-
摘要:
随着南水北调工程的实施及地下水压采工作的落实,华北平原局部地下水位逐步回升,然而地下水均衡要素变化趋势及其对生态环境的影响缺乏系统研究。以华北平原典型区域南水北调受水区保定平原为例,采用水均衡法计算地下水补给项和排泄项,应用因子分析法分析1975—2019年地下水均衡要素变化的原因,根据最优开采系数法计算地下水可采资源量和压采资源量,为研究区地下水资源的开发利用与调控奠定基础。结果表明:近40 a来,保定平原地下水补给量小于排泄量,总体呈负均衡状态,主要发生变化的地下水均衡要素有渠灌入渗、渠系渗漏、井灌回归、河道渗漏、降水入渗和人工开采;人类活动是影响地下水均衡要素变化的主要原因,其贡献率为77.20%;2011—2019年地下水储水量逐渐增多,此时地下水水位埋深增加速率减小、地下水水位降落漏斗面积逐渐减小、白洋淀湿地面积逐步恢复;保定平原地下水资源的最优开采系数为0.64,地下水可开采资源量和压采量的范围分别为8.89×108 ~11.35×108 m3/a和2.68×108~5.14×108 m3/a。研究成果可为相似地区地下水资源和生态环境可持续发展提供科学依据。
Abstract:With the implementation of the South-North Water Diversion Project and the implementation of groundwater suppression, the local groundwater levels in the North China Plain have gradually rebounded. However, there is a lack of systematic studies of the trends of groundwater balance elements and their impacts on the ecological environment. This paper takes the Baoding Plain, a typical area in the North China Plain, as an example, and uses the water balance method to calculate the groundwater recharge and discharge terms, applies the factor analysis method to analyze the causes of the changes in groundwater balance elements from 1975 to 2019, and calculates the amount of recoverable and suppressed groundwater resources by using the optimal exploitation coefficient method, which provides a basis for the development and utilization of groundwater resources in the study area. The results show that in the past 40 years, the groundwater recharge term was smaller than the discharge term in the Baoding Plain, which is in a negative equilibrium state, and the main change elements are canal irrigation infiltration, canal system seepage, well irrigation return, river seepage, rainfall infiltration and artificial exploitation. The main factor affecting the change of groundwater equilibrium elements is human activity, with a contribution rate of 77.2%. After the groundwater recharge and discharge imbalance is slowed down, the increase of groundwater level burial depth becomes smaller, the area of groundwater level depression cone gradually decreases, and the area of the Baiyangdian wetland gradually recovers. The optimal exploitation coefficient of groundwater resources in the Baoding Plain is determined to be 0.64, the exploitable groundwater resources range from 8.89×108 to 11.35×108 m3/a, and the amount of compression exploitation ranges from 2.68×108 to 5.14×108 m3/a. The research results can provide a scientific basis for the sustainable development of groundwater resources and ecological environment in similar areas.
