基于Weibull分布的红砂岩三轴蠕变试验及模型研究

张卫泽, 王琳庆, 郭文重, 陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究[J]. 水文地质工程地质, 2023, 50(4): 137-148. doi: 10.16030/j.cnki.issn.1000-3665.202211041
引用本文: 张卫泽, 王琳庆, 郭文重, 陈雷. 基于Weibull分布的红砂岩三轴蠕变试验及模型研究[J]. 水文地质工程地质, 2023, 50(4): 137-148. doi: 10.16030/j.cnki.issn.1000-3665.202211041
ZHANG Weize, WANG Linqing, GUO Wenchong, CHEN Lei. Triaxial creep test and model study of red sandstone based on Weibull distribution[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 137-148. doi: 10.16030/j.cnki.issn.1000-3665.202211041
Citation: ZHANG Weize, WANG Linqing, GUO Wenchong, CHEN Lei. Triaxial creep test and model study of red sandstone based on Weibull distribution[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 137-148. doi: 10.16030/j.cnki.issn.1000-3665.202211041

基于Weibull分布的红砂岩三轴蠕变试验及模型研究

详细信息
    作者简介: 张卫泽(1975-),男,学士,高级工程师,主要从事隧道施工方面的研究工作。E-mail: zhangll198212@163.com
  • 中图分类号: P642.3

Triaxial creep test and model study of red sandstone based on Weibull distribution

  • 当前,地下工程围岩蠕变问题仍然存在,蠕变理论需要进一步丰富。岩石蠕变实质上是损伤不断积累的过程,针对蠕变条件下岩石损伤演化情况,文章采用TAW-2000多功能三轴伺服试验系统对取自四川乐山依卜隧道的红砂岩进行三轴蠕变试验,分析不同围压下试样蠕变变形规律,同时以西原模型为基础,结合Weibull分布和Perzyna 黏塑性理论,建立一种改进的可以描述岩石蠕变破坏全过程的黏弹塑性蠕变模型。通过划分蠕变阶段来定义临界点损伤变量,从而更为准确地确定加速蠕变启动时间。得出如下结论:(1)模型曲线与试验数据具有良好的一致性,验证了模型的准确性与合理性,说明基于Weibull分布建立的红砂岩黏弹塑性蠕变模型是可行的;(2)基于Perzyna黏塑性理论,建立了可以更加准确的描述加速蠕变的黏塑性应变表达式;(3)文章建立的基于Weibull分布和Perzyna 黏塑性理论的三轴损伤蠕变模型能够较好的描述岩石蠕变全过程,克服了西原模型不能描述加速蠕变的缺点。本研究通过定义不同蠕变阶段的临界点损伤变量更好的反映了岩石蠕变变形与损伤之间关系,丰富了岩石类材料的蠕变本构理论。

  • 加载中
  • 图 1  西原模型

    Figure 1. 

    图 2  应变临界示意图

    Figure 2. 

    图 3  损伤变量临界分段示意图

    Figure 3. 

    图 4  试验岩样与仪器

    Figure 4. 

    图 5  全过程应力-应变曲线

    Figure 5. 

    图 6  破坏模式

    Figure 6. 

    图 7  不同荷载水平下红砂岩轴向蠕变曲线

    Figure 7. 

    图 8  模型验证

    Figure 8. 

    图 9  模型曲线与文献[29]试验数据对比

    Figure 9. 

