基于倾斜摄影与InSAR技术的高位崩塌风险识别

王朋伟, 安玉科. 基于倾斜摄影与InSAR技术的高位崩塌风险识别[J]. 水文地质工程地质, 2023, 50(5): 169-180. doi: 10.16030/j.cnki.issn.1000-3665.202208068
引用本文: 王朋伟, 安玉科. 基于倾斜摄影与InSAR技术的高位崩塌风险识别[J]. 水文地质工程地质, 2023, 50(5): 169-180. doi: 10.16030/j.cnki.issn.1000-3665.202208068
WANG Pengwei, AN Yuke. High-level collapse risk identification based on oblique photography and InSAR technology[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 169-180. doi: 10.16030/j.cnki.issn.1000-3665.202208068
Citation: WANG Pengwei, AN Yuke. High-level collapse risk identification based on oblique photography and InSAR technology[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 169-180. doi: 10.16030/j.cnki.issn.1000-3665.202208068

基于倾斜摄影与InSAR技术的高位崩塌风险识别

  • 基金项目: 甘肃省科技重点研发项目(22YF11GA302);甘肃省科技重大专项项目(1302GKDA009);甘肃省交通厅科研项目(2021-25)
详细信息
    作者简介: 王朋伟(1985-),男,高级工程师,硕士,主要从事地灾防治与监测预警研究工作。E-mail:522751994@qq.com
  • 中图分类号: P642.21

High-level collapse risk identification based on oblique photography and InSAR technology

  • 崩塌风险识别是崩塌灾害防治的基础。高位崩塌一般具有突发性、隐蔽性、高差大等特点,给信息采集、灾害识别和风险评估等工作带来了极大的挑战。针对这一工程难题,以白龙江流域九龙峡高位斜坡为例,基于倾斜摄影三维模型,确定高位崩塌识别指标,探索结构面信息提取方法,提出赤平投影定性分析与InSAR定量分析相结合的崩塌风险评估模型,形成了崩塌识别、稳定性分析和形变监测三者相结合的高位崩塌识别与风险评价的全过程模式。结果显示:(1)2020年1月—2022年6月,研究区斜坡最大累积变形量为120 mm,研究区东侧斜坡、西侧坡脚、南侧突出山咀变形较为强烈,变形等级以一、二级为主,灾害危险等级较高。(2)研究区共有崩塌危岩体22处(高风险7处,占32%;中风险11处,占50%;低风险4处,占18%),分布高度在37~640 m之间,高风险危岩主要集中在南侧突出的山咀、东侧斜坡以及西侧坡脚地带。分析结果与公路灾害养护历史资料相吻合,验证了倾斜摄影和InSAR技术在高位崩塌风险识别方面的可行性,为该技术在崩塌灾害防治方面的应用提供了依据和借鉴。

  • 加载中
  • 图 1  研究区地形图

    Figure 1. 

    图 2  研究区灾害历史记录

    Figure 2. 

    图 3  高位崩塌风险识别工作方法体系

    Figure 3. 

    图 4  崩塌识别指标体系

    Figure 4. 

    图 5  结构面产状几何关系图

    Figure 5. 

    图 6  研究区倾斜摄影图

    Figure 6. 

    图 7  时空基线图

    Figure 7. 

    图 8  研究区崩塌危岩解译图

    Figure 8. 

    图 9  研究区典型危岩解译图

    Figure 9. 

    图 10  W4崩塌体结构面全局-细节图

    Figure 10. 

    图 11  危岩体节理裂隙统计图

    Figure 11. 

    图 12  崩塌体稳定性分析图

    Figure 12. 

    图 13  研究区斜坡定量化形变图

    Figure 13. 

    图 14  最大变形点时间序列

    Figure 14. 

    图 15  研究区崩塌风险等级评价图

    Figure 15. 