-
表 1 研究区浅层地下水均衡要素及其占比
Table 1. Shallow groundwater balance elements and percentage in the study area
均衡要素 1975年 1985年 2006年 2011年 2019年 数量
/(108 m3)占比
/%数量
/(108 m3)占比
/%数量
/(108 m3)占比
/%数量
/(108 m3)占比
/%数量
/(108 m3)占比
/%补给项 降水入渗 14.66 72.87 16.95 78.69 9.13 67.35 13.56 69.96 10.83 76.33 井灌回归 2.49 12.38 2.06 9.56 1.66 12.22 1.59 8.22 0.47 3.31 渠灌入渗 0.18 0.89 0.15 0.70 0.22 1.62 0.10 0.49 0.02 0.14 渠系渗漏 0.46 2.29 0.39 1.81 0.55 4.03 0.26 1.32 0.05 0.35 河道渗漏 0.57 2.83 0.45 2.09 0.42 3.10 1.79 9.26 0.50 3.52 白洋淀渗漏 0.22 1.09 0.00 0.00 0.04 0.31 0.01 0.06 0.25 1.76 侧向流入 1.54 7.65 1.54 7.15 1.54 11.37 2.07 10.69 2.07 14.59 合计 20.12 100 21.54 100 13.56 100 19.38 100 14.19 100 排泄项 侧向流出 0.35 1.65 0.35 1.28 1.61 5.13 1.35 5.18 1.35 8.78 人工开采 20.70 97.36 27.10 98.02 29.74 94.87 24.71 94.82 14.03 91.22 潜水蒸发 0.21 0.99 0.19 0.70 合计 21.26 100 27.65 100 31.35 100 26.06 100 15.38 100 地下水储存量的
变化量−1.14 −6.11 −17.79 −6.68 −1.19 注:表中空白表示未测,其余表中空白同此解释。 表 2 研究区浅层地下水均衡要素变化
Table 2. Changes of groundwater balance elements of the shallow groundwater in the study area
均衡要素 变幅/% 1975—1985 1985—2006 2006—2011 2011—2019 补
给
项降水入渗 15.62 −46.14 48.53 −20.14 井灌回归 −17.27 −19.54 −3.86 −70.50 渠灌入渗 −16.67 46.67 −56.73 −78.99 渠系渗漏 −15.22 40.00 −53.21 −80.43 河道渗漏 −21.05 −6.67 327.34 −72.14 白洋淀
渗漏−100.00 −72.00 2000.84 侧向流入 0.00 0.13 34.36 −0.09 排
泄
项侧向流出 1.29 353.99 −16.06 −0.07 人工开采 30.92 9.74 −16.91 −43.22 潜水蒸发 −7.90 −100.00 表 3 补给项主要驱动因子特征
Table 3. Initial eigenvalue, contribution rate and cumulative contribution rate of the main driving factors of recharge items
成分 初始特征值 贡献率/% 累积贡献率/% 成分1 3.818 54.54 54.54 成分2 1.587 22.66 77.20 成分3 1.162 16.60 93.80 表 4 补给项主要驱动因子载荷矩阵
Table 4. Load matrix of the main driving factors of recharge items
均衡要素 成分1 成分2 成分3 降水入渗 0.348 −0.064 0.935 井灌回归 0.906 −0.011 0.295 渠灌入渗 0.957 0.063 −0.309 渠系渗漏 0.957 0.068 −0.277 河道渗漏 −0.131 0.940 −0.039 白洋淀渗漏 −0.448 −0.751 −0.127 侧向流入 −0.919 0.355 0.105 -
[1] WADA Y,VAN BEEK L P H,VAN KEMPEN C M,et al. Global depletion of groundwater resources[J]. Geophysical Research Letters,2010,37(20):1 − 5.
[2] TAYLOR R G,SCANLON B,DÖLL P,et al. Ground water and climate change[J]. Nature Climate Change,2013,3(4):322 − 329. doi: 10.1038/nclimate1744
[3] SIEBERT S, BURKE J, FAURES J M, et al. Groundwater use for irrigation: A global inventory[J]. Hydrology and Earth System Sciences, 14(10): 1863-1880.
