考虑水体面积变化的鄱阳湖平原区地表-地下水相互作用模拟

姜文瑜, 刘波, 邓月萍, 李云良, 束龙仓, 王文鹏. 考虑水体面积变化的鄱阳湖平原区地表-地下水相互作用模拟[J]. 水文地质工程地质, 2023, 50(4): 95-104. doi: 10.16030/j.cnki.issn.1000-3665.202209048
引用本文: 姜文瑜, 刘波, 邓月萍, 李云良, 束龙仓, 王文鹏. 考虑水体面积变化的鄱阳湖平原区地表-地下水相互作用模拟[J]. 水文地质工程地质, 2023, 50(4): 95-104. doi: 10.16030/j.cnki.issn.1000-3665.202209048
JIANG Wenyu, LIU Bo, DENG Yueping, LI Yunliang, SHU Longcang, WANG Wenpeng. Simulation of surface water - groundwater interaction in the plain area of the Poyang Lake considering the change of water body area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 95-104. doi: 10.16030/j.cnki.issn.1000-3665.202209048
Citation: JIANG Wenyu, LIU Bo, DENG Yueping, LI Yunliang, SHU Longcang, WANG Wenpeng. Simulation of surface water - groundwater interaction in the plain area of the Poyang Lake considering the change of water body area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 95-104. doi: 10.16030/j.cnki.issn.1000-3665.202209048

考虑水体面积变化的鄱阳湖平原区地表-地下水相互作用模拟

  • 基金项目: 江西省水利厅科技项目(202223YBKT31;202324YBKT13);中央高校基本科研业务费项目(B220201028);国家重点研发计划项目(2021YFC3200502)
详细信息
    作者简介: 姜文瑜(1999-),女,硕士研究生,主要从事地下水数值模拟研究。E-mail: jiangwenyu1999@163.com
    通讯作者: 刘波(1980-),女,博士,副教授,主要从事地下水资源评价及模拟研究。E-mail: liubohhu@hhu.edu.cn
  • 中图分类号: P641

Simulation of surface water - groundwater interaction in the plain area of the Poyang Lake considering the change of water body area

More Information
  • 湖泊的水情变化会影响其与地下水之间的物理水文过程和生态行为,鄱阳湖独特的“河湖相”转换特征使得该地区地表-地下水交换过程更加复杂。采用Visual MODFLOW构建三维非稳定流地下水流数值模型,利用LAK3子程序模块,通过输入五河入湖以及鄱阳湖流入长江的水量,实现湖水面积的动态模拟。结果表明,2019年湖水位模拟值与实测值的均方根误差为0.225 m,地下水水位模拟值与实测值的均方根误差为0.571 m;模型模拟鄱阳湖水面积环比变幅−41%~83%,与遥感影像结论吻合。该模型减少了湖泊作为边界条件的约束,可以有效刻画鄱阳湖频繁变化的湖水位和水体面积,准确模拟地下水流场和地表-地下水相互作用关系对湖泊水体高度动态变化的响应。枯水期主要由地下水补给湖水,交换量为2.03×107~10.58×107 m3/mon;丰水期湖水补给地下水,交换量为2.04×107~16.53×107 m3/mon,湖区及周边地下水水位相比枯水期平均抬升2~3 m,地下水由湖区流向周边地区。本研究为地表水体剧烈变化地区提供了有效的数值模拟方法,研究结果可为鄱阳湖平原区未来水资源管理和环境评价提供基础。

  • 加载中
  • 图 1  研究区水文地质图和剖面图

    Figure 1. 

    图 2  模型范围、边界类型以及模型渗透系数分区

    Figure 2. 

    图 3  Obs1、Obs2、Obs3地下水水位模拟值与观测值对比及湖水位模拟值与观测值对比图

    Figure 3. 

    图 4  鄱阳湖遥感影像水体信息提取图及水面积模拟图

    Figure 4. 

    图 5  2019年1月和7月地下水流场模拟结果对比图

    Figure 5. 

    图 6  湖泊水均衡模拟结果图

    Figure 6. 

