裂隙岩体非饱和带温度场和湿度场分布特征及其生态学意义

李冉, 周建伟, 苏丹辉, 郑晓明, 陈峰, 张鹏. 裂隙岩体非饱和带温度场和湿度场分布特征及其生态学意义[J]. 水文地质工程地质, 2023, 50(5): 203-211. doi: 10.16030/j.cnki.issn.1000-3665.202210034
引用本文: 李冉, 周建伟, 苏丹辉, 郑晓明, 陈峰, 张鹏. 裂隙岩体非饱和带温度场和湿度场分布特征及其生态学意义[J]. 水文地质工程地质, 2023, 50(5): 203-211. doi: 10.16030/j.cnki.issn.1000-3665.202210034
LI Ran, ZHOU Jianwei, SU Danhui, ZHENG Xiaoming, CHEN Feng, ZHANG Peng. Distribution characteristics of temperature field and humidity field in the unsaturated zone of fractured rock mass and their ecological significance[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 203-211. doi: 10.16030/j.cnki.issn.1000-3665.202210034
Citation: LI Ran, ZHOU Jianwei, SU Danhui, ZHENG Xiaoming, CHEN Feng, ZHANG Peng. Distribution characteristics of temperature field and humidity field in the unsaturated zone of fractured rock mass and their ecological significance[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 203-211. doi: 10.16030/j.cnki.issn.1000-3665.202210034

裂隙岩体非饱和带温度场和湿度场分布特征及其生态学意义

  • 基金项目: 国家自然科学基金项目(41572344;41877265;42077182);科技部国家重点研发计划项目(2018YFC1801700)
详细信息
    作者简介: 李冉(1998-),男,硕士研究生,主要从事矿山地质环境保护与生态修复研究。E-mail:liran2020@cug.edu.cn
    通讯作者: 周建伟(1975-),男,博士,教授,主要从事矿山地质环境保护与生态修复研究。E-mail:jw.zhou@cug.edu.cn
  • 中图分类号: TD167;X171.4

Distribution characteristics of temperature field and humidity field in the unsaturated zone of fractured rock mass and their ecological significance

More Information
  • 矿产资源开发及交通设施建设导致大量山体破坏,形成的高陡岩质边坡引发严重的地质安全隐患及生态功能退化等问题,高陡岩质边坡的生态修复势在必行。边坡生态修复的重点在于植被的重建,目前尚存在修复理论缺乏、重建条件不明等诸多难题。为了阐明岩质边坡内温度场和湿度场与边坡植物生长之间的关系,在山东省章丘市小东山建立试验场,开展了多期次边坡温度和相对湿度监测试验,研究了岩质边坡温度场和湿度场的分布特征,并深入分析了其生态学意义。研究表明:(1)大气温度造成了各季节监测孔内温度变化的差异性,冬季裂隙岩体非饱和带内热量从岩体深层传递到岩体表面,春季、夏季则相反,岩体内变温带的深度范围是0~467 cm,恒温带的深度大于467 cm;(2)冬季边坡内的相对湿度随着深度的增加先升高再降低,春季、夏季边坡内的相对湿度随着深度的增加逐渐升高;(3)冬季岩体内20 cm深度附近会出现水汽饱和带,夏季在20 ~40 cm深度处开始出现水汽饱和带并往更深处延伸;(4)岩体内温度和湿度适宜植物生长,将植物在春季种于20 cm深度附近更易于存活。研究结果对于指导岩质边坡生态修复工作具有重要的理论意义与应用价值。

  • 加载中
  • 图 1  试验场复绿前

    Figure 1. 

    图 2  监测孔位置及孔内仪器布设图

    Figure 2. 

    图 3  温度均值随深度变化图

    Figure 3. 

    图 4  相对湿度随深度变化图

    Figure 4. 

    图 5  温度曲线变化方程图

    Figure 5. 

    图 6  相对湿度分带性图

    Figure 6. 

    图 7  试验场复绿后

    Figure 7. 