[4] ALLEY W M,HEALY R W,LABAUGH J W,et al. Flow and storage in groundwater systems[J]. Science,2002,296(5575):1985 − 1990. doi: 10.1126/science.1067123
[5] 陈飞,徐翔宇,羊艳,等. 中国地下水资源演变趋势及影响因素分析[J]. 水科学进展,2020,31(6):811 − 819. [CHEN Fei,XU Xiangyu,YANG Yan,et al. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances in Water Science,2020,31(6):811 − 819. (in Chinese with English abstract)
CHEN Fei, XU Xiangyu, YANG Yan, et al. Investigation on the evolution trends and influencing factors of groundwater resources in China[J]. Advances in Water Science, 2020, 31(6): 811-819. (in Chinese with English abstract)
[6] 刘昶,郑明霞,孙源媛,等. 河道硬化对傍河地下水源补给结构及范围的影响[J]. 环境科学研究,2020,33(12):2820 − 2828. [LIU Chang,ZHENG Mingxia,SUN Yuanyuan,et al. Effects of river hardening on recharging structure and range of riverside groundwater source field[J]. Research of Environmental Sciences,2020,33(12):2820 − 2828. (in Chinese with English abstract)
LIU Chang, ZHENG Mingxia, SUN Yuanyuan, et al. Effects of river hardening on recharging structure and range of riverside groundwater source field[J]. Research of Environmental Sciences, 2020, 33(12): 2820-2828. (in Chinese with English abstract)
[7] 柴政,玉米提·哈力克,苟新华,等. 新疆柴窝堡水源地地下水超采引发的环境问题[J]. 水土保持研究,2008,15(5):132 − 135. [CHAI Zheng,UMUT Halik,GOU Xinhua,et al. Environmental problems caused by excessive exploitation of groundwater at chaiwopu source in Xinjiang[J]. Research of Soil and Water Conservation,2008,15(5):132 − 135. (in Chinese with English abstract)
CHAI Zheng, UMUT Halik, GOU Xinhua, et al. Environmental problems caused by excessive exploitation of groundwater at chaiwopu source in Xinjiang[J]. Research of Soil and Water Conservation, 2008, 15 (5): 132-135(in Chinese with English abstract)
[8] 郭晓东,王晓光,刘强,等. 松花江—辽河流域地下水资源及其生态环境问题[J]. 中国地质,2021,48(4):1062 − 1074. [GUO Xiaodong,WANG Xiaoguang,LIU Qiang,et al. Groundwater resources and ecological environment in Songhua River-Liaohe River Basin[J]. Geology in China,2021,48(4):1062 − 1074. (in Chinese with English abstract)
GUO Xiaodong, WANG Xiaoguang, LIU Qiang, et al. Groundwater resources and ecological environment in Songhua River-Liaohe River Basin[J]. Geology in China, 2021, 48(4): 1062-1074. (in Chinese with English abstract)
[9] WANG Wenke,ZHANG Zaiyong,DUAN Lei,et al. Response of the groundwater system in the Guanzhong Basin (central China) to climate change and human activities[J]. Hydrogeology Journal,2018,26(5):1429 − 1441. doi: 10.1007/s10040-018-1757-7
[10] 管春兴,张虹波,王战,等. 玛纳斯河流域山前平原区地下水资源动态变化分析[J]. 水利水电技术,2019,50(3):1 − 9. [GUAN Chunxing,ZHANG Hongbo,WANG Zhan,et al. Dynamic change analysis on groundwater resources in piedmont plain of Manas River Basin[J]. Water Resources and Hydropower Engineering,2019,50(3):1 − 9. (in Chinese with English abstract)
GUAN Chunxing, ZHANG Hongbo, WANG Zhan, et al. Dynamic change analysis on groundwater resources in piedmont plain of Manas River Basin[J]. Water Resources and Hydropower Engineering, 2019, 50(3): 1-9. (in Chinese with English abstract)
[11] 丁启振,周金龙,杜明亮,等. 新疆石河子―昌吉地区2016―2020年地下水位动态特征分析[J]. 灌溉排水学报,2022,41(2):109 − 117. [DING Qizhen,ZHOU Jinlong,DU Mingliang,et al. Spatiotemporal variation of groundwater table from 2016 to 2020 in Shihezi-Changji of Xinjiang[J]. Journal of Irrigation and Drainage,2022,41(2):109 − 117. (in Chinese with English abstract)
DING Qizhen, ZHOU Jinlong, DU Mingliang, et al. Spatiotemporal variation of groundwater table from 2016 to 2020 in Shihezi-Changji of Xinjiang[J]. Journal of Irrigation and Drainage, 2022, 41(2): 109-117. (in Chinese with English abstract)