    表 1  边坡稳定性分级评价表

    Table 1.  Slope stability classification and evaluation index

    稳定性分级评 价 指 标
    稳定结构面倾角或交棱倾角≤15°
    结构面倾角或交棱倾角≥边坡角
    结构面倾向或交棱倾向与坡向夹角≥60°
    基本稳定结构面倾向或交棱倾向与坡向夹角<45°,
    15°≤结构面倾角或交棱倾角<25°
    45°<结构面倾向或交棱倾向与坡向夹角≤60°,
    15°≤结构面倾角或交棱倾角<边坡角
    欠稳定结构面倾向或交棱倾向与坡向夹角<25°,
    25°≤结构面倾角或交棱倾角<40°
    25°<结构面倾向或交棱倾向与坡向夹角≤45°,
    25°≤结构面倾角或交棱倾角<边坡角
    不稳定结构面倾向或交棱倾向与坡向夹角≤25°,
    40°≤结构面倾角或交棱倾角<边坡角
    下载: 导出CSV

    表 2  崩塌危岩体风险评价指标

    Table 2.  Risk assessment index of collapse dangerous rock mass

    一级指标二级指标等级划分分值权重(R评分
    稳定性评价表1不稳定40~500~1K1
    欠稳定30~400~1K2
    基本稳定20~300~1K3
    稳定10~200~1K4
    InSAR
    变形等级
    >90 mm一级40~500~1S1
    90~50 mm二级30~400~1S2
    50~20 mm三级20~300~1S3
    <20 mm四级10~200~1S4
    下载: 导出CSV

    表 3  崩塌危岩风险判据

    Table 3.  Criteria for risk identification of dangerous rock collapse

    评判值<5050~75>75
    级别低风险中风险高风险
      注:该评判标准与发生概率相对应。
    下载: 导出CSV

    表 4  崩塌识别解译表

    Table 4.  Interpretation for collapse recognition

    代表区域崩塌类型岩性坡体结构岩体特征结构面发育情况距离路面高度/m是否直接威胁公路
    W1、W17、W18、W19土质碎块石土土质、类土质坡体结构石夹土状 160、70、39、45
    W2、W3、W4、W9、
    W13、W15
    岩质灰岩夹板岩层状斜向结构薄-中厚层状具外倾结构面、
    卸荷裂隙发育
    80、110、37、
    161、76、45
    W12、W20、W21、W22岩质灰岩碎裂结构碎裂镶嵌结构状构造裂隙密集165、160、175、195
    W7、W8岩质灰岩层状斜向结构薄-中厚层状底部悬空165、235
    W5岩质千枚岩、板岩碎裂结构碎裂镶嵌结构状构造风化裂隙密集197
    W6、W10岩质千枚岩、板岩反倾-斜向结构薄层状、板状风化裂隙发育310、640
    W11、W14、W16岩质灰岩层状斜向结构薄-中厚层状具外倾结构面、卸荷裂隙发育345、235、345
    下载: 导出CSV

    表 5  边坡优势结构面信息及破坏评价(W4、W7为例)

    Table 5.  Slope dominant structural plane information and damage evaluation (W4 and W7 as examples)

    代表区域结构面编号产状形态填充
    特性
    间距/cm张开度/mm稳定性评价失稳模式
    W4P0187°∠55°    不稳定滑移
    S069°∠74°平直钙泥质胶结100 
    J1168°∠48°平直岩屑断续填充1003
    J2333°∠77°平直岩屑断续填充1505
    W7P0170°∠53°    稳定坠落式
    S030°∠49°平直钙泥质胶结130 
    J1180°∠62°平直岩屑断续填充502
    J2300°∠53平直岩屑断续填充502
      注:P为坡面,S为岩层层面,J为岩体节理。
    下载: 导出CSV

    表 6  危岩风险等级评价表

    Table 6.  Risk level evaluation of dangerous rocks

    编号稳定性评价稳定性得分变形等级变形得分威胁对象权重总分风险等级
    W1不稳定40二级30公路170中风险
    W2不稳定45二级35公路180高风险
    W3欠稳定35一级40公路175中风险
    W4不稳定50四级15公路165中风险
    W5不稳定45二级35公路180高风险
    W6不稳定45二级30公路175中风险
    W7稳定20三级30公路150中风险
    W8稳定20三级30公路150中风险
    W9不稳定50三级25公路175中风险
    W10欠稳定30三级20沟谷0.525低风险
    W11欠稳定30三级25沟谷0.527.5低风险
    W12不稳定50二级30公路180高风险
    W13不稳定50一级45公路195高风险
    W14欠稳定30二级30沟谷0.530低风险
    W15不稳定40二级30公路170中风险
    W16欠稳定35三级25沟谷0.530低风险
    W17不稳定40二级35公路175中风险
    W18不稳定40二级35公路175中风险
    W19不稳定40一级45公路185高风险
    W20不稳定45二级35公路180高风险
    W21不稳定50三级30公路180高风险
    W22不稳定50三级25公路175中风险
    下载: 导出CSV
  • [1]