    表 1  红砂岩力学参数

    Table 1.  Mechanical parameters of red sandstone

    参数 围压/MPa 峰值强度/MPa 轴向峰值应变 弹性模量/MPa 泊松比 黏聚力/MPa 内摩擦角/(°)
    取值 5 52.51 0.005 4 9.67 0.263 6.27 31.05
    10 73.73 0.004 7 15.39 0.257
    15 94.19 0.005 0 18.81 0.252
    20 110.31 0.004 5 24.41 0.248
    下载: 导出CSV

    表 2  红砂岩临界点参数

    Table 2.  Critical point parameters of red sandstone

    参数 围压/MPa 荷载水平/MPa t1/h $\varepsilon _{\rm{vp}}^{{t_1}} $ /% t2/h $\varepsilon _{\rm{vp}}^{{t_2}} $ /%
    取值 5 31.51 2.54 0.243
    36.76 2.21 0.315
    42.01 2.02 0.414
    47.26 1.33 0.503 5.02 0.527
    10 44.24 2.55 0.291
    51.61 2.43 0.368
    58.98 2.22 0.492
    66.36 2.01 0.598 6.66 0.619
    15 55.51 1.04 0.323
    65.93 1.97 0.401
    75.35 1.58 0.502
    84.77 1.74 0.658 9.54 0.662
    20 66.17 2.61 0.369
    77.22 2.56 0.452
    88.25 2.35 0.559
    99.28 2.11 0.687 9.86 0.703
    注:表中“—”表示无数值,下表同。
    下载: 导出CSV

    表 3  模型参数反演结果

    Table 3.  Model parameter inversion results

    模型
    参数
    荷载水平
    /MPa
    G0
    /GPa
    K
    /GPa
    G1
    /GPa
    $\eta_1^* $
    /(GPa·h)
    $\eta_2^* $
    /(GPa·h)
    F0 m λ0 λ1 $\eta_3^* $
    /(GPa·h)
    $F'_0 $ $m' $ $\lambda'_0 $ $\lambda'_1$ λ2 A R2
    反演
    结果
    66.17 105.34 161.58 241.98 142.66 359.63 0.95
    77.22 114.29 186.76 435.97 298.66 688.54 5.43 1.79 6.32 12.31 0.97
    88.25 124.58 246.87 985.64 178.92 1231.55 5.02 2.86 3.05 7.54 0.96
    99.28 66.48 188.93 92.45 98.33 1112.30 4.62 4.31 1.14 3.88 2041.69 1.96 2.03 1.13 −0.37 –5.01 2.88 0.95
    下载: 导出CSV

    表 4  文献[29]模型参数反演结果

    Table 4.  Model parameter inversion results of Reference [29]

    模型
    参数
    含水率/% G0
    /GPa
    K
    /GPa
    G1
    /GPa
    $\eta_1^* $
    /(GPa·h)
    $\eta_2^* $
    /(GPa·h)
    F0 m λ0 λ1 $\eta_3^* $
    /(GPa·h)
    $F'_0 $ $m' $ $\lambda'_0 $ $\lambda'_1 $ λ2 A R2
    反演
    结果
    0 89.75 255.06 124.81 132.75 1 501.61 6.24 5.82 6.99 1.85 2 756.28 5.64 4.35 0.08 –2.31 –4.55 3.44 0.95
    4.56 86.42 245.61 120.19 127.83 1 445.99 6.01 5.60 0.87 5.22 2 654.20 2.24 1.37 0.83 –1.55 –2.09 7.48 0.97
    8.47 73.13 207.82 101.70 108.16 1 223.53 5.08 4.74 1.25 3.11 2 245.86 2.16 2.23 1.05 –2.54 –10.87 15.21 0.96
    12.38 66.48 188.93 92.45 98.33 1 112.30 4.62 4.31 1.14 3.88 2 041.69 1.96 2.03 1.13 –0.37 –5.01 2.88 0.95
    下载: 导出CSV
  • [1]

    张亮亮,王晓健. 岩石黏弹塑性损伤蠕变模型研究[J]. 岩土工程学报,2020,42(6):1085 − 1092. [ZHANG Liangliang,WANG Xiaojian. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering,2020,42(6):1085 − 1092. (in Chinese with English abstract) doi: 10.11779/CJGE202006012

    ZHANG Liangliang, WANG Xiaojian. Viscoelastic-plastic damage creep model for rock[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092. (in Chinese with English abstract) doi: 10.11779/CJGE202006012