[12] 霍世璐,王文科,段磊,等. 霍城县地下水资源构成变化及驱动力分析[J]. 水文地质工程地质,2020,47(2):51 − 59. [HUO Shilu,WANG Wenke,DUAN Lei,et al. An analysis of groundwater resources composition and driving force in Huocheng County[J]. Hydrogeology & Engineering Geology,2020,47(2):51 − 59. (in Chinese with English abstract)
HUO Shilu, WANG Wenke, DUAN Lei, et al. An analysis of groundwater resources composition and driving force in Huocheng County[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 51-59. (in Chinese with English abstract)
[13] 费宇红,张兆吉,张凤娥,等. 华北平原地下水水位动态变化影响因素分析[J]. 河海大学学报(自然科学版),2005,33(5):538 − 541. [FEI Yuhong,ZHANG Zhaoji,ZHANG Fenge,et al. Factors affecting dynamic variation of groundwater level in North China Plain[J]. Journal of Hohai University(Natural Sciences),2005,33(5):538 − 541. (in Chinese with English abstract)
FEI Yuhong, ZHANG Zhaoji, ZHANG Fenge, et al. Factors affecting dynamic variation of groundwater level in North China Plain[J]. Journal of Hohai University(Natural Sciences), 2005, 33(5): 538-541(in Chinese with English abstract)
[14] 张光辉,费宇红,刘春华,等. 华北平原灌溉用水强度与地下水承载力适应性状况[J]. 农业工程学报,2013,29(1):1 − 10. [ZHANG Guanghui,FEI Yuhong,LIU Chunhua,et al. Adaptation between irrigation intensity and groundwater carrying capacity in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering,2013,29(1):1 − 10. (in Chinese with English abstract)
ZHANG Guanghui, FEI Yuhong, LIU Chunhua, et al. Adaptation between irrigation intensity and groundwater carrying capacity in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 1-10. (in Chinese with English abstract)
[15] SHIMA N, HOSSEIN A, ALI N Z. Determination of water balance equation components in irrigated agricultural watersheds using SWAT and MODFLOW models:A case study of Samalqan plain in Iran[J]. Journal of Groundwater Science and Engineering,2022,10(1):44 − 56.
[16] 吴彬,杜明亮,穆振侠,等. 1956—2016年新疆平原区地下水资源量变化及其影响因素分析[J]. 水科学进展,2021,32(5):659 − 669. [WU Bin,DU Mingliang,MU Zhenxia,et al. Analysis on the variation of groundwater resources and influencing factors in Xinjiang plain area from 1956 to 2016[J]. Advances in Water Science,2021,32(5):659 − 669. (in Chinese with English abstract)
WU Bin, DU Mingliang, MU Zhenxia, et al. Analysis on the variation of groundwater resources and influencing factors in Xinjiang plain area from 1956 to 2016[J]. Advances in Water Science, 2021, 32(5): 659-669. (in Chinese with English abstract)
[17] 沈蕊芯,吕树萍,杜明亮,等. 新疆奎屯河流域平原区地下水资源量演变情势[J]. 干旱区研究,2020,37(4):839 − 846. [SHEN Ruixin,LYU Shuping,DU Mingliang,et al. Analysis of groundwater resources evolution in the Plains of Kuytun River Basin[J]. Arid Zone Research,2020,37(4):839 − 846. (in Chinese with English abstract)
SHEN Ruixin, LYU Shuping, DU Mingliang, et al. Analysis of groundwater resources evolution in the Plains of Kuytun River Basin[J]. Arid Zone Research, 2020, 37(4): 839-846. (in Chinese with English abstract)
[18] 张文鸽,侯胜玲,殷会娟. 内蒙古河套灌区地下水埋深时空变化及其驱动因素[J]. 节水灌溉,2020(7):36 − 40. [ZHANG Wenge,HOU Shengling,YIN Huijuan. Spatial and temporal variation of groundwater depth and its driving factors in Hetao irrigation district of Inner Mongolia[J]. Water Saving Irrigation,2020(7):36 − 40. (in Chinese with English abstract)
ZHANG Wenge, HOU Shengling, YIN Huijuan. Spatial and temporal variation of groundwater depth and its driving factors in Hetao irrigation district of Inner Mongolia[J]. Water Saving Irrigation, 2020(7): 36-40. (in Chinese with English abstract)