    表 1  昼夜温差统计表

    Table 1.  Statistics of day-night temperature difference

    季节 孔高/m 昼夜温差/°C
    0 cm 20 cm 40 cm 80 cm 120 cm 200 cm
    冬季 2 0.62 0.36 0.15 0.11 0.04
    10 4.28 0.24 0.11 0.06 0.06 0.06
    18 0.34 0.28 0.12 0.12 0.07
    春季 2 0.40 0.23 0.05 0.04 0.05
    10 3.30 0.33 0.02 0.04 0.05 0.04
    18 3.32 0.54 0.12 0.04 0.05 0.06
    夏季 2 1.01 0.67 0.15 0.05 0.04 0.03
    10 0.52 0.01 0.02 0.02 0.01
    18 0.75 0.2 0.05 0.02 0.02
      注:表格中“—”表示数据缺失。
    下载: 导出CSV

    表 2  季节变温带与恒温带界限值

    Table 2.  Limited values between the seasonal variable temperate band and the constant temperature band

    监测季节季节变温带与恒温带界限值/cm
    K1K2K3
    冬季349353433
    春季293296332
    夏季467459642
    下载: 导出CSV

    表 3  湿度场三带划分依据

    Table 3.  Three-zone classification basis for the humidity field

    湿度场三带欠饱和带近饱和带饱和态带
    平均相对湿度<95%[95%,100%)100%
    下载: 导出CSV
  • [1]

    夏冬,李富平,袁雪涛,等. 露天矿岩质边坡生态重建技术研究现状及发展趋势[J]. 金属矿山,2018(1):1 − 10. [XIA Dong,LI Fuping,YUAN Xuetao,et al. Research situation of ecological rehabilitation technology in rock open-pit mine and its developing trend[J]. Metal Mine,2018(1):1 − 10. (in Chinese with English abstract) doi: 10.19614/j.cnki.jsks.201801001

    XIA Dong, LI Fuping, YUAN Xuetao, et al. Research situation of ecological rehabilitation technology in rock open-pit mine and its developing trend[J]. Metal Mine, 20181): 110. (in Chinese with English abstract) doi: 10.19614/j.cnki.jsks.201801001

    [2]

    MAHDAVI S M,NEYSHABOURI M R,FUJIMAKI H. Water vapour transport in a soil column in the presence of an osmotic gradient[J]. Geoderma,2018,315:199 − 207. doi: 10.1016/j.geoderma.2017.11.031

    [3]

    HEDAYATI-DEZFOOLI M,LEONG W H. An experimental study of coupled heat and moisture transfer in soils at high temperature conditions for a medium coarse soil[J]. International Journal of Heat and Mass Transfer,2019,137:372 − 389. doi: 10.1016/j.ijheatmasstransfer.2019.03.131

    [4]

    CARY J W. Soil moisture transport due to thermal gradients:Practical aspects[J]. Soil Science Society of America Journal,1996,30(4):428 − 433.

    [5]

    ROSE C W. Water transport in soil with a daily temperature wave. II. Analysis[J]. Soil Research,1968,6(1):45. doi: 10.1071/SR9680045

    [6]

    孙巍锋,常洲,兰恒星,等. 高寒阴湿区边坡浅层土体温湿响应规律研究[J]. 水文地质工程地质,2022,49(5):204 − 213. [SUN Weifeng,CHANG Zhou,LAN Hengxing,et al. The response regularity of temperature and humidity of surface soil on slopes in high-cold and humid areas[J]. Hydrogeology & Engineering Geology,2022,49(5):204 − 213. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202109057

    SUN Weifeng, CHANG Zhou, LAN Hengxing, et al. The response regularity of temperature and humidity of surface soil on slopes in high-cold and humid areas[J]. Hydrogeology & Engineering Geology, 2022, 495): 204213. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202109057

    [7]

    OLIVELLA S,GENS A. Vapour transport in low permeability unsaturated soils with capillary effects[J]. Transport in Porous Media,2000,40(2):219 − 241. doi: 10.1023/A:1006749505937

    [8]

    李建东,王旭,张延杰,等. 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学,2021,42(1):186 − 192. [LI Jiandong,WANG Xu,ZHANG Yanjie,et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics,2021,42(1):186 − 192. (in Chinese with English abstract) doi: 10.16285/j.rsm.2020.0671

    LI Jiandong, WANG Xu, ZHANG Yanjie, et al. Study of thermal moisture migration of unsaturated loess with water vapor[J]. Rock and Soil Mechanics, 2021, 421): 186192. (in Chinese with English abstract) doi: 10.16285/j.rsm.2020.0671

    [9]