    [2]

    刘新喜,李盛南,周炎明,等. 高应力泥质粉砂岩蠕变特性及长期强度研究[J]. 岩石力学与工程学报,2020,39(1):138 − 146. [LIU Xinxi,LI Shengnan,ZHOU Yanming,et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):138 − 146. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2019.0279

    LIU Xinxi, LI Shengnan, ZHOU Yanming, et al. Study on creep behavior and long-term strength of argillaceous siltstone under high stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 138-146. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2019.0279

    [3]

    姜鹏,潘鹏志,赵善坤,等. 基于应变能的岩石黏弹塑性损伤耦合蠕变本构模型及应用[J]. 煤炭学报,2018,43(11):2967 − 2979. [JIANG Peng,PAN Pengzhi,ZHAO Shankun,et al. A coupled elasto-viscoplastic damage model based on strain energy theory of rock and application[J]. Journal of China Coal Society,2018,43(11):2967 − 2979. (in Chinese with English abstract) doi: 10.13225/j.cnki.jccs.2018.8009

    JIANG Peng, PAN Pengzhi, ZHAO Shankun, et al. A coupled elasto-viscoplastic damage model based on strain energy theory of rock and application[J]. Journal of China Coal Society, 2018, 43(11): 2967-2979. (in Chinese with English abstract) doi: 10.13225/j.cnki.jccs.2018.8009

    [4]

    程爱平,付子祥,刘立顺,等. 胶结充填体蠕变硬化-损伤特征及非线性本构模型[J]. 采矿与安全工程学报,2022,39(3):449 − 457. [CHENG Aiping,FU Zixiang,LIU Lishun,et al. Creep hardening-damage characteristics and nonlinear constitutive model of cemented backfill[J]. Journal of Mining & Safety Engineering,2022,39(3):449 − 457. (in Chinese with English abstract)

    CHENG Aiping, FU Zixiang, LIU Lishun, et al. Creep hardening-damage characteristics and nonlinear constitutive model of cemented backfill[J]. Journal of Mining & Safety Engineering, 2022, 39(3): 449-457. (in Chinese with English abstract)

    [5]

    张立. 冻融循环条件下含软弱夹层隧道围岩力学性质及破坏特征[J]. 水文地质工程地质,2021,48(5):74 − 80. [ZHANG Li. On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology,2021,48(5):74 − 80. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202102035

    ZHANG Li. On mechanical properties and failure characteristics of surrounding rock of tunnel with weak interlayer under freezing-thawing cycles[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 74-80. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202102035

    [6]

    郭长宝,王磊,李任杰,等. 西藏贡觉粉砂质泥岩工程地质特性与蠕变强度研究[J]. 水文地质工程地质,2021,48(5):54 − 64. [GUO Changbao,WANG Lei,LI Renjie,et al. Engineering geology properties and creeping strength characteristics of the silty mudstone in Gongjue County in Tibet of China[J]. Hydrogeology & Engineering Geology,2021,48(5):54 − 64. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202107012

    GUO Changbao, WANG Lei, LI Renjie, et al. Engineering geology properties and creeping strength characteristics of the silty mudstone in Gongjue County in Tibet of China[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 54-64. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202107012

    [7]

    卢功臣,祝荃芃,周林林. 基于能耗理论的岩石三维蠕变本构模型及临界分段[J]. 长江科学院院报,2022,39(1):107 − 113. [LU Gongchen,ZHU Quanpeng,ZHOU Linlin. Three-dimensional creep constitutive model and critical segment of rock based on energy consumption theory[J]. Journal of Yangtze River Scientific Research Institute,2022,39(1):107 − 113. (in Chinese with English abstract) doi: 10.11988/ckyyb.20200954

    LU Gongchen, ZHU Quanpeng, ZHOU Linlin. Three-dimensional creep constitutive model and critical segment of rock based on energy consumption theory[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1): 107-113. (in Chinese with English abstract) doi: 10.11988/ckyyb.20200954