[19] 杨会峰,曹文庚,支传顺,等. 近40年来华北平原地下水位演变研究及其超采治理建议[J]. 中国地质,2021,48(4):1142 − 1155. [YANG Huifeng,CAO Wengeng,ZHI Chuanshun,et al. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment[J]. Geology in China,2021,48(4):1142 − 1155. (in Chinese with English abstract)
YANG Huifeng, CAO Wengeng, ZHI Chuanshun, et al. Evolution of groundwater level in the North China Plain in the past 40 years and suggestions on its overexploitation treatment[J]. Geology in China, 2021, 48(4): 1142-1155. (in Chinese with English abstract)
[20] WANG Shiqin,SONG Xianfang,WANG Qinxue,et al. Shallow groundwater dynamics in North China Plain[J]. Journal of Geographical Sciences,2009,19(2):175 − 188. doi: 10.1007/s11442-009-0175-0
[21] 王仕琴,宋献方,王勤学,等. 华北平原地下水位微动态变化周期特征分析[J]. 水文地质工程地质,2014,41(3):6 − 12. [WANG Shiqin,SONG Xianfang,WANG Qinxue,et al. An analysis of period features of groundwater micro-dynamics in the North China Plain[J]. Hydrogeology & Engineering Geology,2014,41(3):6 − 12. (in Chinese with English abstract)
WANG Shiqin, SONG Xianfang, WANG Qinxue, et al. An analysis of period features of groundwater micro-dynamics in the North China Plain[J]. Hydrogeology & Engineering Geology, 2014, 41(3): 6-12. (in Chinese with English abstract)
[22] 郭海朋,李文鹏,王丽亚,等. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质,2021,48(3):162 − 171. [GUO Haipeng,LI Wenpeng,WANG Liya,et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology,2021,48(3):162 − 171. (in Chinese with English abstract)
GUO Haipeng, LI Wenpeng, WANG Liya, et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171. (in Chinese with English abstract)
[23] 赵玉峰,罗专溪,于亚军,等. 京津冀西北典型区域地下水位时空演变及驱动因素[J]. 自然资源学报,2020,35(6):1301 − 1313. [ZHAO Yufeng,LUO Zhuanxi,YU Yajun,et al. Spatio-temporal changes of groundwater level and its driving factors in a typical region of Beijing-Tianjin-Hebei region,China[J]. Journal of Natural Resources,2020,35(6):1301 − 1313. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20200604
ZHAO Yufeng, LUO Zhuanxi, YU Yajun, et al. Spatio-temporal changes of groundwater level and its driving factors in a typical region of Beijing-Tianjin-Hebei region, China[J]. Journal of Natural Resources, 2020, 35(6): 1301-1313. (in Chinese with English abstract) doi: 10.31497/zrzyxb.20200604
[24] 张福洋,程伍群,冉红达. 保定市平原区地下水位变化规律及影响因素分析[J]. 水电能源科学,2017,35(8):128 − 132. [ZHANG Fuyang,CHENG Wuqun,RAN Hongda. Variation of groundwater level and its influencing factors analysis in plain area of Baoding City[J]. Water Resources and Power,2017,35(8):128 − 132. (in Chinese with English abstract)
ZHANG Fuyang, CHENG Wuqun, RAN Hongda. Variation of groundwater level and its influencing factors analysis in plain area of Baoding city[J]. Water Resources and Power, 2017, 35(8): 128-132. (in Chinese with English abstract)
[25] 赵瑞科. 基于生态约束的保定市平原区地下水资源承载力研究[D]. 郑州: 华北水利水电大学, 2018
ZHAO Ruike. Study on groundwater resource carrying capacity in plain area of Baoding City based on ecological constraints[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2018. (in Chinese with English abstract)
[26] 靳博文,王文科,段磊,等. 保定平原区地下水生态水位阈值的探讨[J]. 水文地质工程地质,2022,49(5):166 − 175. [JIN Bowen,WANG Wenke,DUAN Lei,et al. Discussion on ecological water level threshold of groundwater in Baoding Plain area[J]. Hydrogeology & Engineering Geology,2022,49(5):166 − 175. (in Chinese with English abstract)
JIN Bowen, WANG Wenke, DUAN Lei, et al. Discussion on ecological water level threshold of groundwater in Baoding Plain area[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 166-175. (in Chinese with English abstract)
[27] 田晓华, 冯创业, 张增勤, 等. 京津冀协同发展(保定市平原区)地质环境保障调查评价[R]. 石家庄: 河北省地矿局水文地质勘察院, 2017