    许强,董秀军,李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957 − 966. [XU Qiang,DONG Xiujun,LI Weile. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University,2019,44(7):957 − 966. (in Chinese with English abstract)

    XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 957-966. (in Chinese with English abstract)

    [2]

    葛大庆,戴可人,郭兆成,等. 重大地质灾害隐患早期识别中综合遥感应用的思考与建议[J]. 武汉大学学报(信息科学版),2019,44(7):949 − 956. [GE Daqing,DAI Keren,GUO Zhaocheng,et al. Early identification of serious geological hazards with integrated remote sensing technologies:Thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University,2019,44(7):949 − 956. (in Chinese with English abstract)

    GE Daqing, DAI Keren, GUO Zhaocheng, et al. Early identification of serious geological hazards with integrated remote sensing technologies: thoughts and recommendations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 949-956. (in Chinese with English abstract)

    [3]

    许强,陆会燕,李为乐,等. 滑坡隐患类型与对应识别方法[J]. 武汉大学学报(信息科学版),2022,47(3):377 − 387. [XU Qiang,LU Huiyan,LI Weile,et al. Types of potential landslide and corresponding identification technologies[J]. Geomatics and Information Science of Wuhan University,2022,47(3):377 − 387. (in Chinese with English abstract)

    XU Qiang, LU Huiyan, LI Weile, et al. Types of potential landslide and corresponding identification technologies[J]. Geomatics and Information Science of Wuhan University, 2022, 47(3): 377-387. (in Chinese with English abstract)

    [4]

    刘传正. 崩塌滑坡灾害风险识别方法初步研究[J]. 工程地质学报,2019,27(1):88 − 97. [LIU Chuanzheng. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology,2019,27(1):88 − 97. (in Chinese with English abstract)

    LIU Chuanzheng. Analysis methods on the risk identification of landslide disasters[J]. Journal of Engineering Geology, 2019, 27(1): 88-97. (in Chinese with English abstract)

    [5]

    罗刚,程谦恭,沈位刚,等. 高位高能岩崩研究现状与发展趋势[J]. 地球科学,2022,47(3):913 − 934. [LUO Gang,CHENG Qiangong,SHEN Weigang,et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science,2022,47(3):913 − 934. (in Chinese with English abstract) doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203013

    LUO Gang, CHENG Qiangong, SHEN Weigang, et al. Research status and development trend of the high-altitude extremely-energetic rockfalls[J]. Earth Science, 2022, 47(3): 913-934. (in Chinese with English abstract) doi: 10.3321/j.issn.1000-2383.2022.3.dqkx202203013

    [6]

    刘传正. 地质灾害防治研究的认识论与方法论[J]. 工程地质学报,2015,23(5):809 − 820. [LIU Chuanzheng. Epistemology and methodology on geo-hazard research[J]. Journal of Engineering Geology,2015,23(5):809 − 820. (in Chinese with English abstract)

    LIU Chuanzheng. Epistemology and methodology on geo-hazard research[J]. Journal of Engineering Geology, 2015, 23(5): 809-820. (in Chinese with English abstract)

    [7]

    俊豪,魏云杰,梅傲霜,等. 基于无人机倾斜摄影的黄土滑坡信息多维提取与应用分析[J]. 中国地质,2021,48(2):388 − 401. [WANG Junhao,WEI Yunjie,MEI Aoshuang,et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China,2021,48(2):388 − 401. (in Chinese with English abstract)

    [WANG Junhao, WEI Yunjie, MEI Aoshuang, et al. Multidimensional extraction of UAV tilt photography-based information of loess landslide and its application[J]. Geology in China, 2021, 48(2): 388-401.(in Chinese with English abstract)]

