Research on the prediction method of water gushing volume under the blasting vibration effect of a sub-sea tunnel
-
摘要:
爆破振动效应下海底隧道涌水量预测目前仍是一个难题。以青岛地铁1号线瓦屋庄站—贵州路站过海区间海底隧道为工程背景,基于等效连续介质模型,利用镜像法推导考虑损伤区因素的海底隧道涌水量计算公式,通过正演与反演的方式,结合数值模拟计算结果以及实际工程监测结果综合验证公式的正确性并分析损伤区因素对涌水量的影响机制。结果表明:爆破振动产生的挤压作用使得隧道周边围岩孔隙水压力会在短时间内急速上升,到达峰值后随着爆破振动的减弱及消失开始缓慢下降;在损伤区因素影响下,隧道涌水量随着损伤区厚度增加逐渐变大,但不会随着损伤区渗透系数的增加而不断增加;数值模拟计算考虑爆破损伤区与否的隧道涌水量比值为1.4,与文章所推公式计算结果1.342相比误差仅为4.1%,且计算结果与现场实测结果相比仅少0.53 m3/(d·m),相对于传统计算公式结果更接近实测结果,说明本文计算公式适用于考虑损伤区因素的隧道涌水量计算,具有较高的工程应用价值。
Abstract:Prediction of water inflow of a sub-sea tunnel under the blasting vibration effect is still a difficult subject. This paper takes the sub-sea tunnel between the Wawuzhuang Station and Guizhou Road Station of the Qingdao Metro Line 1 as the engineering background. Based on the equivalent continuum model, the mirror image method is used to deduce the calculation formula for the water inflow of the sub-sea tunnel considering the damage area factor. Through forward modeling and inversion, combined with numerical simulation results and actual engineering monitoring results, the correctness of the formula is comprehensively verified, and the influence mechanism of damage area factors on water inflow is analyzed. The results show that the squeezing effect caused by blasting vibration makes the pore water pressure of surrounding rock around the tunnel rise rapidly in a short time. After reaching the peak value, it began to decline slowly with the weakening and disappearance of blasting vibration. Under the influence of damage zone factors, the water inflow of the tunnel increases gradually with the increasing thickness of the damage zone, but it will not increase continuously with the increase of the coefficient of permeability in the damaged area. Through numerical simulation calculation, the ratio of tunnel water inflow considering blasting damage area is 1.4, and the error is only 4.1% compared with the calculation result of 1.342 deduced in this paper. The calculated results in this study are only 0.53 m3/(d·m) less than the field measured results, and are closer to the measured results than those with the traditional calculation formula, indicating that the calculation formula in this paper is suitable for the calculation of tunnel water inflow considering the factor of damage zone, and are of high engineering application value.
-
Key words:
- sub-sea tunnel /
- water inflow /
- damage area /
- seepage field /
- numerical simulation
-
-
表 1 国内外最大涌水量(q0)传统计算公式
Table 1. Traditional calculation formula of the maximum water inflow at home and abroad
名称 公式 大岛洋志公式[10] ${ { {q} }_0} = \dfrac{ {2\text{π} { {K} }m\left( {H + {H_0} - r} \right)} }{ {\ln\left[{ {4\left( {H + {H_0} - r} \right)} }/{d} \right]} }$ 古德曼经验式[11] ${ { {q} }_0} = \dfrac{ {2\text{π}{ {K} }\left( {H + {H_0} } \right)} }{ {\ln\left[{ {4\left( {H + {H_0} } \right)} }/{d}\right] } }$ 铁路规范经验式[12] ${q_0} = \dfrac{ {2\text{π} { {K} }\left( {H + {H_0} + { {r} } } \right)} }{ {\ln({ {2H} }/{r}) } }$ 注:表中变量解释见图1。 表 2 岩体物理力学计算参数
Table 2. Physical mechanical calculating parameters of rock mass
