A uniaxial compression damage model for rockmass considering the crack deformation parameter
-
摘要:
为了更准确地预测裂隙对岩体压缩力学特性(如强度和刚度)的影响,需要建立更为合理的裂隙岩体压缩损伤模型。为此,基于相关试验数据和裂隙岩体单轴压缩力学行为,采用损伤及断裂理论对目前断续裂隙岩体压缩损伤模型中存在的不足进行了深入分析,并对其进行了3方面的改进,即:不再将裂隙变形参数视为定值、考虑了裂隙面上法向正应力产生的负第一应力强度因子(KI)、考虑了裂隙面上有效剪应力产生的KI,由此最终提出了考虑裂隙变形参数的岩体单轴压缩损伤本构模型。最后采用试验数据对该模型的合理性进行了验证,发现与现有模型相比,该模型明显提高了岩体单轴压缩弹性模量和损伤值的预测精度,尤其是当裂隙倾角为0°时,该模型计算得到的弹性模量为4.306 MPa,与实测弹性模量4.310 MPa几乎相同。因此,该模型能够很好地刻画岩体单轴压缩力学行为,这也说明考虑裂隙变形参数对岩体单轴压缩力学特性的影响是十分必要的。该研究可为准确预测裂隙岩体的单轴压缩力学行为提供参考。
Abstract:In order to accurately predict the effect of crack on the rockmass compression mechanical property such as strength and stiffness, a more reasonable compression damage model for the cracked rockmass is needed to be established. On basis of the relevant experimental data and mechanical behavior of the cracked rockmass under uniaxial compression, some deficiencies in the existing compression damage models for the rockmass with intermittent cracks are analyzed in detail. Three improvements are made to improve the existing methods, e.g., the crack deformation parameter is not taken as a constant, the negative first stress intensity factor KI produced by the normal stress on the crack face is considered, and KI produced by the effective shear stress on the crack face is considered. A revised uniaxial compression damage model for rockmass considering the crack deformation parameter is proposed and the validity of the proposed model is verified with the experimental data. The results show that the prediction of the rockmass elastic modulus and damage under uniaxial compression with the proposed model are more accurate than those obtained with the existing models. Especially, when the crack dip angel is 0°, the rockmass elastic modulus obtained with the proposed model is 4.306 MPa, which is nearly equal to its tested value 4.310 MPa. The proposed model can perfectly describe the rockmass mechanical behavior under uniaxial compression, which also indicates that it is very necessary to consider the effect of the crack deformation parameter on the rockmass uniaxial compression mechanical property. This study can provide references for accurately predicting the rockmass mechanical behavior under uniaxial compression.
-
-
表 1 不同倾角时的试件裂隙变形参数kn、ks
Table 1. Crack deformation parameters kn and ks for the samples with different crack dip angles
α/(°) 0 15 30 45 60 75 90 kn/(GPa∙m−1) 1.95 1.85 1.55 1.3 1.0 0.1 / ks/(GPa∙m−1) / 1.5 1.6 2.0 1.55 0.001 / 注:“/”表示可取任意值。 -
[1] 张科,潘哲,刘享华. 含折线型裂隙砂岩试件翼型裂纹起裂与扩展机制研究[J]. 水文地质工程地质,2022,49(3):103 − 111. [ZHANG Ke,PAN Zhe,LIU Xianghua. Investigation of the wing crack initiation and propagation mechanism of the sandstone specimen containing a folded fissure[J]. Hydrogeology & Engineering Geology,2022,49(3):103 − 111. (in Chinese with English abstract)
[2] LIU Hongyan,ZHANG Limin. A damage constitutive model for rock mass with nonpersistently closed joints under uniaxial compression[J]. Arabian Journal for Science and Engineering,2015,40(11):3107 − 3117. doi: 10.1007/s13369-015-1777-8
[3] 王星辰,王志亮,黄佑鹏,等. 预制裂隙岩样宏细观力学行为颗粒流数值模拟[J]. 水文地质工程地质,2021,48(4):86 − 92. [WANG Xingchen,WANG Zhiliang,HUANG Youpeng,et al. Particle flow simulation of macro-and meso-mechanical behavior of the prefabricated fractured rock sample[J]. Hydrogeology & Engineering Geology,2021,48(4):86 − 92. (in Chinese with English abstract)
[4] Fan L F,Zhou X F,Wu Z J,et al. Investigation of stress wave induced cracking behavior of underground rock mass by the numerical manifold method[J]. Tunnelling and Underground Space Technology,2019,92:103032. doi: 10.1016/j.tust.2019.103032
[5] GAO Wei,DAI Shuang,XIAO Ting,et al. Failure process of rock slopes with cracks based on the fracture mechanics method[J]. Engineering Geology,2017,231:190 − 199. doi: 10.1016/j.enggeo.2017.10.020
[6] 周杰,刘礼标,黄龙生. 人工单节理砂岩的三轴试验研究[J]. 水文地质工程地质,2017,44(4):85 − 90. [ZHOU Jie,LIU Libiao,HUANG Longsheng. Triaxial compression test on sandstone specimen with single artificial joint[J]. Hydrogeology & Engineering Geology,2017,44(4):85 − 90. (in Chinese with English abstract)
[7] 易婷,唐建新,王艳磊. 裂隙倾角及数目对岩体强度和破坏模式的影响[J]. 地下空间与工程学报,2021,17(1):98 − 106. [YI Ting,TANG Jianxin,WANG Yanlei. Effect of fracture dip angle and number on mechanical properties and failure modes of rock mass[J]. Chinese Journal of Underground Space and Engineering,2021,17(1):98 − 106. (in Chinese with English abstract)
[8] XU Lei,GONG Fengqiang,LUO Song. Effects of pre-existing single crack angle on mechanical behaviors and energy storage characteristics of red sandstone under uniaxial compression[J]. Theoretical and Applied Fracture Mechanics,2021,113:102933. doi: 10.1016/j.tafmec.2021.102933
[9] KAWAMOTO T,ICHIKAWA Y,KYOYA T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1988,12(1):1 − 30. doi: 10.1002/nag.1610120102
[10] 陈文玲,李宁. 含非贯通裂隙岩体介质的损伤模型[J]. 岩土工程学报,2000,22(4):430 − 434. [CHEN Wenling,LI Ning. Damage model of the rock mass medium with intermittent cracks[J]. Chinese Journal of Geotechnical Engineering,2000,22(4):430 − 434. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.2000.04.009
[11] SWOBODA G,SHEN X P,ROSAS L. Damage model for jointed rock mass and its application to tunnelling[J]. Computers and Geotechnics,1998,22(3/4):183 − 203.