    曹文炳,万力,陈康,等. 季节冻土对包气带水分迁移的影响[J]. 水文地质工程地质,2014,41(6):1 − 5. [CAO Wenbing,WAN Li,CHEN Kang,et al. Influence of seasonal frozen soil on moisture migration in the aerated zone[J]. Hydrogeology & Engineering Geology,2014,41(6):1 − 5. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.06.002

    CAO Wenbing, WAN Li, CHEN Kang, et al. Influence of seasonal frozen soil on moisture migration in the aerated zone[J]. Hydrogeology & Engineering Geology, 2014, 416): 15. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.06.002

    [10]

    LIU Feifei,MAO Xuesong,ZHANG Jianxun,et al. Isothermal diffusion of water vapor in unsaturated soils based on Fick’s second law[J]. Journal of Central South University,2020,27(7):2017 − 2031. doi: 10.1007/s11771-020-4427-6

    [11]

    袁进科,裴向军,程强,等. 川藏高速公路沿线温度变化规律与斜坡温度场-变形分析[J]. 公路交通科技,2019,36(10):33 − 42. [YUAN Jinke,PEI Xiangjun,CHENG Qiang,et al. Analysis on temperature variation regularity and slope temperature field-deformation along sichuan-tibet expressway[J]. Journal of Highway and Transportation Research and Development,2019,36(10):33 − 42. (in Chinese with English abstract)

    YUAN Jinke, PEI Xiangjun, CHENG Qiang, et al. Analysis on temperature variation regularity and slope temperature field-deformation along sichuan-tibet expressway[J]. Journal of Highway and Transportation Research and Development, 2019, 3610): 3342. (in Chinese with English abstract)

    [12]

    李萌. 高温高湿气候下隧道洞口段围岩(衬砌)热湿应力分析[D]. 北京:北京交通大学,2016. [LI Meng. Thermal-moisture stress analysis of tunnel portal rock in high temperature and humidity[D]. Beijing:Beijing Jiaotong University,2016. (in Chinese with English abstract)

    LI Meng. Thermal-moisture stress analysis of tunnel portal rock in high temperature and humidity[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese with English abstract)

    [13]

    FRANK S,HEINZE T,POLLAK S,et al. Transient heat transfer processes in a single rock fracture at high flow rates[J]. Geothermics,2021,89:101989. doi: 10.1016/j.geothermics.2020.101989

    [14]

    高俊义. 裂隙参数对岩体水流-传热温度影响的数值模拟分析[J]. 水资源与水工程学报,2019,30(6):206 − 211. [GAO Junyi. Numerical simulation analysis of the influence of fracture parameters on water flow and heat transfer temperature in rock mass[J]. Journal of Water Resources and Water Engineering,2019,30(6):206 − 211. (in Chinese with English abstract)

    GAO Junyi. Numerical simulation analysis of the influence of fracture parameters on water flow and heat transfer temperature in rock mass[J]. Journal of Water Resources and Water Engineering, 2019, 306): 206211. (in Chinese with English abstract)

    [15]

    YAO Chi,SHAO Yulong,YANG Jianhua,et al. Effects of fracture density,roughness,and percolation of fracture network on heat-flow coupling in hot rock masses with embedded three-dimensional fracture network[J]. Geothermics,2020,87:101846. doi: 10.1016/j.geothermics.2020.101846

    [16]

    陈金龙,罗文行,窦斌,等. 涿鹿盆地三维多裂隙地质模型地温场数值模拟[J]. 地质科技通报,2021,40(3):22 − 33. [CHEN Jinlong,LUO Wenxing,DOU Bin,et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology,2021,40(3):22 − 33. (in Chinese with English abstract)

    CHEN Jinlong, LUO Wenxing, DOU Bin, et al. Numerical simulation of geothermal field in a three-dimensional multi-fractured geological model of Zhuolu Basin[J]. Bulletin of Geological Science and Technology, 2021, 403): 2233. (in Chinese with English abstract)

    [17]

    张延军,袁学兵,马跃强,等. 花岗岩双裂隙热-流耦合参数敏感性[J]. 吉林大学学报(地球科学版),2022,52(6):1971 − 1981. [ZHANG Yanjun,YUAN Xuebing,MA Yueqiang,et al. Sensitivity of thermal-fluid coupling parameters of granite double fractures[J]. Journal of Jilin University (Earth Science Edition),2022,52(6):1971 − 1981. (in Chinese with English abstract)