    [8]

    LIU L,XU W Y,WANG H L,et al. Permeability evolution of granite gneiss during triaxial creep tests[J]. Rock Mechanics and Rock Engineering,2016,49(9):3455 − 3462. doi: 10.1007/s00603-016-0999-8

    [9]

    胡波,王宗林,梁冰,等. 岩石蠕变特性试验研究[J]. 实验力学,2015,30(4):438 − 446. [HU Bo,WANG Zonglin,LIANG Bing,et al. Experimental study of rock creep properties[J]. Journal of Experimental Mechanics,2015,30(4):438 − 446. (in Chinese with English abstract) doi: 10.7520/1001-4888-14-247

    HU Bo, WANG Zonglin, LIANG Bing, et al. Experimental study of rock creep properties[J]. Journal of Experimental Mechanics, 2015, 30(4): 438-446. (in Chinese with English abstract) doi: 10.7520/1001-4888-14-247

    [10]

    李晓照,班力壬,戚承志. 高渗透压脆性岩石蠕变宏-细观力学模型研究[J]. 岩土力学,2020,41(12):3987 − 3995. [LI Xiaozhao,BAN Liren,QI Chengzhi. Study on the mechanical model of macro-mecro creep under high seepage pressure in brittle rocks[J]. Rock and Soil Mechanics,2020,41(12):3987 − 3995. (in Chinese with English abstract)

    LI Xiaozhao, BAN Liren, QI Chengzhi. Study on the mechanical model of macro-mecro creep under high seepage pressure in brittle rocks[J]. Rock and Soil Mechanics, 2020, 41(12): 3987-3995. (in Chinese with English abstract)

    [11]

    王游,卢小雨,翟国良. 基于西原体模型的非定常岩石蠕变模型[J]. 科学技术与工程,2022,22(2):676 − 682. [WANG You,LU Xiaoyu,ZHAI Guoliang. Non-stationary creep model for rock based on Nishihara model[J]. Science Technology and Engineering,2022,22(2):676 − 682. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2022.02.031

    WANG You, LU Xiaoyu, ZHAI Guoliang. Non-stationary creep model for rock based on nishihara model[J]. Science Technology and Engineering, 2022, 22(2): 676-682. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2022.02.031

    [12]

    王军保,刘新荣,宋战平,等. 基于反S函数的盐岩单轴压缩全过程蠕变模型[J]. 岩石力学与工程学报,2018,37(11):2446 − 2459. [WANG Junbao,LIU Xinrong,SONG Zhanping,et al. A whole process creeping model of salt rock under uniaxial compression based on inverse S function[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2446 − 2459. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2018.0670

    WANG Junbao, LIU Xinrong, SONG Zhanping, et al. A whole process creeping model of salt rock under uniaxial compression based on inverse S function[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2446-2459. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2018.0670

    [13]

    LIU Wenbo,ZHANG Shuguang. Creep parameter determination and model establishment considering stress and time effects[J]. Geotechnical and Geological Engineering,2020,38(2):1509 − 1520. doi: 10.1007/s10706-019-01106-6

    [14]

    沈才华, 王浩越, 王媛, 等. 基于COD理论的岩石蠕变加速判别法探究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3752 − 3759

    SHEN Caihua, WANG Haoyue, WANG Yuan, et al. Study on creep acceleration discrimination method based on COD theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup 2): 3752 − 3759. (in Chinese with English abstract)

    [15]

    刘东燕, 谢林杰, 庹晓峰, 等. 不同围压作用下砂岩蠕变特性及非线性黏弹塑性模型研究[J]. 岩石力学与工程学报, 2017, 36(增刊2): 3705 − 3712

    LIU Dongyan, XIE Linjie, TUO Xiaofeng, et al. Creep properties of sandstone under different confining pressures and research on a nonlinear viscoelasto-plastic creep model[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Sup 2): 3705 − 3712. (in Chinese with English abstract)