[12] LI N,CHEN W,ZHANG P,et al. The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(7):1071 − 1079. doi: 10.1016/S1365-1609(01)00058-2
[13] JEAN L. How to use damage mechanics[J]. Nuclear Engineering and Design,1984,80(2):233 − 245. doi: 10.1016/0029-5493(84)90169-9
[14] 刘红岩,李俊峰,裴小龙. 单轴压缩下断续节理岩体动态损伤本构模型[J]. 爆炸与冲击,2018,38(2):316 − 323. [LIU Hongyan,LI Junfeng,PEI Xiaolong. A dynamic damage constitutive model for rockmass with intermittent joints under uniaxial compression[J]. Explosion and Shock Waves,2018,38(2):316 − 323. (in Chinese with English abstract)
[15] 李世愚, 和泰名, 尹祥础. 岩石断裂力学[M]. 北京: 科学出版社, 2016
LI Shiyu, HE Taiming, YIN Xiangchu. Rock fracture mechanics[M]. Beijing: Science Press, 2016. (in Chinese with English abstract)
[16] FAN Yong,ZHU Zheming,ZHAO Yanlin,et al. The effects of some parameters on perforation tip initiation pressures in hydraulic fracturing[J]. Journal of Petroleum Science and Engineering,2019,176:1053 − 1060. doi: 10.1016/j.petrol.2019.02.028
[17] TANG S B. The effect of T-stress on the fracture of brittle rock under compression[J]. International Journal of Rock Mechanics and Mining Sciences,2015,79:86 − 98. doi: 10.1016/j.ijrmms.2015.06.009
[18] 周群力. 岩石压剪断裂判据及其应用[J]. 岩土工程学报,1987,9(3):33 − 37. [ZHOU Qunli. Compress shear fracture criterion of rock and it’s application[J]. Chinese Journal of Geotechnical Engineering,1987,9(3):33 − 37. (in Chinese with English abstract)
[19] 王芝银,段品佳. 基于岩体三轴压缩试验的节理力学参数确定方法[J]. 岩土力学,2011,32(11):3219 − 3224. [WANG Zhiyin,DUAN Pinjia. A new method for determining mechanical parameters of joints based on triaxial compressive test for rock mass[J]. Rock and Soil Mechanics,2011,32(11):3219 − 3224. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2011.11.004
[20] BANDIS S C,LUMSDEN A C,BARTON N R. Fundamentals of rock joint deformation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1983,20:249 − 268.
[21] LIU Taoying,CAO Ping,LIN Hang. Damage and fracture evolution of hydraulic fracturing in compression-shear rock cracks[J]. Theoretical and Applied Fracture Mechanics,2014,74:55 − 63. doi: 10.1016/j.tafmec.2014.06.013
[22] 余贤斌,王青蓉,李心一,等. 岩石直接拉伸与压缩变形的试验研究[J]. 岩土力学,2008,29(1):18 − 22. [YU Xianbin,WANG Qingrong,LI Xinyi,et al. Experimental research on deformation of rocks in direct tension and compression[J]. Rock and Soil Mechanics,2008,29(1):18 − 22. (in Chinese with English abstract) doi: 10.16285/j.rsm.2008.01.026
[23] JAEGER J C, COOK N G W. Fundamentals of rock mechanics[M]. 3rd ed. London: Chapman and Hall, 1979
[24] GOODMAN R E,TAYLOR R L,BREKKE T L. A model for the mechanics of jointed rock[J]. Journal of the Soil Mechanics and Foundations Division,1968,94(3):637 − 659. doi: 10.1061/JSFEAQ.0001133
[25] BATRON N R,BANDIS S,BAKHTAR K. Strength,deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1985,22(3):121 − 140. doi: 10.1016/0148-9062(85)93227-9
[26] PRUDENCIO M,JAN M V S. Strength and failure modes of rock mass models with non-persistent joints[J]. International Journal of Rock Mechanics and Mining Sciences,2007,44(6):890 − 902.
-