    [8]

    周福军. 高原复杂山区铁路无人机倾斜摄影勘察技术应用研究[J]. 铁道标准设计,2021,65(6):1 − 5. [ZHOU Fujun. Application of unmanned aerial vehicle oblique photography survey technology for railway in complex plateau mountain area[J]. Railway Standard Design,2021,65(6):1 − 5. (in Chinese with English abstract)

    ZHOU Fujun. Application of unmanned aerial vehicle oblique photography survey technology for railway in complex plateau mountain area[J]. Railway Standard Design, 2021, 65(6): 1-5. (in Chinese with English abstract)

    [9]

    潘文明,王德高. 基于无人机低空航摄的典型地质灾害识别研究—以滑坡、泥石流、崩塌为例[J]. 宿州学院学报,2021,36(12):53 − 57. [PAN Wenming,WANG Degao. Identification of typical geological hazards based on low altitude aerial photography by unmanned aerial vehicles:Taking landslide,debris flow and collapse as examples[J]. Journal of Suzhou University,2021,36(12):53 − 57. (in Chinese with English abstract)

    PAN Wenming, WANG Degao. Identification of typical geological hazards based on low altitude aerial photography by unmanned aerial vehicles: taking landslide, debris flow and collapse as examples[J]. Journal of Suzhou University, 2021, 36(12): 53-57. (in Chinese with English abstract)

    [10]

    梁京涛,铁永波,赵聪,等. 基于贴近摄影测量技术的高位崩塌早期识别技术方法研究[J]. 中国地质调查,2020,7(5):107 − 113. [LIANG Jingtao,TIE Yongbo,ZHAO Cong,et al. Technology and method research on the early detection of high-level collapse based on the nap-of-the-object photography[J]. Geological Survey of China,2020,7(5):107 − 113. (in Chinese with English abstract)

    LIANG Jingtao, TIE Yongbo, ZHAO Cong, et al. Technology and method research on the early detection of high-level collapse based on the nap-of-the-object photography[J]. Geological Survey of China, 2020, 7(5): 107-113. (in Chinese with English abstract)

    [11]

    廖斌,杨根兰,覃乙根,等. 基于无人机技术的高陡危岩体参数获取及稳定性评价[J]. 路基工程,2021(4):24 − 29. [LIAO Bin,YANG Genlan,QIN Yigen,et al. Parameter acquisition and stability evaluation of high steep and dangerous rock mass based on UAV[J]. Subgrade Engineering,2021(4):24 − 29. (in Chinese with English abstract)

    LIAO Bin, YANG Genlan, QIN Yigen, et al. Parameter acquisition and stability evaluation of high steep and dangerous rock mass based on UAV[J]. Subgrade Engineering, 2021(4): 24-29. (in Chinese with English abstract)

    [12]

    张欢,巨能攀,陆渊,等. 基于无人机的滑坡地形快速重建与稳定性分析[J]. 水文地质工程地质,2021,48(6):171 − 179. [ZHANG Huan,JU Nengpan,LU Yuan,et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology,2021,48(6):171 − 179. (in Chinese with English abstract)

    ZHANG Huan, JU Nengpan, LU Yuan, et al. Rapid remodeling of three-dimensional terrain and stability analyses of landslide based on UAV[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 171-179. (in Chinese with English abstract)

    [13]

    吕权儒,曾斌,孟小军,等. 基于无人机倾斜摄影技术的崩塌隐患早期识别及影响区划分方法[J]. 地质科技通报,2021,40(6):313 − 325. [LÜ Quanru,ZENG Bin,MENG Xiaojun,et al. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology,2021,40(6):313 − 325. (in Chinese with English abstract)

    LÜ Quanru, ZENG Bin, MENG Xiaojun, et al. Early identification and influence range division method of collapse hazards based on UAV oblique photography technology[J]. Bulletin of Geological Science and Technology, 2021, 40(6): 313-325. (in Chinese with English abstract)

    [14]