地层名称 厚度/m 弹性模量/GPa 泊松比 密度/(kg·m−3) 黏聚力/MPa 内摩擦角/(°) 抗拉强度/MPa 强风化凝灰岩 1.80 0.15 0.40 2 000.00 0.01 40.00 1.00 中风化凝灰岩 3.50 20.00 0.30 2 600.00 12.00 50.00 3.40 微风化凝灰岩 74.70 45.00 0.28 2 700.00 25.00 70.00 5.00 初期衬砌 0.10 30.00 0.28 1 800.00 二次衬砌 0.45 46.00 0.20 2 500.00 注:表中空格表示此项无数据。下同。 表 3 岩体水理参数
Table 3. Hydraulic parameters of rock mass
地层名称 渗透系数
/(m·d−1)渗透率
/m2孔隙率 体积模量
/GPa切变模量
/GPa强风化凝灰岩 0.0550 6.4×10−11 0.39 0.25 0.053 中风化凝灰岩 0.0430 5×10−11 0.30 16.70 7.700 微风化凝灰岩 0.0180 2.1×10−11 0.12 34.10 17.600 初砌 0.0008 9.3×10−16 22.70 11.700 二衬 0.0003 3.22×10−16 35.20 18.100 表 4 工况模拟详情
Table 4. Details of working condition simulation
工况 计算条件 1 无爆破、无渗流条件下隧道开挖施工模拟 2 无爆破时,渗流条件下隧道开挖施工模拟 3 流固耦合效应下隧道钻爆开挖施工模拟 表 5 海底隧道涌水量计算结果
Table 5. Calculating results of water inflow from submarine tunnels
起止里程 q0/(m3·d–1·m–1) 大洋岛志公式[10] 古德曼经验式[11] 规范经验式[12] 工况2数值模拟结果 工况3数值模拟结果 现场实测结果 本文公式计算结果 K28+410—K28+480 1.86 2.59 2.88 3.24 4.54 4.01 3.48 -
[1] ZHANG Lewen,ZHAO Dukun,WU Jing,et al. Prediction of water inflow in Tsingtao subsea tunnel based on the superposition principle[J]. Tunnelling and Underground Space Technology,2020,97:103243. doi: 10.1016/j.tust.2019.103243
[2] 潘格林,王渭明,贺广良,等. 富水弱胶结地层地铁隧道裂隙水涌水量分析[J]. 现代隧道技术,2018,55(4):171 − 177. [PAN Gelin,WANG Weiming,HE Guangliang,et al. Fissure water inflow of a metro tunnel in a water-rich poorly consolidated stratum[J]. Modern Tunnelling Technology,2018,55(4):171 − 177. (in Chinese with English abstract) doi: 10.13807/j.cnki.mtt.2018.04.023
PAN Gelin, WANG Weiming, HE Guangliang, et al. Fissure water inflow of a metro tunnel in a water-rich poorly consolidated stratum[J]. Modern Tunnelling Technology, 2018, 55(4): 171-177. (in Chinese with English abstract) doi: 10.13807/j.cnki.mtt.2018.04.023
[3] 马少坤,陈彩洁,段智博,等. 基于镜像法的有限含水层内隧道渗流场解析解及其验证[J]. 工程力学,2023,40(5):172 − 181. [MA Shaokun,CHEN Caijie,DUAN Zhibo,et al. Analytical solution and verification on seepage field of tunnel in finite aquifer based on image method[J]. Engineering Mechanics,2023,40(5):172 − 181. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2021.10.0838
MA Shaokun, CHEN Caijie, DUAN Zhibo, et al. Analytical solution and verification on seepage field of tunnel in finite aquifer based on image method[J]. Engineering Mechanics, 2023, 40(5): 172-181. (in Chinese with English abstract) doi: 10.6052/j.issn.1000-4750.2021.10.0838
[4] 张东,刘晓丽,王恩志. 非均匀多孔介质等效渗透率的普适表达式[J]. 水文地质工程地质,2020,47(4):35 − 42. [ZHANG Dong,LIU Xiaoli,WANG Enzhi. A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology,2020,47(4):35 − 42. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003065
ZHANG Dong, LIU Xiaoli, WANG Enzhi. A universal expression of the equivalent permeability of heterogeneous porous media[J]. Hydrogeology & Engineering Geology, 2020, 47(4): 35-42. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202003065
[5] 王帅,王渭明,王晓杰,等. 平行三孔海底隧道渗流场解析解及影响参数[J]. 中国科技论文,2018,13(13):1481 − 1487. [WANG Shuai,WANG Weiming,WANG Xiaojie,et al. Analytical solution of seepage field in three-hole parallel tunnel and influence parameters[J]. China Sciencepaper,2018,13(13):1481 − 1487. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-2783.2018.13.008