TIAN Xiaohua, FENG Chuangye, ZHANG Zengqin, et al. Investigation and evaluation of geological environment guarantee for the coordinated development of Beijing, Tianjin and Hebei (plain area of Baoding City)[R]. Shijiazhuang: Hydrogeological Survey Institute of Hebei Bureau of Geology and Mineral Resources, 2017. (in Chinese)
[28] 孟素花,费宇红,张兆吉,等. 50年来华北平原降水入渗补给量时空分布特征研究[J]. 地球科学进展,2013,28(8):923 − 929. [MENG Suhua,FEI Yuhong,ZHANG Zhaoji,et al. Research on spatial and temporal distribution of the precipitation infiltration amount over the past 50 years in North China plain[J]. Advances in Earth Science,2013,28(8):923 − 929. (in Chinese with English abstract)
MENG Suhua, FEI Yuhong, ZHANG Zhaoji, et al. Research on spatial and temporal distribution of the precipitation infiltration amount over the past 50 years in North China plain[J]. Advances in Earth Science, 2013, 28(8): 923-929. (in Chinese with English abstract)
[29] 潘恒健. 小清河济南段水质主因子分析[J]. 济南大学学报(自然科学版),2008,22(1):107 − 109. [PAN Hengjian. Characteristics of water quality by principal factor analysis[J]. Journal of University of Jinan (Science and Technology),2008,22(1):107 − 109. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-3559.2008.01.028
PAN Hengjian. Characteristics of water quality by principal factor analysis[J]. Journal of University of Jinan (Science and Technology), 2008, 22(1): 107-109. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-3559.2008.01.028
[30] 梁秀娟, 迟宝明, 王文科, 等. 专门水文地质学[M]. 北京: 科学出版社, 2016
LIANG Xiujunan, CHI Baoming, WANG Wenke, et al. Special hydrogeology[M]. Beijing: Science Press, 2016. (in Chinese)
[31] 李苗,严思睿,刘强,等. 白洋淀流域径流过程对极端气象干旱的响应分析[J]. 环境工程,2020,38(10):14 − 20. [LI Miao,YAN Sirui,LIU Qiang,et al. Analysis on streamflow processes response to extreme meteorological drought in the Baiyangdian Basin,China[J]. Environmental Engineering,2020,38(10):14 − 20. (in Chinese with English abstract)
LI Miao, YAN Sirui, LIU Qiang, et al. Analysis on streamflow processes response to extreme meteorological drought in the Baiyangdian Basin, China[J]. Environmental Engineering, 2020, 38(10): 14-20. (in Chinese with English abstract)
[32] 徐俏,程伍群,孙童,等. 气候因素对白洋淀上游主要河流径流的影响[J]. 河北农业大学学报,2019,42(2):110 − 115. [XU Qiao,CHENG Wuqun,SUN Tong,et al. The influence of climate factors on runoff of major rivers in upper reaches of Baiyangdian Lake[J]. Journal of Hebei Agricultural University,2019,42(2):110 − 115. (in Chinese with English abstract)
XU Qiao, CHENG Wuqun, SUN Tong, et al. The influence of climate factors on runoff of major rivers in upper reaches of Baiyangdian Lake[J]. Journal of Hebei Agricultural University, 2019, 42(2): 110-115. (in Chinese with English abstract)
[33] 王政友. 降水入渗补给地下水滞后时间分析探讨[J]. 水文,2011,31(2):42 − 45. [WANG Zhengyou. Discussion on lag time of rainfall penetration recharge to groundwater[J]. Journal of China Hydrology,2011,31(2):42 − 45. (in Chinese with English abstract)
WANG Zhengyou. Discussion on lag time of rainfall penetration recharge to groundwater[J]. Journal of China Hydrology, 2011, 31(2): 42-45. (in Chinese with English abstract)
[34] LI Xi,YAN Li,LU Lijun,et al. Adjacent-track InSAR processing for large-scale land subsidence monitoring in the Hebei plain[J]. Remote Sensing,2021,13(4):795. doi: 10.3390/rs13040795
[35] FEI Yuhong, ZHANG Zhaoji, QIAN Yong, et al. Assessment on leading factors for dropping of shallow ground water level[C]//2011 International Symposium on Water Resource and Environmental Protection. Xi’an: IEEE, 2011: 227 − 232.
