2): 520-530. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2017.02.032

    [23]

    中国地质灾害防治工程行业协会. 崩塌防治工程勘查规范: TCAGHP011-2018[S]. 武汉: 中国地质大学出版社, 2018.

    China Geological Disaster Prevention Engineering Industry Association. Exploration specification for collapse prevention project: TCAGHP011-2018[S]. Wuhan: China University of Geosciences Press, 2018. (in Chinese)

    [24]

    程强,苏生瑞. 汶川地震崩塌滚石坡面运动特征[J]. 岩土力学,2014,35(3):772 − 776. [CHENG Qiang,SU Shengrui. Movement characteristics of collapsed stones on slopes induced by Wenchuan earthquake[J]. Rock and Soil Mechanics,2014,35(3):772 − 776. (in Chinese with English abstract) doi: 10.16285/j.rsm.2014.03.011

    CHENG Qiang, SU Shengrui. Movement characteristics of collapsed stones on slopes induced by Wenchuan earthquake[J]. Rock and Soil Mechanics, 2014, 35(3): 772-776. (in Chinese with English abstract) doi: 10.16285/j.rsm.2014.03.011

    [25]

    于帅印. 河南省山地丘陵区地质灾害风险评价[D]. 西安: 长安大学, 2018

    YU Shuaiyin. Risk assessment of geological disasters in mountainous and hilly areas of Henan Province[D]. Xi’an: Changan University, 2018. (in Chinese with English abstract)

    [26]

    陆明. 危岩崩塌运动数值模拟及治理措施研究[D]. 南宁: 广西大学, 2017

    LU Ming. Study on numerical simulation of dangerous rock collapse movement and control measures[D]. Nanning: Guangxi University, 2017. (in Chinese with English abstract)

    [27]

    王颂,张路青,周剑,等. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报,2020,28(4):784 − 792. [WANG Song,ZHANG Luqing,ZHOU Jian,et al. Characteristic analysis and kinematic simulation of rockfall along shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology,2020,28(4):784 − 792. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-519

    WANG Song, ZHANG Luqing, ZHOU Jian, et al. Characteristic analysis and kinematic simulation of rockfall along shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology, 2020, 28(4): 784-792. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2019-519

  • 加载中

(11)

(4)

计量
  • 文章访问数:  1444
  • PDF下载数:  101
  • 施引文献:  0
出版历程
收稿日期:  2022-08-19
修回日期:  2023-02-23
录用日期:  2023-03-01
刊出日期:  2023-09-15

目录