地下水污染强度及渗透系数场的反演识别研究

吴延浩, 江思珉, 吴自军. 地下水污染强度及渗透系数场的反演识别研究[J]. 水文地质工程地质, 2023, 50(4): 193-203. doi: 10.16030/j.cnki.issn.1000-3665.202208042
引用本文: 吴延浩, 江思珉, 吴自军. 地下水污染强度及渗透系数场的反演识别研究[J]. 水文地质工程地质, 2023, 50(4): 193-203. doi: 10.16030/j.cnki.issn.1000-3665.202208042
WU Yanhao, JIANG Simin, WU Zijun. Identification of groundwater pollution intensity and hydraulic conductivity field[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 193-203. doi: 10.16030/j.cnki.issn.1000-3665.202208042
Citation: WU Yanhao, JIANG Simin, WU Zijun. Identification of groundwater pollution intensity and hydraulic conductivity field[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 193-203. doi: 10.16030/j.cnki.issn.1000-3665.202208042

地下水污染强度及渗透系数场的反演识别研究

  • 基金项目: 国家自然科学基金项目(41976057;41676061)
详细信息
    作者简介: 吴延浩(1999-),男,硕士研究生,主要研究方向为污染水文地质学。E-mail: 630436663@qq.com
    通讯作者: 江思珉(1980-),男,博士,副教授,主要从事地下水数值模拟等方面研究。E-mail: jiangsimin@tongji.edu.cn
  • 中图分类号: X523

Identification of groundwater pollution intensity and hydraulic conductivity field

More Information
  • 在制定地下水污染修复方案时,污染源参数和渗透系数场是最重要的地下水数值模型参数,但前人研究多集中于单一类型参数的识别。文章中采用地下水污染物运移模型(MT3DMS)和数据同化方法(迭代局部更新集合平滑器,ILUES)构成地下水污染源识别的求解框架,并利用Karhunen-Loève展开技术实现渗透系数场的参数降维,最后通过同化水头与浓度数据实现地下水污染源强和渗透系数场的联合反演。结果表明:(1)ILUES算法能精确识别污染源参数和渗透系数场,并且具有很高的普适性;(2)精确表征渗透系数在空间上呈现出的非均质性,是预测污染物迁移路径、反演污染强度的关键;(3)ILUES算法参数影响着反演效果,综合考虑计算效率和计算精度等,可以得到算例的最佳样本集合大小(Ne=4000)和ILUES算法最佳参数组合(局部临近样本集合占比α=0.4,相对权重b=4)。但在实际工程案例中,如果对精度的要求不是过高,经验组合(α=0.1,b=1)更值得推荐。研究结果对于区域地下水资源调查、评价和管理等工作具有较强的实践意义,并可为后期地下水污染预测及地下水监测井网优化提供技术支撑。

  • 加载中
  • 图 1  含水层结构平面图(S1、S2和S3为 3 个污染源位置)

    Figure 1. 

    图 2  含水层渗透系数场

    Figure 2. 

    图 3  污染源释放强度反演图

    Figure 3. 

    图 4  不同Ne值下渗透系数场的估计结果

    Figure 4. 

    图 5  不同Ne下的RMSEAES的变化趋势图

    Figure 5. 

    图 6  不同(α, b)参数组合下的估计渗透系数场的RMSE

    Figure 6. 

    图 7  2 种(αb)参数组合下渗透系数场的估计结果

    Figure 7. 

    表 1  含水层的水文地质特征

    Table 1.  Hydrogeological features of aquifers

    参数名称 单位 参数值
    含水层厚度 m 1.0
    孔隙度 无量纲 0.3
    纵向弥散度 m 2.0
    横向弥散度 m 0.6
    下载: 导出CSV

    表 2  污染源释放强度参数的真实值及先验区间

    Table 2.  True values and a priori interval of the pollution source release intensity parameter

    应力期 先验区间 污染源源强/(kg·d−1
    S1 S2 S3
    SP1 [20,100] 98.0 54.0 30.0
    SP2 [20,100] 87.0 78.0 39.0
    SP3 [20,100] 74.0 64.0 46.0
    SP4 [20,100] 61.0 85.0 57.0
    SP5 [20,100] 47.0 71.0 66.0
    SP6 [20,100] 39.0 61.0 71.0
    SP7 [20,100] 31.0 45.0 79.0
    SP8 [20,100] 24.0 89.0 83.0
    下载: 导出CSV
  • [1]