[36] 赖冬蓉,陈益平,秦欢欢,等. 变化环境对华北平原地下水可持续利用的影响研究[J]. 水资源与水工程学报,2021,32(5):48 − 55. [LAI Dongrong,CHEN Yiping,QIN Huanhuan,et al. Impacts of changing environment on sustainable utilization of groundwater in the North China Plain[J]. Journal of Water Resources and Water Engineering,2021,32(5):48 − 55. (in Chinese with English abstract)
LAI Dongrong, CHEN Yiping, QIN Huanhuan, et al. Impacts of changing environment on sustainable utilization of groundwater in the North China Plain[J]. Journal of Water Resources and Water Engineering, 2021, 32(5): 48-55. (in Chinese with English abstract)
[37] 费宇红,张兆吉,张凤娥,等. 气候变化和人类活动对华北平原水资源影响分析[J]. 地球学报,2007,28(6):567 − 571. [FEI Yuhong,ZHANG Zhaoji,ZHANG Feng'e,et al. An analysis of the influence of human activity and climate changeon water resources of the North China plain[J]. Acta Geoscientica Sinica,2007,28(6):567 − 571. (in Chinese with English abstract) doi: 10.3321/j.issn:1006-3021.2007.06.009
FEI Yuhong, ZHANG Zhaoji, ZHANG Feng'e, et al. An analysis of the influence of human activity and climate changeon water resources of the North China plain[J]. Acta Geoscientica Sinica, 2007, 28(6): 567-571. (in Chinese with English abstract) doi: 10.3321/j.issn:1006-3021.2007.06.009
[38] ZHUANG Changwei,OUYANG Zhiyun,XU Weihua,et al. Impacts of human activities on the hydrology of Baiyangdian Lake,China[J]. Environmental Earth Sciences,2011,62(7):1343 − 1350. doi: 10.1007/s12665-010-0620-5
[39] 王朝华,王子璐,乔光建. 跨流域调水对恢复白洋淀生态环境重要性分析[J]. 南水北调与水利科技,2011,9(3):138 − 141. [WANG Zhaohua,WANG Zilu,QIAO Guangjian. Analysis of importance of inter-basin water diversion to restoration of ecological environment of Baiyangdian Lake[J]. South-to-North Water Transfers and Water Science & Technology,2011,9(3):138 − 141. (in Chinese with English abstract)
WANG Zhaohua, WANG Zilu, QIAO Guangjian. Analysis of importance of inter-basin water diversion to restoration of ecological environment of Baiyangdian Lake[J]. South-to-North Water Transfers and Water Science & Technology, 2011, 9(3): 138-141(in Chinese with English abstract)
[40] HU Shanshan,LIU Changming,ZHENG Hongxing,et al. Assessing the impacts of climate variability and human activities on streamflow in the water source area of Baiyangdian Lake[J]. Journal of Geographical Sciences,2012,22(5):895 − 905. doi: 10.1007/s11442-012-0971-9
[41] MOIWO J P,YANG Yonghui,LI Huilong,et al. Impact of water resource exploitation on the hydrology and water storage in Baiyangdian Lake[J]. Hydrological Processes,2010,24(21):3026 − 3039. doi: 10.1002/hyp.7716
[42] 陈晓磊, 王慧群, 陈萌, 等. 国务院政策例行吹风会聚焦《地下水管理条例》[N]. 中国水利报, 2021-11-23(002)
CHEN Xiaolei, WANG Huiqun, CHEN Meng, et al. State council policy briefing focuses on groundwater management regulations[N]. China Water Resources News, 2021-11-23(002). (in Chinese)