基于竖管法的轻非水相液体毛细上升特性研究

李志萍, 刘宇, 赵贵章, 周汇, 刘少康, 刘文辉. 基于竖管法的轻非水相液体毛细上升特性研究[J]. 水文地质工程地质, 2023, 50(4): 105-114. doi: 10.16030/j.cnki.issn.1000-3665.202209020
引用本文: 李志萍, 刘宇, 赵贵章, 周汇, 刘少康, 刘文辉. 基于竖管法的轻非水相液体毛细上升特性研究[J]. 水文地质工程地质, 2023, 50(4): 105-114. doi: 10.16030/j.cnki.issn.1000-3665.202209020
LI Zhiping, LIU Yu, ZHAO Guizhang, ZHOU Hui, LIU Shaokang, LIU Wenhui. A study of the capillary rise characteristics of LNAPL based on the vertical pipes method[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 105-114. doi: 10.16030/j.cnki.issn.1000-3665.202209020
Citation: LI Zhiping, LIU Yu, ZHAO Guizhang, ZHOU Hui, LIU Shaokang, LIU Wenhui. A study of the capillary rise characteristics of LNAPL based on the vertical pipes method[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 105-114. doi: 10.16030/j.cnki.issn.1000-3665.202209020

基于竖管法的轻非水相液体毛细上升特性研究

  • 基金项目: 国家自然科学基金项目(41372260;41972261);第十四届研究生创新能力提升工程项目(NCWUYC-2023038)
详细信息
    作者简介: 李志萍(1971-),女,博士,教授,主要从事地下水污染控制与环境影响评价等研究。E-mail: lizhiping@ncwu.edu.cn
    通讯作者: 赵贵章(1975-),男,博士,副教授,主要从事水文地质与环境地质等研究。E-mail: guizhangzhao@163.com
  • 中图分类号: P641.2

A study of the capillary rise characteristics of LNAPL based on the vertical pipes method

More Information
  • 被称为“工业血液”的轻非水相液体(LNAPL)及其衍生物在开采、生产、运输过程中所产生的污染已经成为常见的污染物,目前诸多学者对LNAPL污染进行了广泛研究,但对于LNAPL在土壤中的迁移及毛细作用研究尚不充分。本次试验的目的是通过室内模拟试验分析不同竖管直径条件下LNAPL在不同介质中的毛细上升规律,为研究LNAPL对地下水污染提供一定的理论依据。结果表明:影响毛细上升高度的因素大小依次为:溶液>介质>竖管直径;竖管直径与最大毛细上升高度并不是完全成比例关系,并且对毛细上升高度的影响相对较小;水与柴油在不同介质中毛细上升高度、毛细上升速率变化趋势基本一致,但是具体数值上存在差异,柴油的最大毛细上升高度与水相比降低了40%~50%,柴油的最大毛细上升速率与水相比降低30%~50%。这些特征都能够较好地体现LNAPL在不同介质中的毛细上升规律,在认识LNAPL对地下水的污染以及污染土地修复方面具有重要意义。

  • 加载中
  • 图 1  试验装置示意图

    Figure 1. 

    图 2  介质不同时毛细上升高度随竖管直径的变化

    Figure 2. 

    图 3  竖管直径不同时毛细上升高度变化规律

    Figure 3. 

    图 4  竖管直径不同时毛细上升速率变化规律

    Figure 4. 

    表 1  试验砂样颗粒级配

    Table 1.  Particle gradation of the experimental sand samples

    试样 不均匀系数 曲率系数 平均粒径/mm 质量占比/%
    0.5~2.0 0.25~<0.5 0.075~<0.25 0.005~<0.075 <0.005
    粉砂 1.89 0.87 0.131 94.4 3 2.6
    细砂 30.67 4.78 0.205 17.5 26.2 38.1 12.9 5.3
    粗砂 5.37 1.16 0.610 58.3 24.7 15.3 1.2 0.5
      注:表中空白表示无此项。
    下载: 导出CSV

    表 2  毛细上升试验方案

    Table 2.  Capillary rise test schemes

    试验编号 介质 竖管直径/cm 溶液 试验编号 介质 竖管直径/cm 溶液
    1# 粉砂 1.6 10# 细砂 3.0 柴油
    2# 粉砂 1.6 柴油 11# 细砂 5.0
    3# 粉砂 3.0 12# 细砂 5.0 柴油
    4# 粉砂 3.0 柴油 13# 粗砂 1.6
    5# 粉砂 5.0 14# 粗砂 1.6 柴油
    6# 粉砂 5.0 柴油 15# 粗砂 3.0
    7# 细砂 1.6 16# 粗砂 3.0 柴油
    8# 细砂 1.6 柴油 17# 粗砂 5.0
    9# 细砂 3.0 18# 粗砂 5.0 柴油
    下载: 导出CSV