    图 7  研究区补排关系图

    Figure 7. 

    表 1  研究区各分区渗透系数取值

    Table 1.  The hydraulic conductivity values in each subdomain of the study area / (m·d−1

    参数区编号
    第1~3层渗透系数 0.1 5 15 20 35 15 25 5
    第4层渗透系数 10 10 20 25 35 20 25 15
    下载: 导出CSV
  • [1]

    杨中华,朱政涛,槐文信,等. 鄱阳湖水利调控对湖区典型丰枯水年水动力水质影响研究[J]. 水利学报,2018,49(2):156 − 167. [YANG Zhonghua,ZHU Zhengtao,HUAI Wenxin,et al. Study on the influence of Poyang Lake Hydraulic Project on hydrodynamics and water-quality in wet and dry year[J]. Journal of Hydraulic Engineering,2018,49(2):156 − 167. (in Chinese with English abstract)

    YANG Zhonghua, ZHU Zhengtao, HUAI Wenxin, et al. Study on the influence of Poyang Lake Hydraulic Project on hydrodynamics and water-quality in wet and dry year[J]. Journal of Hydraulic Engineering, 2018, 49(2): 156–167. (in Chinese with English abstract)

    [2]

    李刚,马佰衡,周仰效,等. 白洋淀湖岸带地表水与地下水垂向交换研究[J]. 水文地质工程地质,2021,48(4):48 − 54. [LI Gang,MA Baiheng,ZHOU Yangxiao,et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology,2021,48(4):48 − 54. (in Chinese with English abstract)

    LI Gang, MA Baiheng, ZHOU Yangxiao, et al. A study of vertical exchange between surface water and groundwater around the banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology, 2021, 48(4): 48–54. (in Chinese with English abstract)

    [3]

    PARIZI E,HOSSEINI S M,ATAIE-ASHTIANI B,et al. Quantifying lake–aquifer water exchange:The case of lake urmia,iran[J]. Hydrological Sciences Journal,2022,67(5):725 − 740. doi: 10.1080/02626667.2022.2044044

    [4]

    束龙仓,栾佳文,宫荣,等. 傍河地下水位监测断面的优化设计[J]. 吉林大学学报(地球科学版),2023,53(2):555 − 565. [SHU Longcang, LUAN Jiawen, GONG Rong, et al. Optimal design of monitoring section for groundwater level beside the river[J]. Journal of Jilin University (Earth Science Edition),2023,53(2):555 − 565. (in Chinese)

    [SHU Longcang, LUAN Jiawen, GONG Rong, et al. Optimal design of monitoring section for groundwater level beside the river[J]. Journal of Jilin University (Earth Science Edition),2023,53(2):555-565.(in Chinese)

    [5]

    龙爱华,邓铭江,谢蕾,等. 巴尔喀什湖水量平衡研究[J]. 冰川冻土,2011,36(6):1341 − 1352. [LONG Aihua,DENG Mingjiang,XIE Lei,et al. A study of the water balance of lake Balkhash[J]. Journal of Glaciology and Geocryology,2011,36(6):1341 − 1352. (in Chinese with English abstract)

    LONG Aihua, DENG Mingjiang, XIE Lei, et al. A study of the water balance of lake Balkhash[J]. Journal of Glaciology and Geocryology, 2011, 36(6): 1341–1352. (in Chinese with English abstract)

    [6]

    JAVADZADEH H,ATAIE-ASHTIANI B,HOSSEINI S M,et al. Interaction of lake-groundwater levels using cross-correlation analysis:A case study of Lake Urmia Basin,Iran[J]. Science of the Total Environment,2020,729:138822. doi: 10.1016/j.scitotenv.2020.138822

    [7]

    XU S,FREY S K,ERLER A R,et al. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model[J]. Journal of Hydrology,2021,594:125911. doi: 10.1016/j.jhydrol.2020.125911

    [8]