    刘长礼,王秀艳,赵悦文,等. 一种岩溶地下水污染风险的源径标值评价方法[J]. 地球学报,2021,42(3):363 − 372. [LIU Changli,WANG Xiuyan,ZHAO Yuewen,et al. A method for evaluation of pollution risk of Karst groundwater by source runoff[J]. Acta Geoscientica Sinica,2021,42(3):363 − 372. (in Chinese with English abstract) doi: 10.3975/cagsb.2020.122101

    LIU Changli, WANG Xiuyan, ZHAO Yuewen, et al. A method for evaluation of pollution risk of Karst groundwater by source runoff[J]. Acta Geoscientica Sinica, 2021, 42(3): 363-372. (in Chinese with English abstract) doi: 10.3975/cagsb.2020.122101

    [2]

    王嘉瑜,蒲生彦,胡玥,等. 地下水污染风险预警等级及阈值确定方法研究综述[J]. 水文地质工程地质,2020,47(2):43 − 50. [WANG Jiayu,PU Shengyan,HU Yue,et al. Review on the determination methods for early warning grade and threshold of groundwater pollution risk[J]. Hydrogeology & Engineering Geology,2020,47(2):43 − 50. (in Chinese with English abstract)

    WANG Jiayu, PU Shengyan, HU Yue, et al. Review on the determination methods for early warning grade and threshold of groundwater pollution risk[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 43-50. (in Chinese with English abstract)

    [3]

    CHANG Zhenbo,LU Wenxi,WANG Zibo. A differential evolutionary Markov chain algorithm with ensemble smoother initial point selection for the identification of groundwater contaminant sources[J]. Journal of Hydrology,2021,603:126918. doi: 10.1016/j.jhydrol.2021.126918

    [4]

    MO Shaoxing, ZABARAS N, SHI Xiaoqing, et al. Deep autoregressive neural networks for high-dimensional inverse problems in groundwater contaminant source identification[J]. Water Resources Research, 2019, 55(5): 3856 − 3881.

    [5]

    郝辰宇. 基于自适应替代模型的地下水数据同化研究[D]. 杭州: 浙江大学, 2021

    HAO Chenyu. An adaptive surrogate based method for groundwater data assimilation[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract)

    [6]

    王波,王宇,张贵,等. 滇东南泸江流域岩溶地下水质量及污染影响因素研究[J]. 地球学报,2021,42(3):352 − 362. [WANG Bo,WANG Yu,ZHANG Gui,et al. A study of quality and pollution factors of Karst groundwater in Lujiang River Basin in southeast Yunnan[J]. Acta Geoscientica Sinica,2021,42(3):352 − 362. (in Chinese with English abstract) doi: 10.3975/cagsb.2020.070701

    WANG Bo, WANG Yu, ZHANG Gui, et al. A study of quality and pollution factors of Karst groundwater in Lujiang River Basin in southeast Yunnan[J]. Acta Geoscientica Sinica, 2021, 42(3): 352-362. (in Chinese with English abstract) doi: 10.3975/cagsb.2020.070701

    [7]

    宗成元,康学远,施小清,等. 基于多点地质统计与集合平滑数据同化方法识别非高斯渗透系数场[J]. 水文地质工程地质,2020,47(2):1 − 8. [ZONG Chengyuan,KANG Xueyuan,SHI Xiaoqing,et al. Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method[J]. Hydrogeology & Engineering Geology,2020,47(2):1 − 8. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906018

    ZONG Chengyuan, KANG Xueyuan, SHI Xiaoqing, et al. Characterization of non-Gaussian hydraulic conductivity fields using multiple-point geostatistics and ensemble smoother with multiple data assimilation method[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 1-8. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906018

    [8]

    ZHANG Ruicheng,ZHOU Nianqing,XIA Xuemin,et al. Joint estimation of hydraulic and biochemical parameters for reactive transport modelling with a modified ILUES algorithm[J]. Water,2020,12(8):2161. doi: 10.3390/w12082161

    [9]

