基于InVEST模型的张承地区水源涵养功能时空变化特征

马靖宣, 金晓媚, 张绪财, 殷秀兰, 金爱芳. 基于InVEST模型的张承地区水源涵养功能时空变化特征[J]. 水文地质工程地质, 2023, 50(3): 54-64. doi: 10.16030/j.cnki.issn.1000-3665.202208084
引用本文: 马靖宣, 金晓媚, 张绪财, 殷秀兰, 金爱芳. 基于InVEST模型的张承地区水源涵养功能时空变化特征[J]. 水文地质工程地质, 2023, 50(3): 54-64. doi: 10.16030/j.cnki.issn.1000-3665.202208084
MA Jingxuan, JIN Xiaomei, ZHANG Xucai, YIN Xiulan, JIN Aifang. Spatio-temporal change characteristics of water conservation function in the Zhang-Cheng district based on the InVEST model[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 54-64. doi: 10.16030/j.cnki.issn.1000-3665.202208084
Citation: MA Jingxuan, JIN Xiaomei, ZHANG Xucai, YIN Xiulan, JIN Aifang. Spatio-temporal change characteristics of water conservation function in the Zhang-Cheng district based on the InVEST model[J]. Hydrogeology & Engineering Geology, 2023, 50(3): 54-64. doi: 10.16030/j.cnki.issn.1000-3665.202208084

基于InVEST模型的张承地区水源涵养功能时空变化特征

  • 基金项目: 国家自然科学基金项目(41372250);行政事业类专项项目(121201014000150003)
详细信息
    作者简介: 马靖宣(1998-),男,硕士研究生,主要从事生态水文地质与水环境遥感等研究。E-mail:mjx_1998@163.com
    通讯作者: 金晓媚(1968-),女,博士,教授,博士生导师,主要从事生态水文地质与水环境遥感等研究。E-mail:jinxm@cugb.edu.cn
  • 中图分类号: P641.8;P333

Spatio-temporal change characteristics of water conservation function in the Zhang-Cheng district based on the InVEST model

More Information
  • 水源涵养作为重要的生态系统服务功能之一,对张家口和承德地区的生态系统及用水安全有着重要的意义。为了改进以往研究中对地形及土壤渗透性等考虑不足、对数据空间异质性分析不充分等问题,文章基于生态系统服务和权衡的综合评估模型(integrated valuation of ecosystem services and tradeoffs,InVEST),使用多种高精度的遥感、再分析数据等产品,对2001—2020年张承地区的水源涵养功能进行定量化评价及驱动因素分析。研究发现,2001—2020年张承地区水源涵养功能空间分布上呈现坝下高坝上低的特点,各年水源涵养功能的空间分布存在差异性的同时也具有一定的相似性。时间变化上,20年间水源涵养深度以−0.08 mm/a的平均速率呈下降波动趋势。结合Sen+Mann-Kendall分析发现区内水源涵养功能变化趋势以“基本不变”、“轻微增长”、“轻微降低”三者为主,总占比近98%。区内降水量对水源涵养功能具有很强的显著正相关关系,气温对水源涵养功能在部分地区具有显著负相关关系,植被与水源涵养功能的关系相对复杂。张承地区2020年林地的水源涵养功能最强,水源涵养深度达28.64 mm,总量而言,草地水源涵养功能的贡献最大,水源涵养量达1.12×109 m3。20年间变化中,耕地水源涵养量的降低最为明显,变化速率达−6.49×106 m3/a。上述结果说明张承地区20年间水源涵养功能的时空特征主要受到降水量与植被型土地利用的控制。研究为张承地区生态建设及水资源管理提供重要的决策依据。

  • 加载中
  • 图 1  张承地区位置及2020年土地利用类型

    Figure 1. 

    图 2  2001—2020年张承地区水源涵养功能空间分布

    Figure 2. 

    图 3  张承地区水源涵养功能年际变化趋势及Sen+Mann-Kendall变化分级

    Figure 3. 

    图 4  张承地区水源涵养功能与降水量、气温及NDVI的相关性空间分布

    Figure 4. 

    图 5  张承地区2020年不同土地利用的水源涵养深度

    Figure 5. 