    陈静,李云良,周俊锋,等. 鄱阳湖洪泛区碟形湖湿地系统地表地下水交互作用[J]. 湖泊科学,2021,33(3):842 − 853. [CHEN Jing,LI Yunliang,ZHOU Junfeng,et al. Assessing surface water-groundwater interactions in the seasonal lake-wetland system of Lake Poyang[J]. Journal of Lake Sciences,2021,33(3):842 − 853. (in Chinese with English abstract) doi: 10.18307/2021.0317

    CHEN Jing, LI Yunliang, ZHOU Junfeng, et al. Assessing surface water-groundwater interactions in the seasonal lake-wetland system of Lake Poyang [J]. Journal of Lake Sciences, 2021, 33(3): 842–853. (in Chinese with English abstract) doi: 10.18307/2021.0317

    [9]

    李云良,姚静,谭志强,等. 鄱阳湖洪泛区碟形湖域与地下水转化关系分析[J]. 水文,2019,39(5):1 − 7. [LI Yunliang,YAO Jing,TAN Zhiqiang,et al. Interactions between typical sublakes and groundwater in floodplains of Poyang Lake[J]. Journal of China Hydrology,2019,39(5):1 − 7. (in Chinese with English abstract)

    LI Yunliang, YAO Jing, TAN Zhiqiang, et al. Interactions between typical sub—lakes and groundwater in floodplains of Poyang Lake [J]. Journal of China Hydrology, 2019, 39(5): 1–7. (in Chinese with English abstract)

    [10]

    LIAO Fu,WANG Guangcai,YI Lixin,et al. Applying radium isotopes to estimate groundwater discharge into Poyang Lake,the largest freshwater lake in China[J]. Journal of Hydrology,2020,585:124782. doi: 10.1016/j.jhydrol.2020.124782

    [11]

    LI Yunliang,ZHANG Qi,LU Jianrong,et al. Assessing surface water-groundwater interactions in a complex river‐floodplain wetland‐isolated lake system[J]. River Research and Applications,2019,35(1):25 − 36. doi: 10.1002/rra.3389

    [12]

    吴雯倩,靳孟贵. 淮北市地下水流数值模拟及水文地质参数不确定性分析[J]. 水文地质工程地质,2014,41(3):21 − 28. [WU Wenqian,JIN Menggui. Numerical simulation of groundwater flow near Huaibei and uncertainty analysis of the hydrogeological parameters[J]. Hydrogeology & Engineering Geology,2014,41(3):21 − 28. (in Chinese with English abstract)

    WU Wenqian, JIN Menggui. Numerical simulation of groundwater flow near Huaibei and uncertainty analysis of the hydrogeological parameters [J]. Hydrogeology & Engineering Geology, 2014, 41(3): 21–28. (in Chinese with English abstract)

    [13]

    兰盈盈,曾马荪,靳孟贵,等. 基于GMS鄱阳湖拟建枢纽对地下水影响探讨[J]. 水文,2015,35(6):37 − 41. [LAN Yingying,ZENG Masun,JIN Menggui,et al. Discussion on effects of proposed water structure on poyang lake groundwater using GMS[J]. Journal of China Hydrology,2015,35(6):37 − 41. (in Chinese with English abstract)

    LAN Yingying, ZENG Masun, JIN Menggui, et al. Discussion on effects of proposed water structure on poyang lake groundwater using GMS[J]. Journal of China Hydrology, 2015, 35(6): 37-41. (in Chinese with English abstract)

    [14]

    宋炎炎,张奇,姜三元,等. 鄱阳湖湿地地下水埋深及其与典型植被群落分布的关系[J]. 应用生态学报,2021,32(1):123 − 133. [SONG Yanyan,ZHANG Qi,JIANG Sanyuan,et al. Groundwater depth and its relation with typical vegetation distribution in the Poyang Lake wetland,China[J]. Chinese Journal of Applied Ecology,2021,32(1):123 − 133. (in Chinese with English abstract) doi: 10.13287/j.1001-9332.202101.018

    SONG Yanyan, ZHANG Qi, JIANG Sanyuan, et al. Groundwater depth and its relation with typical vegetation distribution in the Poyang Lake wetland, China[J]. Chinese Journal of Applied Ecology, 2021, 32(1): 123–133. (in Chinese with English abstract)]. doi: 10.13287/j.1001-9332.202101.018