    THEODOSSIOU N P. Application of non-linear simulation and optimisation models in groundwater aquifer management[J]. Water Resources Management,2004,18(2):125 − 141. doi: 10.1023/B:WARM.0000024723.17916.64

    [10]

    胡鹏,文章,胡新丽,等. 基于遗传算法-支持向量机的滑坡渗透系数反演[J]. 水文地质工程地质,2021,48(4):160 − 168. [HU Peng,WEN Zhang,HU Xinli,et al. Estimation of hydraulic conductivity of landslides based on support vector machine method optimized with genetic algorithm[J]. Hydrogeology & Engineering Geology,2021,48(4):160 − 168. (in Chinese with English abstract)

    HU Peng, WEN Zhang, HU Xinli, et al. Estimation of hydraulic conductivity of landslides based on support vector machine method optimized with genetic algorithm[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 160-168. (in Chinese with English abstract)

    [11]

    宋健,杨蕴,吴剑锋,等. 混合多目标遗传算法求解地下水污染修复管理模型[J]. 环境科学学报,2016,36(9):3428 − 3435. [SONG Jian,YANG Yun,WU Jianfeng,et al. A new hybrid multi-objective genetic algorithm for optimal design of groundwater remediation systems[J]. Acta Scientiae Circumstantiae,2016,36(9):3428 − 3435. (in Chinese with English abstract)

    SONG Jian, YANG Yun, WU Jianfeng, et al. A new hybrid multi-objective genetic algorithm for optimal design of groundwater remediation systems[J]. Acta Scientiae Circumstantiae, 2016, 36(9): 3428-3435. (in Chinese with English abstract)

    [12]

    江思珉,朱国荣,胡西嘉,等. 单纯形—模拟退火混合算法反求水文地质参数及其并行求解[J]. 地质论评,2007,53(1):92 − 97. [JIANG Simin,ZHU Guorong,HU Xijia,et al. Hybrid simplex−simulated annealing method for solving hydrogeologic parameters and its parallel implementation[J]. Geological Review,2007,53(1):92 − 97. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2007.01.012

    JIANG Simin, ZHU Guorong, HU Xijia, et al. Hybrid simplex—simulated annealing method for solving hydrogeologic parameters and its parallel implementation[J]. Geological Review, 2007, 53(1): 92-97. (in Chinese with English abstract) doi: 10.3321/j.issn:0371-5736.2007.01.012

    [13]

    罗腾,冯晅,郭智奇,等. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版),2019,49(5):1466 − 1476. [LUO Teng,FENG Xuan,GUO Zhiqi,et al. Seismic inversion of anisotropy parameters of fractured reservoirs by simulated annealing and particle swarm optimization[J]. Journal of Jilin University (Earth Science Edition),2019,49(5):1466 − 1476. (in Chinese with English abstract)

    LUO Teng, FENG Xuan, GUO Zhiqi, et al. Seismic inversion of anisotropy parameters of fractured reservoirs by simulated annealing and particle swarm optimization[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5): 1466-1476. (in Chinese with English abstract)

    [14]

    江思珉,朱国荣,施小清,等. 水文地质参数反演的Hooke-Jeeves粒子群混合算法[J]. 水科学进展,2010,21(5):606 − 612. [JIANG Simin,ZHU Guorong,SHI Xiaoqing,et al. Inverse analysis of hydrogeological parameters using hybrid Hooke-Jeeves and particle swarm optimization method[J]. Advances in Water Science,2010,21(5):606 − 612. (in Chinese with English abstract)

    JIANG Simin, ZHU Guorong, SHI Xiaoqing, et al. Inverse analysis of hydrogeological parameters using hybrid Hooke-Jeeves and particle swarm optimization method[J]. Advances in Water Science, 2010, 21(5): 606-612. (in Chinese with English abstract)

    [15]

    李小兰,曾献奎,王栋,等. 基于优化-自适应稀疏网格替代模型的地下水模拟参数不确定性分析[J]. 吉林大学学报(地球科学版),2022,52(4):1234 − 1243. [LI Xiaolan,ZENG Xiankui,WANG Dong,et al. Uncertainty analysis of groundwater simulation parameters based on optimized-adaptive sparse grid surrogate model[J]. Journal of Jilin University (Earth Science Edition),2022,52(4):1234 − 1243. (in Chinese with English abstract)