    表 1  参数栅格数据信息

    Table 1.  Raster data information

    参数栅格数据数据来源原始空间
    分辨率/m
    原始时间
    分辨率
    降水量ERA5-Land再分析产品[32]11132
    气温ERA5-Land再分析产品[32]11132
    土壤厚度ISRIC数据产品[33]250静态数据
    植物可利用水分容量ISRIC数据产品[33]250静态数据
    土壤饱和导水率Zhang等[34]1000静态数据
    参考蒸散量MOD16A2产品5008 d
    土地利用类型MCD12Q1产品500
    NDVIMOD13A1产品50016 d
    地表高程SRTM DEM产品90静态数据
    下载: 导出CSV

    表 2  各土地利用类型参数

    Table 2.  Parameters for each land use

    土地利用一级分类土地利用类型最大根系深度/mm蒸散系数流速系数
    林地常绿针叶林7 0001.00200
    落叶针叶林3 1001.00200
    落叶阔叶林3 1001.00180
    针阔混交林4 8001.00200
    灌木丛2 0000.90249
    草地多树草原2 6000.85300
    稀树草原2 3000.75400
    草地2 0000.75500
    耕地农田1 5000.80400
    水域湿地1 0001.202 012
    水体11.002 012
    城建用地城建用地10.252 012
    未利用土地未利用土地2000.301 500
    下载: 导出CSV

    表 3  张承地区水源涵养功能变化趋势分级统计

    Table 3.  Classification statistics on the trends of water conservation function in the Zhang-Cheng district

    Sen's slopeZ变化趋势分级面积占比/%平均变化趋势/(mm·a−1
    β >0.1|Z | >1.96显著增长1.110.70
    β >0.1|Z | ≤1.96轻微增长32.880.30
    |β |≤0.1基本不变35.100.01
    β <−0.1|Z | ≤1.96轻微降低29.87−0.54
    β <−0.1|Z | >1.96显著降低1.04−1.25
    下载: 导出CSV

    表 4  张承地区水源涵养功能驱动因素相关性分级面积占比

    Table 4.  Classification area proportion of correlations between water conservation function and driving factors in the Zhang-Cheng district /%

    驱动因素正相关(r>0)相关性不显著 (p≥0.05)
    或不相关(r=0)
    负相关(r<0)
    极显著正相关(p≤0.01)显著正相关(0.01<p<0.05)显著负相关(0.01<p<0.05)极显著负相关(p≤0.01)
    降水99.760.080.160.000.00
    气温0.000.0042.9531.1225.92
    NDVI0.593.8295.470.110.01
    下载: 导出CSV

    表 5  张承地区不同土地利用的水源涵养功能及其变化

    Table 5.  Water conservation functions and changes in different land uses in the Zhang-Cheng district

    土地利用2020年水源涵养功能2001—2020年变化
    平均水源涵养深度/mm水源涵养量/(106 m3面积/km2水源涵养量/(106 m3水源涵养量回归趋势/(106 m3·a−1
    林地28.64199.092 266.68−43.111.80
    草地19.491 119.97−1 296.32416.76−1.53
    耕地25.16280.20−1 056.87−85.42−6.49
    水域0.000.0018.210.000.00
    城建用地8.975.3485.373.230.08
    未利用土地1.450.05−17.070.030.00
    下载: 导出CSV
  • [1]

    王云飞,叶爱中,乔飞,等. 水源涵养内涵及估算方法综述[J]. 南水北调与水利科技:中英文,2021,19(6):1041 − 1071. [WANG Yunfei,YE Aizhong,QIAO Fei,et al. Review on connotation and estimation method of water conservation[J]. South-to-North Water Transfers and Water Science & Technology,2021,19(6):1041 − 1071. (in Chinese with English abstract)

    [2]

    龚诗涵,肖洋,郑华,等. 中国生态系统水源涵养空间特征及其影响因素[J]. 生态学报,2017,37(7):2455 − 2462. [GONG Shihan,XIAO Yang,ZHENG Hua,et al. Spatial patterns of ecosystem water conservation in China and its impact factors analysis[J]. Acta Ecologica Sinica,2017,37(7):2455 − 2462. (in Chinese with English abstract)

    [3]