    表 3  极差分析结果

    Table 3.  Range analysis results

    因素 类别 Kavg/cm R/cm d R′/cm
    竖管直径 1.6 cm 36.92 2.23 0.52 2.84
    3.0 cm 39.15
    5.0 cm 38.18
    介质 粉砂 48.48 21.10 0.52 26.88
    细砂 38.38
    粗砂 27.38
    溶液 48.26 20.35 0.71 43.55
    柴油 27.91
      注:Kavg为某因素某水平最大毛细上升高度试验数据的平均值;R为指某因素条件下最大毛细上升高度的极差,该值等于某因素时Kavg最大值减去Kavg最小值;d为折算系数;R′为折算后的极差。
    下载: 导出CSV

    表 4  毛细上升高度与时间关系拟合参数

    Table 4.  Fitting parameters of the relationship between capillary rise height and time

    竖管
    直径/cm
    系数 柴油
    粉砂 细砂 粗砂 粉砂 细砂 粗砂
    1.6 a 28.855 23.649 19.239 13.085 13.067 10.571
    b 6.672 5.919 2.863 4.570 3.726 1.939
    $ {R}^{2} $ 0.996 0.990 0.985 0.996 0.995 0.977
    3.0 a 31.446 26.440 20.339 15.143 11.408 10.181
    b 7.155 5.938 2.888 4.374 3.480 2.438
    $ {R}^{2} $ 0.994 0.991 0.918 0.990 0.994 0.997
    5.0 a 29.673 25.220 21.058 13.315 12.536 10.295
    b 6.466 6.300 3.045 3.454 3.692 2.287
    $ {R}^{2} $ 0.990 0.992 0.969 0.996 0.989 0.998
    下载: 导出CSV
  • [1]

    沈欢,黄勇,苏悦,等. 裂隙介质中LNAPL污染物迁移研究进展[J]. 环境科技,2021,34(2):68 − 72. [SHEN Huan,HUANG Yong,SU Yue,et al. Research progress on the migration of LNAPL pollutants in fractured media[J]. Environmental Science and Technology,2021,34(2):68 − 72. (in Chinese with English abstract)

    SHEN Huan, HUANG Yong, SU Yue, et al. Research progress on the migration of lnapl pollutants in fractured media[J]. Environmental Science and Technology, 2021, 34(2): 68-72. (in Chinese with English abstract)]

    [2]

    XIA Teng,DONG Yanhui,MAO Deqiang,et al. Delineation of LNAPL contaminant plumes at a former perfumery plant using electrical resistivity tomography[J]. Hydrogeology Journal,2021,29(3):1189 − 1201. doi: 10.1007/s10040-021-02311-5

    [3]

    PAN Yuying,ZHANG Qian,YU Yewei,et al. Three-dimensional migration and resistivity characteristics of crude oil in heterogeneous soil layers[J]. Environmental Pollution,2021,268:115309. doi: 10.1016/j.envpol.2020.115309

    [4]

    段纪淼,王岩,刘慧姝,等. 油品在土壤中的运移特性[J]. 油气储运,2019,38(7):798 − 803. [DUAN Jimiao,WANG Yan,LIU Huishu,et al. Migration characteristics of oils in soil[J]. Oil & Gas Storage and Transportation,2019,38(7):798 − 803. (in Chinese with English abstract)

    DUAN Jimiao, WANG Yan, LIU Huishu, et al. Migration characteristics of oils in soil[J]. Oil & Gas Storage and Transportation, 2019, 38(7): 798-803. (in Chinese with English abstract)

    [5]

    ALAZAIZA M Y D,TAHRA A M,AHMED A,et al. Diesel migration and distribution in capillary fringe using different spill volumes via image analysis[J]. Fluids,2021,6(5):189. doi: 10.3390/fluids6050189

    [6]

    童玲,陈伟胜,郑西来,等. 柴油污染土壤中毛细水上升规律研究[J]. 灌溉排水学报,2011,30(6):131 − 134. [TONG Ling,CHEN Weisheng,ZHENG Xilai,et al. Capillary rise of water in diesel oil contaminated soils[J]. Journal of Irrigation and Drainage,2011,30(6):131 − 134. (in Chinese with English abstract)