WANG Shuai, WANG Weiming, WANG Xiaojie, et al. Analytical solution of seepage field in three-hole parallel tunnel and influence parameters[J]. China Sciencepaper, 2018, 13(13): 1481-1487. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-2783.2018.13.008
[6] 傅鹤林,李鲒,成国文,等. 基于保角映射的断层影响区内隧道涌水量预测[J]. 华中科技大学学报(自然科学版),2021,49(1):86 − 92. [FU Helin,LI Jie,CHENG Guowen,et al. Prediction of tunnel water inflow in fault affected area based on conformal mapping[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2021,49(1):86 − 92. (in Chinese with English abstract)
FU Helin, LI Jie, CHENG Guowen, et al. Prediction of tunnel water inflow in fault affected area based on conformal mapping[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(1): 86-92. (in Chinese with English abstract)
[7] 李术才,赵岩,徐帮树,等. 海底隧道涌水量数值计算的渗透系数确定方法[J]. 岩土力学,2012,33(5):1497 − 1504. [LI Shucai,ZHAO Yan,XU Bangshu,et al. Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. Rock and Soil Mechanics,2012,33(5):1497 − 1504. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.05.035
LI Shucai, ZHAO Yan, XU Bangshu, et al. Study of determining permeability coefficient in water inrush numerical calculation of subsea tunnel[J]. Rock and Soil Mechanics, 2012, 33(5): 1497-1504. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2012.05.035
[8] BUTSCHER C. Steady-state groundwater inflow into a circular tunnel[J]. Tunnelling and Underground Space Technology,2012,32:158 − 167. doi: 10.1016/j.tust.2012.06.007
[9] MOON J,FERNANDEZ G. Effect of excavation-induced groundwater level drawdown on tunnel inflow in a jointed rock mass[J]. Engineering Geology,2010,110(3/4):33 − 42.
[10] 张继勋,杨帆,杨玲,等. 改进的水封石油洞库群渗水量预估研究[J]. 三峡大学学报(自然科学版),2017,39(2):14 − 18. [ZHANG Jixun,YANG Fan,YANG Ling,et al. Improved water seepage prediction in seal petroleum cavern group[J]. Journal of China Three Gorges University (Natural Sciences),2017,39(2):14 − 18. (in Chinese with English abstract)
ZHANG Jixun, YANG Fan, YANG Ling, et al. Improved water seepage prediction in seal petroleum cavern group[J]. Journal of China Three Gorges University (Natural Sciences), 2017, 39(2): 14-18. (in Chinese with English abstract)
[11] 辛冬冬. 海底隧道涌水量预测方法研究及其爆破振动影响分析[D]. 济南: 山东大学, 2018
XIN Dongdong. Study on the prediction method of water inflow in subsea tunnel and its impact analysis of blasting vibration[D]. Jinan: Shandong University, 2018. (in Chinese with English abstract)
[12] 刘世伟,盛谦,朱泽奇,等. 隧道围岩内地下水渗流边界效应影响研究[J]. 岩土力学,2018,39(11):4001 − 4009. [LIU Shiwei,SHENG Qian,ZHU Zeqi,et al. Research on boundary effect of groundwater seepage in tunnel surrounding rock[J]. Rock and Soil Mechanics,2018,39(11):4001 − 4009. (in Chinese with English abstract) doi: 10.16285/j.rsm.2017.0381
LIU Shiwei, SHENG Qian, ZHU Zeqi, et al. Research on boundary effect of groundwater seepage in tunnel surrounding rock[J]. Rock and Soil Mechanics, 2018, 39(11): 4001-4009. (in Chinese with English abstract) doi: 10.16285/j.rsm.2017.0381
[13] HARR M E. Groundwater and seepage[M]. New York: McGraw-Hill, 1962.