    吕乐婷,任甜甜,孙才志,等. 1980—2016年三江源国家公园水源供给及水源涵养功能时空变化研究[J]. 生态学报,2020,40(3):993 − 1003. [LÜ Leting,REN Tiantian,SUN Caizhi,et al. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016[J]. Acta Ecologica Sinica,2020,40(3):993 − 1003. (in Chinese with English abstract)

    [4]

    LI Mingyue,LIANG Dong,XIA Jun,et al. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains,China based on InVEST model[J]. Journal of Environmental Management,2021,286:112212. doi: 10.1016/j.jenvman.2021.112212

    [5]

    BENRA F,FRUTOS A D,GAGLIO M,et al. Mapping water ecosystem services:Evaluating InVEST model predictions in data scarce regions[J]. Environmental Modelling & Software,2021,138:104982.

    [6]

    ABOUABDILLAH A,WHITE M,ARNOLD J G,et al. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT[J]. Soil Use and Management,2014,30(4):539 − 549. doi: 10.1111/sum.12146

    [7]

    刘景红,郑晓,樊俊美,等. 基于SWAT模型的浑河中上游水源涵养服务价值评估[J]. 应用生态学报,2021,32(11):3905 − 3912. [LIU Jinghong,ZHENG Xiao,FAN Junmei,et al. Evaluation of the value of water retention service in the middle and upper reaches of Hunhe River based on SWAT Model[J]. Chinese Journal of Applied Ecology,2021,32(11):3905 − 3912. (in Chinese with English abstract)

    [8]

    王晓学,李叙勇,莫菲,等. 基于元胞自动机的森林水源涵养量模型新方法—概念与理论框架[J]. 生态学报,2010,30(20):5491 − 5500. [WANG Xiaoxue,LI Xuyong,MO Fei,et al. Exploration of a new modeling method for forest water conservation based on cellular automata:Concept and theoretical framework[J]. Acta Ecologica Sinica,2010,30(20):5491 − 5500. (in Chinese with English abstract)

    [9]

    CHEN J M,CHEN Xiaoyong,JU Weimin,et al. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs[J]. Journal of Hydrology,2005,305(1):15 − 39.

    [10]

    JORDA-CAPDEVILA D,GAMPE D,GARCÍA V H,et al. Impact and mitigation of global change on freshwater-related ecosystem services in Southern Europe[J]. Science of the Total Environment,2019,651:895 − 908. doi: 10.1016/j.scitotenv.2018.09.228

    [11]

    SCORDO F,LAVENDER T M,SEITZ C,et al. Modeling water yield:Assessing the role of site and region-specific attributes in determining model performance of the invest seasonal water yield model[J]. Water,2018,10(11):1496. doi: 10.3390/w10111496

    [12]

    杨洁,谢保鹏,张德罡. 基于InVEST模型的黄河流域产水量时空变化及其对降水和土地利用变化的响应[J]. 应用生态学报,2020,31(8):2731 − 2739. [YANG Jie,XIE Baopeng,ZHANG Degang. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model[J]. Chinese Journal of Applied Ecology,2020,31(8):2731 − 2739. (in Chinese with English abstract)

    [13]

    刘宥延,刘兴元,张博,等. 基于InVEST模型的黄土高原丘陵区水源涵养功能空间特征分析[J]. 生态学报,2020,40(17):6161 − 6170. [LIU Youyan,LIU Xingyuan,ZHANG Bo,et al. Spatial features analysis of water conservation function in the hilly areas of the Loess Plateau based on InVEST model[J]. Acta Ecologica Sinica,2020,40(17):6161 − 6170. (in Chinese with English abstract)

    [14]

    LIU Run,NIU Xiang,WANG Bing,et al. InVEST model-based spatiotemporal analysis of water supply services in the zhangcheng district[J]. Forests,2021,12(8):1082. doi: 10.3390/f12081082

    [15]

    李怡颖,范继辉,廖莹. 基于InVEST模型的张家口市水源涵养功能时空差异分析[J]. 草业科学,2020,37(7):1313 − 1324. [LI Yiying,FAN Jihui,LIAO Ying. Analysis of spatial and temporal differences in water conservation function in Zhangjiakou based on the InVEST model[J]. Pratacultural Science,2020,37(7):1313 − 1324. (in Chinese with English abstract) doi: 10.11829/j.issn.1001-0629.2020-0090