    LI Xiaolan, ZENG Xiankui, WANG Dong, et al. Uncertainty analysis of groundwater simulation parameters based on optimized-adaptive sparse grid surrogate model[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(4): 1234-1243. (in Chinese with English abstract)

    [16]

    ZHANG Jiangjiang,ZENG Lingzao,CHEN Cheng,et al. Efficient Bayesian experimental design for contaminant source identification[J]. Water Resources Research,2015,51(1):576 − 598. doi: 10.1002/2014WR015740

    [17]

    LI Liangping,PUZEL R,DAVIS A. Data assimilation in groundwater modelling:ensemble Kalman filter versus ensemble smoothers[J]. Hydrological Processes,2018,32(13):2020 − 2029. doi: 10.1002/hyp.13127

    [18]

    XUE Liang,ZHANG Dongxiao. A multimodel data assimilation framework via the ensemble Kalman filter[J]. Water Resources Research,2014,50(5):4197 − 4219. doi: 10.1002/2013WR014525

    [19]

    LI Liangping,STETLER L,CAO Zhendan,et al. An iterative normal-score ensemble smoother for dealing with non-Gaussianity in data assimilation[J]. Journal of Hydrology,2018,567:759 − 766. doi: 10.1016/j.jhydrol.2018.01.038

    [20]

    ZHANG Jiangjiang,LIN Guang,LI Weixuan,et al. An iterative local updating ensemble smoother for estimation and uncertainty assessment of hydrologic model parameters with multimodal distributions[J]. Water Resources Research,2018,54(3):1716 − 1733. doi: 10.1002/2017WR020906

    [21]

    贺楠楠. 基于污染源泄漏速率反演识别的地下水监测网优化研究[D]. 长春: 吉林大学, 2021

    HE Nannan. Study on optimization of groundwater monitoring network based on identification of pollution source leak rate[D]. Changchun: Jilin University, 2021. (in Chinese with English abstract)

    [22]

    HARBAUGH A W, BANTA E, HILL M, et al. MODFLOW-2000, the U. S. geological survey modular ground-water flow model-User guide to modularization concepts and the ground-water flow process[R]. U. S. Geological Survey Open-File Report 00-92. USA: U. S. Geological Survey, 2000.

    [23]

    ZHENG C, WANG P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide[R]. U. S. Army Engineer Research and Development Center Contract Report SERDP-99-1. USA: U. S. Army Engineer Research and Development Center, 1999.

    [24]

    EMERICK A A,REYNOLDS A C. Ensemble smoother with multiple data assimilation[J]. Computers & Geosciences,2013,55:3 − 15.

    [25]

    张瑞城,周念清,江思珉,等. ILUES算法融合ERT数据反演污染源参数与渗透系数场[J]. 同济大学学报(自然科学版),2022,50(2):223 − 230. [ZHANG Ruicheng,ZHOU Nianqing,JIANG Simin,et al. Estimation of contaminant source parameters and hydraulic conductivity field by assimilating electrical resistance tomography data with iterative local updating ensemble smoother algorithm[J]. Journal of Tongji University (Natural Science),2022,50(2):223 − 230. (in Chinese with English abstract)

    ZHANG Ruicheng, ZHOU Nianqing, JIANG Simin, et al. Estimation of contaminant source parameters and hydraulic conductivity field by assimilating electrical resistance tomography data with iterative local updating ensemble smoother algorithm[J]. Journal of Tongji University (Natural Science), 2022, 50(2): 223-230. (in Chinese with English abstract)

    [26]

    张江江. 地下水污染源解析的贝叶斯监测设计与参数反演方法[D]. 杭州: 浙江大学, 2017

    ZHANG Jiangjiang. Bayesian monitoring design and parameter inversion for groundwater contaminant source identification[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)

    [27]

    夏学敏. 融合机器学习与数据同化反演地下水污染源与模型参数[D]. 上海: 同济大学, 2021

    XIA Xuemin. Groundwater contamination source and model parameter inversion based on machine learning and data assimilation[D].Shanghai: Tongji University, 2021. (in Chinese with English abstract)

  • 加载中

(7)

(2)

计量
  • 文章访问数:  529
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2022-08-17
修回日期:  2022-09-24
刊出日期:  2023-07-15

目录