[14] 吴建,周志芳,李鸣威,等. 隧洞涌水量预测计算方法研究进展[J]. 工程地质学报,2019,27(4):890 − 902. [WU Jian,ZHOU Zhifang,LI Mingwei,et al. Advance on the methods for predicting water inflow into tunnels[J]. Journal of Engineering Geology,2019,27(4):890 − 902. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2018-245
WU Jian, ZHOU Zhifang, LI Mingwei, et al. Advance on the methods for predicting water inflow into tunnels[J]. Journal of Engineering Geology, 2019, 27(4): 890-902. (in Chinese with English abstract) doi: 10.13544/j.cnki.jeg.2018-245
[15] 张兵海,崔炜,张石磊,等. 临近水库的隧洞二维渗流场解析解及工程应用研究[J]. 水利水电技术(中英文),2023,54(3):126 − 134. [ZHANG Binghai,CUI Wei,ZHANG Shilei,et al. Study on analytic solution of 2-D seepage field of tunnel adjacent to reservoir and its engineering application[J]. Water Resources and Hydropower Engineering,2023,54(3):126 − 134. (in Chinese with English abstract)
ZHANG Binghai, CUI Wei, ZHANG Shilei, et al. Study on analytic solution of 2-D seepage field of tunnel adjacent to reservoir and its engineering application[J]. Water Resources and Hydropower Engineering, 2023, 54(3): 126-134. (in Chinese with English abstract)
[16] FERNANDEZ G,MOON J. Excavation-induced hydraulic conductivity reduction around a tunnel – Part 1:Guideline for estimate of ground water inflow rate[J]. Tunnelling and Underground Space Technology,2010,25(5):560 − 566. doi: 10.1016/j.tust.2010.03.006
[17] 王洪立, 徐帮树, 陈涛. 青岛胶州湾隧道开挖中爆破损伤范围研究[C]//中国岩石力学与工程学会. 第十届全国岩石力学与工程学术大会论文集. 北京: 中国电力出版社, 2008: 520 − 526
WANG Hongli, XU bangshu, CHEN Tao. Study on blas-induced damage zone for excavation Qingdao Jiaozhou Gulf subsea tunnel[C]//China Society for Rock Mechanics & Engineering. Proceedings of the 10th National Conference on rock mechanics and engineering. Beijing: China Electric Power Press, 2008: 520 − 526. (in Chinese with English abstract)
[18] 刘永胜. 海底隧道钻爆开挖围岩稳定性研究[D]. 北京: 北京交通大学, 2010
LIU Yongsheng. Study on surrounding rock stability of subsea tunnel during drilling and blasting excavation[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese with English abstract)
[19] BOSSART P,MEIER P M,MOERI A,et al. Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory[J]. Engineering Geology,2002,66(1/2):19 − 38.
[20] 王丹. 海底隧道含水断层涌水量分析及突水风险预测方法研究[D]. 济南: 山东大学, 2017
WANG Dan. Study of analysis of water inflow and risk prediction method of water inrush from water bearing faults in subsea tunnel[D]. Jinan: Shandong University, 2017. (in Chinese with English abstract)
[21] 董贵法. 冲击荷载下弱风化花岗岩力学特性及渗透性试验研究[D]. 赣州: 江西理工大学, 2018
DONG Guifa. Experimental study on mechanical properties and permeability of weakly weathered granite under impact load[D]. Ganzhou: Jiangxi University of Science and Technology, 2018. (in Chinese with English abstract)
[22] 姬永红,项彦勇. 水底隧道涌水量预测方法的应用分析[J]. 水文地质工程地质,2005,32(4):84 − 87. [JI Yonghong,XIANG Yanyong. An analysis of application of the methods of predicting water influx to under-water tunnels[J]. Hydrogeology & Engineering Geology,2005,32(4):84 − 87. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2005.04.021
JI Yonghong, XIANG Yanyong. An analysis of application of the methods of predicting water influx to under-water tunnels[J]. Hydrogeology & Engineering Geology, 2005, 32(4): 84-87. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3665.2005.04.021
-