    [16]

    张薇,王凤春,贾悦,等. 张承水源涵养区土地利用演变及产水量的响应[J]. 中国农村水利水电,2022(5):138 − 146. [ZHANG Wei,WANG Fengchun,JIA Yue,et al. Land use evolution and water yield response in zhangcheng water source conservation area[J]. China Rural Water and Hydropower,2022(5):138 − 146. (in Chinese with English abstract)

    [17]

    王盛,李亚文,李庆,等. 变化环境影响下张承地区水源涵养和土壤保持服务及其权衡与协同关系研究[J]. 生态学报,2022,42(13):5391 − 5403. [WANG Sheng,LI Yawen,LI Qing,et al. Water and soil conservation and their trade-off and synergistic relationship under changing environment in Zhangjiakou-Chengde area[J]. Acta Ecologica Sinica,2022,42(13):5391 − 5403. (in Chinese with English abstract)

    [18]

    邵雅琪,姜群鸥,胡中民,等. 张承地区植被指数时空演变特征及其与气候因子的关系[J]. 中国农业大学学报,2018,23(7):96 − 106. [SHAO Yaqi,JIANG Qun’ou,HU Zhongmin,et al. Spatio-temporal evolution of the vegetation index and its relationship with climatic factors in the Zhangjiakou-Chengde Region[J]. Journal of China Agricultural University,2018,23(7):96 − 106. (in Chinese with English abstract) doi: 10.11841/j.issn.1007-4333.2018.07.11

    [19]

    傅抱璞. 论陆面蒸发的计算[J]. 大气科学,1981,5(1):23 − 31. [FU Baopu. On the calculation of the evaporation from land surface[J]. Chinese Journal of Atmospheric Sciences,1981,5(1):23 − 31. (in Chinese with English abstract) doi: 10.3878/j.issn.1006-9895.1981.01.03

    [20]

    ZHANG L,HICKEL K,DAWES W R,et al. A rational function approach for estimating mean annual evapotranspiration[J]. Water Resources Research,2004,40(2):W02502.

    [21]

    ZHANG L,DAWES W R,WALKER G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale[J]. Water Resources Research,2001,37(3):701 − 708. doi: 10.1029/2000WR900325

    [22]

    SHARP R, DOUGLASS J, WOLNY S, et al. InVEST 3.10.2.post17+ug.g0e9e2ef user’s guide[R]. The Natural Capital Project, Standford University, University of Minnesota, the Nature Conservancy, World Wildlife Fund: Standford, CA, USA, 2020.

    [23]

    傅斌,徐佩,王玉宽,等. 都江堰市水源涵养功能空间格局[J]. 生态学报,2013,33(3):789 − 797. [FU Bin,XU Pei,WANG Yukuan,et al. Spatial pattern of water retetnion in Dujiangyan County[J]. Acta Ecologica Sinica,2013,33(3):789 − 797. (in Chinese with English abstract) doi: 10.5846/stxb201203260410

    [24]

    刘娇,郎学东,苏建荣,等. 基于InVEST模型的金沙江流域干热河谷区水源涵养功能评估[J]. 生态学报,2021,41(20):8099 − 8111. [LIU Jiao,LANG Xuedong,SU Jianrong,et al. Evaluation of water conservation function in the dry-hot valley area of Jinsha River Basin based on InVEST model[J]. Acta Ecologica Sinica,2021,41(20):8099 − 8111. (in Chinese with English abstract)

    [25]

    CHEN Junhe,WANG Dongchuan,LI Guodong,et al. Spatial and temporal heterogeneity analysis of water conservation in Beijing-Tianjin-Hebei urban agglomeration based on the geodetector and spatial elastic coefficient trajectory models[J]. Geohealth,2020,4(8):e2020GH000248.