    TONG Ling, CHEN Weisheng, ZHENG Xilai, et al. Capillary rise of water in diesel oil contaminated soils[J]. Journal of Irrigation and Drainage, 2011, 30(6): 131-134. (in Chinese with English abstract)

    [7]

    潘明浩,时健,左锐,等. 水位波动下包气带透镜体影响LNAPL迁移的数值模拟研究[J]. 水文地质工程地质,2022,49(1):154 − 163. [PAN Minghao,SHI Jian,ZUO Rui,et al. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table[J]. Hydrogeology & Engineering Geology,2022,49(1):154 − 163. (in Chinese with English abstract)

    PAN Minghao, SHI Jian, ZUO Rui, et al. A numerical simulation study of the effect of the vadose zone with lenses on LNAPL migration under the fluctuating water table[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 154-163. (in Chinese with English abstract)

    [8]

    赵科锋,王锦国,曹慧群. 含单裂隙非饱和带中轻非水相流体修复的数值模拟[J]. 水文地质工程地质,2020,47(5):43 − 55. [ZHAO Kefeng,WANG Jinguo,CAO Huiqun. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology,2020,47(5):43 − 55. (in Chinese with English abstract)

    ZHAO Kefeng, WANG Jinguo, CAO Huiqun. Numerical simulation oflight non-aqueous phase liquids remediation in the unsaturated zone with single fractures[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 43-55. (in Chinese with English abstract)

    [9]

    杜川, 李厚恩. 有机污染场地LNAPL分布特征与形成机理分析[C]//中国环境科学学会2021年科学技术年会——环境工程技术创新与应用分会场论文集(三). 2021: 602 − 606

    Du Chuan, LI Houen. Distribution characteristics and formation mechanism of LNAPL in origanic contaminated sites[C]//Proceedings of the 2021 Annual Conference of Science and Technology of the Chinese Society of Environmental Sciences: Technological Innovation and Application of Environmental Engineering (III). 2021: 602 − 606. (in Chinese with English abstract)

    [10]

    胡明鉴,张晨阳,崔翔,等. 钙质砂中毛细水高度与影响因素试验研究[J]. 岩土力学,2019,40(11):4157 − 4164. [HU Mingjian,ZHANG Chenyang,CUI Xiang,et al. Experimental study on capillary rise and influencing factors in calcareous sand[J]. Rock and Soil Mechanics,2019,40(11):4157 − 4164. (in Chinese with English abstract)

    HU Mingjian, ZHANG Chenyang, CUI Xiang, et al. Experimental study on capillary rise and influencing factors in calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(11): 4157-4164. (in Chinese with English abstract)

    [11]

    LIU Qiang,YASUFUKU N,MIAO Jiali,et al. An approach for quick estimation of maximum height of capillary rise[J]. Soils and Foundations,2014,54(6):1241 − 1245. doi: 10.1016/j.sandf.2014.11.017

    [12]

    MOL L,VILES H. Exposing drying patterns:using electrical resistivity tomography to monitor capillary rise in sandstone under varying drying conditions[J]. Environmental Earth Sciences,2013,68(6):1647 − 1659. doi: 10.1007/s12665-012-1858-x

    [13]

    崔浩浩,张光辉,刘鹏飞,等. 包气带岩性结构对地下水生态功能影响特征[J]. 水文地质工程地质,2022,49(5):52 − 62. [CUI Haohao,ZHANG Guanghui,LIU Pengfei,et al. Characteristics of influence of lithologic structure of vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology,2022,49(5):52 − 62. (in Chinese with English abstract)

    CUI Haohao, ZHANG Guanghui, LIU Pengfei, et al. Characteristics of influence of lithologic structure of vadose zone on groundwater ecological function[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 52-62. (in Chinese with English abstract)

    [14]

    董斌,张喜发,李欣,等. 毛细水上升高度综合试验研究[J]. 岩土工程学报,2008,30(10):1569 − 1574. [DONG Bin,ZHANG Xifa,LI Xin,et al. Comprehensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering,2008,30(10):1569 − 1574. (in Chinese with English abstract)

    DONG Bin, ZHANG Xifa, LI Xin, et al. Comprehensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1569-1574. (in Chinese with English abstract)

    [15]

    何建新,糟凯龙,杨海华. 塔里木河胡杨实现自我恢复的新方法探索[J]. 水电能源科学,2021,39(7):33 − 37. [HE Jianxin,ZAO Kailong,YANG Haihua. Exploration of new methods to realize self-recovery of populus euphonium from Tarim River[J]. Water Resources and Power,2021,39(7):33 − 37. (in Chinese with English abstract)