    [16]

    LYU Cheng,LIU Jianfeng,REN Yi,et al. Study on long-term uniaxial compression creep mechanical behavior of rocksalt-mudstone combined body[J]. International Journal of Damage Mechanics,2022,31(2):275 − 293. doi: 10.1177/10567895211035488

    [17]

    杨秀荣, 姜谙男, 江宗斌. 含水状态下软岩蠕变试验及损伤模型研究[J]. 岩土力学, 2018, 39(增刊1): 167 − 174

    YANG Xiurong, JIANG Annan, JIANG Zongbin. Creep test and damage model of soft rock under water containing condition[J]. Rock and Soil Mechanics, 2018, 39(Sup 1): 167 − 174. (in Chinese with English abstract)

    [18]

    蔡煜, 曹平. 基于Burgers模型考虑损伤的非定常岩石蠕变模型[J]. 岩土力学, 2016, 37(增刊2): 369 − 374

    CAI Yu, CAO Ping. A non-stationary model for rock creep considering damage based on Burgers model[J]. Rock and Soil Mechanics, 2016, 37(Sup 2): 369 − 374. (in Chinese with English abstract)

    [19]

    宋勇军,张磊涛,任建喜,等. 冻融环境下红砂岩三轴蠕变特性及其模型研究[J]. 岩土工程学报,2021,43(5):841 − 849. [SONG Yongjun,ZHANG Leitao,REN Jianxi,et al. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering,2021,43(5):841 − 849. (in Chinese with English abstract) doi: 10.11779/CJGE202105007

    SONG Yongjun, ZHANG Leitao, REN Jianxi, et al. Triaxial creep properties and model of red sandstone under freeze-thaw environment[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(5): 841-849. (in Chinese with English abstract) doi: 10.11779/CJGE202105007

    [20]

    王者超,宗智,乔丽苹,等. 横观各向同性岩石蠕变性质与本构模型研究[J]. 岩土工程学报,2018,40(7):1221 − 1229. [WANG Zhechao,ZONG Zhi,QIAO Liping,et al. Creep behaviors and constitutive model of transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering,2018,40(7):1221 − 1229. (in Chinese with English abstract) doi: 10.11779/CJGE201807008

    WANG Zhechao, ZONG Zhi, QIAO Liping, et al. Creep behaviors and constitutive model of transversely isotropic rocks[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(7): 1221-1229. (in Chinese with English abstract) doi: 10.11779/CJGE201807008

    [21]

    张俊文, 霍英昊. 深部砂岩分级增量加卸载蠕变特性[J]. 煤炭学报, 2021, 46(增刊2): 661 − 669

    ZHANG Junwen, HUO Yinghao. Creep behavior of deep sandstones under stepwise incremental loading and unloading conditions[J]. Journal of China Coal Society, 2021, 46(Sup 2): 661 − 669. (in Chinese with English abstract)

    [22]

    王新刚,刘凯,王友林,等. 典型黄土滑坡滑带土不同含水率下蠕变特性试验研究[J]. 水文地质工程地质,2022,49(5):137 − 143. [WANG Xingang,LIU Kai,WANG Youlin,et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology,2022,49(5):137 − 143. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202109025

    WANG Xingang, LIU Kai, WANG Youlin, et al. An experimental study of the creep characteristics of loess landslide sliding zone soil with different water content[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 137-143. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202109025

    [23]

    ZHOU Jiaxing,ZHANG Jiwei,WANG Jinan,et al. Research on nonlinear damage hardening creep model of soft surrounding rock under the stress of deep coal resources mining[J]. Energy Reports,2022,8:1493 − 1507. doi: 10.1016/j.egyr.2022.02.093

    [24]