    宋珺敏. 基于多源数据的岩体结构面智能识别方法与信息解译研究[D]. 南京: 南京师范大学, 2016

    SONG Junmin. Research on intelligent identification method and information interpretation of rock mass structural plane based on multi-source data[D]. Nanjing: Nanjing Normal University, 2016. (in Chinese with English abstract)

    [15]

    宣程强,章杨松,许文涛. 基于数字表面模型的岩体结构面产状获取[J]. 水文地质工程地质,2022,49(1):75 − 83. [XUAN Chengqiang,ZHANG Yangsong,XU Wentao. Extraction of the discontinuity orientation from a digital surface model[J]. Hydrogeology & Engineering Geology,2022,49(1):75 − 83. (in Chinese with English abstract)

    XUAN Chengqiang, ZHANG Yangsong, XU Wentao. Extraction of the discontinuity orientation from a digital surface model[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 75-83. (in Chinese with English abstract)

    [16]

    宋来臣,庞凤波,李秀娟. SBAS-InSAR干涉技术在滑坡早期识别中的应用研究[J]. 现代矿业,2022,38(5):234 − 236. [SONG Laichen,PANG Fengbo,LI Xiujuan. Study on application of SBAS-InSAR interference technolgy in early landslide identification[J]. Modern Mining,2022,38(5):234 − 236. (in Chinese with English abstract)

    SONG Laichen, PANG Fengbo, LI Xiujuan. Study on application of SBAS-InSAR interference technolgy in early landslide identification[J]. Modern Mining, 2022, 38(5): 234-236. (in Chinese with English abstract)

    [17]

    吴东霖,葛伟鹏,魏聪敏,等. 黄河流域刘家峡—兰州段滑坡灾害的InSAR识别及成因分析[J]. 地震工程学报,2021,43(3):607 − 614. [WU Donglin,GE Weipeng,WEI Congmin,et al. Identification and cause analysis of potential landslides in Liujiaxia-Lanzhou section of the Yellow River Basin with InSAR technique[J]. China Earthquake Engineering Journal,2021,43(3):607 − 614. (in Chinese with English abstract)

    WU Donglin, GE Weipeng, WEI Congmin, et al. Identification and cause analysis of potential landslides in Liujiaxia-Lanzhou section of the Yellow River Basin with InSAR technique[J]. China Earthquake Engineering Journal, 2021, 43(3): 607-614. (in Chinese with English abstract)

    [18]

    李梦华,张路,董杰,等. 四川茂县岷江河谷区段滑坡隐患雷达遥感识别与形变监测[J]. 武汉大学学报(信息科学版),2021,46(10):1529 − 1537. [LI Menghua,ZHANG Lu,DONG Jie,et al. Detection and monitoring of potential landslides along Minjiang River valley in Maoxian County,Sichuan using radar remote sensing[J]. Geomatics and Information Science of Wuhan University,2021,46(10):1529 − 1537. (in Chinese with English abstract)

    LI Menghua, ZHANG Lu, DONG Jie, et al. Detection and monitoring of potential landslides along Minjiang River valley in Maoxian County, Sichuan using radar remote sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1529-1537. (in Chinese with English abstract)

    [19]

    韩旭东,付杰,李严严,等. 舟曲江顶崖滑坡的早期判识及风险评估研究[J]. 水文地质工程地质,2021,48(6):180 − 186. [HAN Xudong,FU Jie,LI Yanyan,et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology & Engineering Geology,2021,48(6):180 − 186. (in Chinese with English abstract)

    HAN Xudong, FU Jie, LI Yanyan, et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 180-186. (in Chinese with English abstract)

    [20]

    赵富萌,张毅,孟兴民,等. 基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J]. 水文地质工程地质,2020,47(1):142 − 152. [ZHAO Fumeng,ZHANG Yi,MENG Xingmin,et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology,2020,47(1):142 − 152. (in Chinese with English abstract)

    ZHAO Fumeng, ZHANG Yi, MENG Xingmin, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 142-152. (in Chinese with English abstract)

    [21]

    李振洪,朱武,余琛,等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报,2022,51(7):1485 − 1519. [LI Zhenhong,ZHU Wu,YU Chen,et al. Interferometric synthetic aperture radar for deformation mapping:Opportunities,challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica,2022,51(7):1485 − 1519. (in Chinese with English abstract)

    LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. (in Chinese with English abstract)

    [22]

    王颂,张路青,周剑,等. 青藏铁路设兴村段崩塌特征分析与运动学模拟[J]. 工程地质学报,2020,28(4):784 − 792. [WANG Song,ZHANG Luqing,ZHOU Jian,et al. Characteristic analysis and kinematic simulation of rockfall along Shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology,2020,28(4):784 − 792. (in Chinese with English abstract)

    WANG Song, ZHANG Luqing, ZHOU Jian, et al. Characteristic analysis and kinematic simulation of rockfall along shexing village section of Qinghai-Tibet railway[J]. Journal of Engineering Geology, 2020, 28(4): 784-792. (in Chinese with English abstract)

    [23]

    刘帅,陈建华,王峰,等. 基于无人机倾斜摄影的数字露头实景三维模型构建[J]. 地质科学,2022,57(3):945 − 957. [LIU Shuai,CHEN Jianhua,WANG Feng,et al. Construction of a 3D model of digital outcrop real scene based on UAV oblique photography[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2022,57(3):945 − 957. (in Chinese with English abstract)

    LIU Shuai, CHEN Jianhua, WANG Feng, et al. Construction of a 3D model of digital outcrop real scene based on UAV oblique photography[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2022, 57(3): 945-957. (in Chinese with English abstract)

    [24]

    徐国良,张振飞,裴伦培,等. 用有限元强度折减法评价节理岩质边坡稳定性[J]. 山东国土资源,2021,37(5):59 − 66. [XU Guoliang,ZHANG Zhenfei,PEI Lunpei,et al. Slope stability evaluation of the rock mass by using finite element strength reduction method[J]. Shandong Land and Resources,2021,37(5):59 − 66. (in Chinese with English abstract)

    [XU Guoliang, ZHANG Zhenfei, PEI Lunpei, et al. slope stability evaluation of the rock mass by using finite element strength reduction method[J]. Shandong Land and Resources, 2021, 37(5): 59-66. (in Chinese with English abstract)]

    [25]

    葛云峰,夏丁,唐辉明,等. 基于三维激光扫描技术的岩体结构面智能识别与信息提取[J]. 岩石力学与工程学报,2017,36(12):3050 − 3061. [GE Yunfeng,XIA Ding,TANG Huiming,et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(12):3050 − 3061. (in Chinese with English abstract)

    GE Yunfeng, XIA Ding, TANG Huiming, et al. Intelligent identification and extraction of geometric properties of rock discontinuities based on terrestrial laser scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3050-3061. (in Chinese with English abstract)

    [26]

    杨洪. 水电工程高陡边坡小型危岩体动力分析及治理[J]. 水电站设计,2017,33(1):36 − 39. [YANG Hong. Dynamic analysis and treatment of small dangerous rock mass on high and steep slope of hydropower project[J]. Design of Hydroelectric Power Station,2017,33(1):36 − 39. (in Chinese with English abstract)

    YANG Hong. Dynamic analysis and treatment of small dangerous rock mass on high and steep slope of hydropower project[J]. Design of Hydroelectric Power Station, 2017, 33(1): 36-39. (in Chinese with English abstract)

    [27]

    卢达. 基于赤平投影法的岩质边坡稳定性分析[J]. 铁道建筑,2010,50(11):69 − 71. [LU Da. Stability analysis of rock slope based on stereographic projection method[J]. Railway Engineering,2010,50(11):69 − 71. (in Chinese with English abstract)

    LU Da. Stability analysis of rock slope based on stereographic projection method[J]. Railway Engineering, 2010, 50(11): 69-71. (in Chinese with English abstract)

    [28]

    龙海涛. 用CAD绘制赤平投影图进行边坡稳定性分析程序[J]. 南方国土资源,2009(8):35 − 36. [LONG Haitao. Program for slope stability analysis by drawing stereographic projection with CAD[J]. Nanfang Guotu Ziyuan,2009(8):35 − 36. (in Chinese)

    LONG Haitao. Program for slope stability analysis by drawing stereographic projection with CAD[J]. Nanfang Guotu Ziyuan, 2009(8): 35-36. (in Chinese)

    [29]

    中华人民共和国住房和城乡建设部. 建筑边坡工程技术规范: GB 50330—2013[S]. 北京: 中国建筑工业出版社, 2014.