    [15]

    WANG Zhenchen,YANG Y,CHEN G,et al. Variation of lake-river-aquifer interactions induced by human activity and climatic condition in Poyang Lake Basin,china[J]. Journal of Hydrology,2021,595:126058. doi: 10.1016/j.jhydrol.2021.126058

    [16]

    ZHOU Pengpeng, WANG Guangcai, MAO Hairu,et al. Numerical modeling for the temporal variations of the water interchange between groundwater and surface water in a regional great lake (Poyang Lake,China)[J]. Journal of Hydrology,2022,610:127827. doi: 10.1016/j.jhydrol.2022.127827

    [17]

    郭云彤,周妍,崔亚莉,等. 基于GSFLOW的青土湖生态输水量-湖水面积关系研究[J]. 水文地质工程地质,2022,49(5):32 − 41. [GUO Yuntong,ZHOU Yan,CUI Yali,et al. A study of the relationship between ecological water conveyance and water surface area of the Qingtu Lake based on GSFLOW[J]. Hydrogeology & Engineering Geology,2022,49(5):32 − 41. (in Chinese with English abstract)

    GUO Yuntong, ZHOU Yan, CUI Yali, et al. A study of the relationship between ecological water conveyance and water surface area of the Qingtu Lake based on GSFLOW[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 32–41. (in Chinese with English abstract)

    [18]

    HUNT R J,HAITJEMA H M,KROHELSKI J T,et al. Simulating ground water-lake interactions:approaches and insights[J]. Ground Water,2003,41(2):227 − 237. doi: 10.1111/j.1745-6584.2003.tb02586.x

    [19]

    MERRITT L M, KONIKOW L F. Documentation of a computer program to simulate lake-aquifer interaction using the modflow ground water flow model and the moc3d solute-transport model[R/OL]. http://pubs.er.usgs.gov/publication/wri004167.

    [20]

    王亚琴,杨军耀,刘庆,等. 基于Modflow和LAK3的三泉水库渗漏量研究[J]. 人民黄河,2019,41(2):59 − 63. [WANG Yaqin,YANG Junyao,LIU Qing,et al. Research on leakage of Sanquan Reservoir based on modflow and LAK3[J]. Yellow River,2019,41(2):59 − 63. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2019.02.013

    WANG Yaqin, YANG Junyao, LIU Qing, et al. Research on leakage of Sanquan Reservoir based on modflow and LAK3 [J]. Yellow River, 2019, 41(2): 59–63. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-1379.2019.02.013

    [21]

    YIHDEGO Y,RETA G,BECHT R. Human impact assessment through a transient numerical modeling on the UNESCO World Heritage Site,Lake Naivasha,Kenya[J]. Environmental Earth Sciences,2017,76(1):9. doi: 10.1007/s12665-016-6301-2

    [22]

    ZHANG Bo,ZHENG Xilai,ZHENG Tianyuan,et al. The influence of slope collapse on water exchange between a pit lake and a heterogeneous aquifer[J]. Frontiers of Environmental Science & Engineering,2019,13(2):1 − 9.

    [23]

    FENG Lian,HU C,CHEN X,et al. Assessment of inundation changes of Poyang Lake using modis observations between 2000 and 2010[J]. Remote Sensing of Environment,2012,121:80 − 92. doi: 10.1016/j.rse.2012.01.014

    [24]

    中国水利水电科学研究院. 江西省鄱阳湖水利枢纽工程环境影响报告书[R/OL]. http://slt.jiangxi.gov.cn/art/2022/5/9/art_28230_3948434.html

    China Institute of Water Resources and Hydropower. Environmental impact report of Poyang Lake water conservancy hub project in Jiangxi Province[R/OL]. (in Chinese)

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1068
  • PDF下载数:  17
  • 施引文献:  0
出版历程
收稿日期:  2022-09-18
修回日期:  2023-01-13
刊出日期:  2023-07-15

目录