    HE Jianxin, ZAO Kailong, YANG Haihua. Exploration of new methods to realize self-recovery of populus euphonium from Tarim River[J]. Water Resources and Power, 2021, 39(7): 33-37. (in Chinese with English abstract)

    [16]

    洒永芳. 含水层中污染物向土壤垂向迁移的水力调控措施及其影响研究[D]. 成都: 西南交通大学, 2018

    SA Yongfang. Study on hydraulic control measures and its influence of vertical migration of pollutants from aquifer to soil[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese with English abstract)

    [17]

    刘伟佳,吴军虎,裴青宝,等. 不同地下水埋深条件下均质土壤毛管上升水运动特性试验研究[J]. 水资源与水工程学报,2010,21(1):67 − 70. [LIU Weijia,WU Junhu,PEI Qingbao,et al. Experimental research on capillary water upward movement in homogeneous soil under different ground water tables[J]. Journal of Water Resources and Water Engineering,2010,21(1):67 − 70. (in Chinese with English abstract)

    LIU Weijia, WU Junhu, PEI Qingbao, et al. Experimental research on capillary water upward movement in homogeneous soil under different ground water tables[J]. Journal of Water Resources and Water Engineering, 2010, 21(1): 67-70. (in Chinese with English abstract)

    [18]

    JAIR A B, RONALDO I, CARLOS M P, et al. The capillary rise in fine and coarse-grained soils considering the matric suction[J]. Journal of Xi’an Unniversity of Architecture & Technology 2021, 29(4): 1608 − 1615.

    [19]

    姚华,张喜发,张冬青. 影响粗粒土毛细水上升高度的因素研究[J]. 勘察科学技术,2007(1):10 − 12. [YAO Hua,ZHANG Xifa,ZHANG Dongqing. Research on affecting factors of rising height of capillary water on coarse grained soil[J]. Site Investigation Science and Technology,2007(1):10 − 12. (in Chinese with English abstract)

    YAO Hua, ZHANG Xifa, ZHANG Dongqing. Research on affecting factors of rising height of capillary water on coarse grained soil[J]. Site Investigation Science and Technology, 2007(1): 10-12. (in Chinese with English abstract)

    [20]

    王兴照,李英杰,胡晶,等. 表面活性剂对土壤毛细水上升特性的影响[J]. 安徽农业科学,2018,46(18):98 − 101. [WANG Xingzhao,LI Yingjie,HU Jing,et al. Effects of surfactants on the characteristic of soil capillary water rising[J]. Journal of Anhui Agricultural Sciences,2018,46(18):98 − 101. (in Chinese with English abstract)

    WANG Xingzhao, LI Yingjie, HU Jing, et al. Effects of surfactants on the characteristic of soil capillary water rising[J]. Journal of Anhui Agricultural Sciences, 2018, 46(18): 98-101. (in Chinese with English abstract)

    [21]

    邓改革,何建国,康宁波. 基于多物理场耦合的毛细水高度研究[J]. 水土保持研究,2021,28(4):136 − 141. [DENG Gaige,HE Jianguo,KANG Ningbo. Research on capillary water height based on multi-physical field coupling[J]. Research of Soil and Water Conservation,2021,28(4):136 − 141. (in Chinese with English abstract) doi: 10.13869/j.cnki.rswc.2021.04.018

    DENG Gaige, HE Jianguo, KANG Ningbo. Research on capillary water height based on multi-physical field coupling[J]. Research of Soil and Water Conservation, 2021, 28(4): 136-141. (in Chinese with English abstract) doi: 10.13869/j.cnki.rswc.2021.04.018

    [22]

    魏样,王益权,蔡苗,等. 石油污染对土壤毛细水上升特性的影响[J]. 灌溉排水学报,2017,36(9):50 − 56. [WEI Fan,WANG Yiquan,CAI Miao,et al. Effects of petroleum pollution on the rising characteristics of soil capillary water[J]. Journal of Irrigation and Drainage,2017,36(9):50 − 56. (in Chinese with English abstract)

    WEI Fan, WANG Yiquan, CAI Miao, et al. Effects of petroleum pollution on the rising characteristics of soil capillary water[J]. Journal of Irrigation and Drainage, 2017, 36(9): 50-56. . (in Chinese with English abstract)

    [23]