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for building slope engineering: GB 50330—2013[S]. Beijing: China Architecture & Building Press, 2014. (in Chinese)

    [30]

    董佳慧,牛瑞卿,亓梦茹,等. InSAR技术和孕灾背景指标相结合的地灾隐患识别[J]. 地质科技通报,2022,41(2):187 − 196. [DONG Jiahui,NIU Ruiqing,QI Mengru,et al. Identification of geological hazards based on the combination of InSAR technology and disaster background indicators[J]. Bulletin of Geological Science and Technology,2022,41(2):187 − 196. (in Chinese with English abstract)

    DONG Jiahui, NIU Ruiqing, QI Mengru, et al. Identification of geological hazards based on the combination of InSAR technology and disaster background indicators[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 187-196. (in Chinese with English abstract)

    [31]

    FELL R, HO K K S, LACASSE S, et al. A framework for landslide risk assessment and management[C]//EBERHARDT E, HUNGR O, FELL R, et al. Landslide risk management. Vancouver: Taylor & Francis, 2005: 3 − 25.

    [32]

    张奇华,胡惠华,张煜,等. 块体稳定分析中传统赤平投影与全空间赤平投影对比研究[J]. 岩土工程学报,2022,44(6):1148 − 1155. [ZHANG Qihua,HU Huihua,ZHANG Yu,et al. Comparison of traditional and whole-space stereographic projections in block stability analysis[J]. Chinese Journal of Geotechnical Engineering,2022,44(6):1148 − 1155. (in Chinese with English abstract)

    ZHANG Qihua, HU Huihua, ZHANG Yu, et al. Comparison of traditional and whole-space stereographic projections in block stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1148-1155. (in Chinese with English abstract)

    [33]

    杜岩,霍磊晨,张洪达,等. 岩块体崩塌灾害遥感监测预警试验研究[J]. 中国矿业大学学报,2022,51(6):1201 − 1208. [DU Yan,HUO Leichen,ZHANG Hongda,et al. Experimental study on remote sensing monitoring and early warning of rock block collapse disaster[J]. Journal of China University of Mining & Technology,2022,51(6):1201 − 1208. (in Chinese with English abstract)

    DU Yan, HUO Leichen, ZHANG Hongda, et al. Experimental study on remote sensing monitoring and early warning of rock block collapse disaster[J]. Journal of China University of Mining & Technology, 2022, 51(6): 1201-1208. (in Chinese with English abstract)

    [34]

    党杰,董吉,何松标,等. 机载LiDAR与地面三维激光扫描在贵州水城独家寨崩塌地质灾害风险调查中的应用[J]. 中国地质灾害与防治学报,2022,33(4):106 − 113. [DANG Jie,DONG Ji,HE Songbiao,et al. Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng,Guizhou[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):106 − 113. (in Chinese with English abstract)

    DANG Jie, DONG Ji, HE Songbiao, et al. Application of airborne LiDAR and ground 3D laser scanning in geological hazard risk investigation of Dujiazhai collapse in Shuicheng, Guizhou[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 106-113. (in Chinese with English abstract)

    [35]

    许强,朱星,李为乐,等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416 − 1436. [XU Qiang,ZHU Xing,LI Weile,et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica,2022,51(7):1416 − 1436. (in Chinese with English abstract)

    XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. (in Chinese with English abstract)

    [36]

    中华人民共和国交通运输部. 公路路基设计规范: JTG D30—2015[S]. 北京: 人民交通出版社, 2015.

    Specifications for Design of Highway Subgrades: JTG D30—2015[S]. Beijing: China Communications Press, 2015. (in Chinese)

  • 加载中

(15)

(6)

计量
  • 文章访问数:  1880
  • PDF下载数:  79
  • 施引文献:  0
出版历程
收稿日期:  2022-08-23
修回日期:  2023-01-11
录用日期:  2023-01-12
刊出日期:  2023-09-15

目录