    [26]

    白杨. 武汉城市圈城市化进程对水源涵养功能影响变化研究[D]. 海口: 海南大学, 2014

    BAI Yang. The research on the influence of urbanization on water conservation function in wuhan city circle[D]. Haikou: Hainan University, 2014. (in Chinese with English abstract)

    [27]

    张绪财. 格尔木河流域植被动态变化及影响因素分析[D]. 北京: 中国地质大学(北京), 2019

    ZHANG Xucai. Analysis of vegetation dynamics and its impact factors in the Golmud River Basin[D]. Beijing: China University of Geosciences (Beijing), 2019. (in Chinese with English abstract)

    [28]

    ZHANG Xucai,JIN Xiaomei. Vegetation dynamics and responses to climate change and anthropogenic activities in the Three-River Headwaters Region,China[J]. Ecological Indicators,2021,131:108223. doi: 10.1016/j.ecolind.2021.108223

    [29]

    蔡博峰,于嵘. 基于遥感的植被长时序趋势特征研究进展及评价[J]. 遥感学报,2009,13(6):1170 − 1186. [CAI Bofeng,YU Rong. Advance and evaluation in the long time series vegetation trends research based on remote sensing[J]. Journal of Remote Sensing,2009,13(6):1170 − 1186. (in Chinese with English abstract)

    [30]

    DA SILVA R M,SANTOS C A G,MOREIRA M,et al. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin[J]. Natural Hazards,2015,77(2):1205 − 1221. doi: 10.1007/s11069-015-1644-7

    [31]

    甘海洪,金晓媚,张绪财,等. 三江源区蒸散量的时空分布特征[J]. 现代地质,2021,35(3):665 − 674. [GAN Haihong,JIN Xiaomei,ZHANG Xucai,et al. Temporal and spatial distribution of evapotranspiration in the Sanjiangyuan Region[J]. Geoscience,2021,35(3):665 − 674. (in Chinese with English abstract)

    [32]

    SABATER J M. ERA5-Land monthly averaged data from 1981 to present[DB]. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), 2019, 146: 1999-2049.

    [33]

    HENGL T,MENDES DE JESUS J,HEUVELINK G B M,et al. Soil grids 250 m:Global gridded soil information based on machine learning[J]. PLoS One,2017,12(2):e0169748. doi: 10.1371/journal.pone.0169748

    [34]

    ZHANG Yonggen,SCHAAP M G,ZHA Yuanyuan. A high-resolution global map of soil hydraulic properties produced by a hierarchical parameterization of a physically based water retention model[J]. Water Resources Research,2018,54(12):9774 − 9790. doi: 10.1029/2018WR023539

    [35]

    包玉斌,李婷,柳辉,等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究,2016,35(4):664 − 676. [BAO Yubin,LI Ting,LIU Hui,et al. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi Province by InVEST model[J]. Geographical Research,2016,35(4):664 − 676. (in Chinese with English abstract)

    [36]

    MO Wenbo,ZHAO Yunlin,YANG Nan,et al. Effects of climate and land use/land cover changes on water yield services in the dongjiang lake basin[J]. ISPRS International Journal of Geo-Information,2021,10(7):466. doi: 10.3390/ijgi10070466

    [37]

    金晓媚,王松涛,夏薇. 柴达木盆地植被对气候与地下水变化的响应研究[J]. 水文地质工程地质,2016,43(2):31 − 36. [JIN Xiaomei,WANG Songtao,XIA Wei. Response of vegetation to variation in climate and groundwater in the Qaidam Basin[J]. Hydrogeology & Engineering Geology,2016,43(2):31 − 36. (in Chinese with English abstract)

    [38]

    党学亚,卢娜,顾小凡,等. 柴达木盆地生态植被的地下水阈值[J]. 水文地质工程地质,2019,46(3):1 − 8. [DANG Xueya,LU Na,GU Xiaofan,et al. Groundwater threshold of ecological vegetation in Qaidam Basin[J]. Hydrogeology & Engineering Geology,2019,46(3):1 − 8. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.03.01

    [39]

    金晓媚,万力,张幼宽,等. 银川平原植被生长与地下水关系研究[J]. 地学前缘,2007,14(3):197 − 203. [JIN Xiaomei,WAN Li,ZHANG Youkuan,et al. A study of the relationship between vegetation growth and groundwater in the Yinchuan Plain[J]. Earth Science Frontiers,2007,14(3):197 − 203. (in Chinese with English abstract) doi: 10.3321/j.issn:1005-2321.2007.03.018

  • 加载中

(5)

(5)

计量
  • 文章访问数:  1094
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2022-08-17
修回日期:  2022-09-16
刊出日期:  2023-05-15

目录