    王聪,张平,谢长青,等. 不同浓度盐溶液及盐渍土对毛细水上升影响的研究[J]. 节水灌溉,2014(12):26 − 28. [WANG Cong,ZHANG Ping,XIE Changqing,et al. Effect of different concentration salt solution and saline soil on capillary water upward movement[J]. Water Saving Irrigation,2014(12):26 − 28. (in Chinese with English abstract)

    WANG Cong, ZHANG Ping, XIE Changqing, et al. Effect of different concentration salt solution and saline soil on capillary water upward movement[J]. Water Saving Irrigation, 2014(12): 26-28. (in Chinese with English abstract)

    [24]

    张平,吴昊,殷洪建,等. 颗粒级配对毛细水上升影响的研究[J]. 节水灌溉,2010(7):24 − 26. [ZHANG Ping,WU Hao,YIN Hongjian,et al. Effect of particle size distribution on capillary water upward movement[J]. Water Saving Irrigation,2010(7):24 − 26. (in Chinese with English abstract)

    ZHANG Ping, WU Hao, YIN Hongjian, et al. Effect of particle size distribution on capillary water upward movement[J]. Water Saving Irrigation, 2010(7): 24-26. (in Chinese with English abstract)

    [25]

    沈宇鹏,曹权,陈芷航,等. 含盐石英砂的毛细上升特性及其影响因素研究[J]. 铁道工程学报,2022,39(3):13 − 18. [SHEN Yupeng,CAO Quan,CHEN Zhihang,et al. Research on the capillary rising characteristics and influencing factors of salt-containing quartz sand[J]. Journal of Railway Engineering Society,2022,39(3):13 − 18. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2022.03.003

    SHEN Yupeng, CAO Quan, CHEN Zhihang, et al. Research on the capillary rising characteristics and influencing factors of salt-containing quartz sand[J]. Journal of Railway Engineering Society, 2022, 39(3): 13-18. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-2106.2022.03.003

    [26]

    董荣泽,于明英,邱照宁,等. 沙土上升毛管水运动特性研究[J]. 节水灌溉,2018(4):19 − 25. [DONG Rongze,YU Mingying,QIU Zhaoning,et al. A study on capillary water movement characteristics in sandy soil[J]. Water Saving Irrigation,2018(4):19 − 25. (in Chinese with English abstract)

    DONG Rongze, YU Mingying, QIU Zhaoning, et al. A study on capillary water movement characteristics in sandy soil[J]. Water Saving Irrigation, 2018(4): 19-25. (in Chinese with English abstract)

    [27]

    何艳平. 低液限粉土毛细上升特征的影响因素研究[J]. 工程勘察,2020,48(4):11 − 18. [HE Yanping. Study on influencing factors of capillary rise characteristics of low liquid limit silt[J]. Geotechnical Investigation & Surveying,2020,48(4):11 − 18. (in Chinese with English abstract)

    HE Yanping. Study on influencing factors of capillary rise characteristics of low liquid limit silt[J]. Geotechnical Investigation & Surveying, 2020, 48(4): 11-18. (in Chinese with English abstract)

    [28]

    苗强强, 陈正汉, 田卿燕, 等. 非饱和含黏土砂毛细上升试验研究[J]. 岩土力学, 2011, 32(增刊1): 327-333

    MIAO Qiangqiang, CHEN Zhenghan, TIAN Qingyan, et al. Experimental study of capillary rise of unsaturated clayey sand[J]. Rock and Soil Mechanics, 2011, 32(Sup 1): 327-333. (in Chinese with English abstract)

    [29]

    LIU Di,LU Caiwu,LIAN Minjie,et al. Experimental study on capillary water migration characteristics of tailings with different particle sizes[J]. Geofluids,2022,2022:1 − 12.

    [30]

    中华人民共和国水利部. 土工试验规程: SL237—1999[S]. 北京: 中国水利水电出版社, 1999.

    Ministry of Water Resources of the People’s Republic of China. Soil test regulations: SL237—1999[S]. Beijing: China Water Power Press,1999. (in Chinese)

    [31]

    黄志全. 土力学[M]. 郑州: 黄河水利出版社, 2011: 221 − 223

    HUANG Zhiquan. Soil mechanics[M]. Zhengzhou: Yellow River Water Conservancy Press, 2011: 221 − 223. (in Chinese)

  • 加载中

(4)

(4)

计量
  • 文章访问数:  1226
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2022-09-14
修回日期:  2022-12-25
刊出日期:  2023-07-15

目录