    沈才华,张兵,王文武. 一种基于应变能理论的黏弹塑性蠕变本构模型[J]. 岩土力学,2014,35(12):3430 − 3436. [SHEN Caihua,ZHANG Bing,WANG Wenwu. A new visco-elastoplastic creep constitutive model based on strain energy theory[J]. Rock and Soil Mechanics,2014,35(12):3430 − 3436. (in Chinese with English abstract) doi: 10.16285/j.rsm.2014.12.016

    SHEN Caihua, ZHANG Bing, WANG Wenwu. A new visco-elastoplastic creep constitutive model based on strain energy theory[J]. Rock and Soil Mechanics, 2014, 35(12): 3430-3436. (in Chinese with English abstract) doi: 10.16285/j.rsm.2014.12.016

    [25]

    张慧梅,谢祥妙,彭川,等. 三向应力状态下冻融岩石损伤本构模型[J]. 岩土工程学报,2017,39(8):1444 − 1452. [ZHANG Huimei,XIE Xiangmiao,PENG Chuan,et al. Constitutive model for damage of freeze-thaw rock under three-dimensional stress[J]. Chinese Journal of Geotechnical Engineering,2017,39(8):1444 − 1452. (in Chinese with English abstract) doi: 10.11779/CJGE201708011

    ZHANG Huimei, XIE Xiangmiao, PENG Chuan, et al. Constitutive model for damage of freeze-thaw rock under three-dimensional stress[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(8): 1444-1452. (in Chinese with English abstract) doi: 10.11779/CJGE201708011

    [26]

    张慧梅,彭川,杨更社,等. 考虑冻融效应的岩石损伤统计强度准则研究[J]. 中国矿业大学学报,2017,46(5):1066 − 1072. [ZHANG Huimei,PENG Chuan,YANG Gengshe,et al. Study of damage statistical strength criterion of rock considering the effect of freezing and thawing[J]. Journal of China University of Mining & Technology,2017,46(5):1066 − 1072. (in Chinese with English abstract) doi: 10.13247/j.cnki.jcumt.000740

    ZHANG Huimei, PENG Chuan, YANG Gengshe, et al. Study of damage statistical strength criterion of rock considering the effect of freezing and thawing[J]. Journal of China University of Mining & Technology, 2017, 46(5): 1066-1072. (in Chinese with English abstract) doi: 10.13247/j.cnki.jcumt.000740

    [27]

    刘文博,张树光,陈雷,等. 基于统计损伤原理的岩石加速蠕变模型研究[J]. 岩土工程学报,2020,42(9):1696 − 1704. [LIU Wenbo,ZHANG Shuguang,CHEN Lei,et al. Accelerated creep model for rock based on statistical damage principle[J]. Chinese Journal of Geotechnical Engineering,2020,42(9):1696 − 1704. (in Chinese with English abstract) doi: 10.11779/CJGE202009014

    LIU Wenbo, ZHANG Shuguang, CHEN Lei, et al. Accelerated creep model for rock based on statistical damage principle[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704. (in Chinese with English abstract) doi: 10.11779/CJGE202009014

    [28]

    JEAN L. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology,1985,107(1):83 − 89.

    [29]

    叶为民,王启力,罗文静,等. 非饱和泥质粉砂岩蠕变特性及其模型[J]. 同济大学学报(自然科学版),2022,50(8):1154 − 1162. [YE Weimin,WANG Qili,LUO Wenjing,et al. Compressive creep property and model for unsaturated argillaceous siltstone[J]. Journal of Tongji University (Natural Science),2022,50(8):1154 − 1162. (in Chinese with English abstract)

    YE Weimin, WANG Qili, LUO Wenjing, et al. Compressive creep property and model for unsaturated argillaceous siltstone[J]. Journal of Tongji University (Natural Science), 2022, 50(8): 1154-1162. (in Chinese with English abstract)

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1220
  • PDF下载数:  38
  • 施引文献:  0
出版历程
收稿日期:  2022-11-13
修回日期:  2023-03-13
刊出日期:  2023-07-15

目录