    ZHANG Yanjun, YUAN Xuebing, MA Yueqiang, et al. Sensitivity of thermal-fluid coupling parameters of granite double fractures[J]. Journal of Jilin University (Earth Science Edition), 2022, 526): 19711981. (in Chinese with English abstract)

    [18]

    李燕. 麦积山石窟水汽凝结机理及防治措施研究[D]. 兰州:兰州大学,2020. [LI Yan. Mechanism and control measures of air moisture condensation in Maijishan grottoes[D]. Lanzhou:Lanzhou University,2020. (in Chinese with English abstract)

    LI Yan. Mechanism and control measures of air moisture condensation in Maijishan grottoes[D]. Lanzhou: Lanzhou University, 2020. (in Chinese with English abstract)

    [19]

    马策,蒋小伟,闫宏彬,等. 基于红外热成像技术的石窟壁面凝结水形成规律研究[J]. 水文地质工程地质,2022,49(4):30 − 36. [MA Ce,JIANG Xiaowei,YAN Hongbin,et al. A study of the formation pattern of condensation water in grottoes based on the infrared thermal imaging technology[J]. Hydrogeology & Engineering Geology,2022,49(4):30 − 36. (in Chinese with English abstract)

    MA Ce, JIANG Xiaowei, YAN Hongbin, et al. A study of the formation pattern of condensation water in grottoes based on the infrared thermal imaging technology[J]. Hydrogeology & Engineering Geology, 2022, 494): 3036. (in Chinese with English abstract)

    [20]

    李昂,王化锋,宁立波,等. 边坡裂隙岩体内凝结水形成区域的分布特征[J]. 地球科学进展,2020,35(2):189 − 197. [LI Ang,WANG Huafeng,NING Libo,et al. Distribution characteristics of formed region of condensate in slope fractured rock mass[J]. Advances in Earth Science,2020,35(2):189 − 197. (in Chinese with English abstract)

    LI Ang, WANG Huafeng, NING Libo, et al. Distribution characteristics of formed region of condensate in slope fractured rock mass[J]. Advances in Earth Science, 2020, 352): 189197. (in Chinese with English abstract)

    [21]

    朱晛亭,黄景春,宁立波,等. 裂隙岩体内凝结水时空分布规律——以宜阳锦屏山为例[J]. 水文地质工程地质,2018,45(4):1 − 6. [ZHU Xianting,HUANG Jingchun,NING Libo,et al. Temporal and spatial distribution of condensate water in fractured rock mass:A case study in the Jinping Mountain of Yiyang County[J]. Hydrogeology & Engineering Geology,2018,45(4):1 − 6. (in Chinese with English abstract)

    ZHU Xianting, HUANG Jingchun, NING Libo, et al. Temporal and spatial distribution of condensate water in fractured rock mass: A case study in the Jinping Mountain of Yiyang County[J]. Hydrogeology & Engineering Geology, 2018, 454): 16. (in Chinese with English abstract)

    [22]

    余启明,宁立波,赵国红,等. 裂隙岩体水汽场湿度季节变化规律研究[J]. 水电能源科学,2019,37(12):91 − 94. [YU Qiming,NING Libo,ZHAO Guohong,et al. Study of seasonal variation law of water vapor field humidity in fractured rock mass[J]. Water Resources and Power,2019,37(12):91 − 94. (in Chinese with English abstract)

    YU Qiming, NING Libo, ZHAO Guohong, et al. Study of seasonal variation law of water vapor field humidity in fractured rock mass[J]. Water Resources and Power, 2019, 3712): 9194. (in Chinese with English abstract)

    [23]

    周建伟,苏丹辉,袁磊,等. 岩质边坡非饱和带水汽运移机制及其生态学意义[J]. 地质科技通报,2020,39(1):53 − 59. [ZHOU Jianwei,SU Danhui,YUAN Lei,et al. Water vapor transport mechanism in unsaturated zone of rock slope and its ecological significance[J]. Bulletin of Geological Science and Technology,2020,39(1):53 − 59. (in Chinese with English abstract)

    ZHOU Jianwei, SU Danhui, YUAN Lei, et al. Water vapor transport mechanism in unsaturated zone of rock slope and its ecological significance[J]. Bulletin of Geological Science and Technology, 2020, 391): 5359. (in Chinese with English abstract)

    [24]

    孔凡彪. 山东章丘黄土沉积中砾石层的砾组结构特征研究[D]. 济南:山东师范大学,2018. [KONG Fanbiao. Fabric characteristics of gravel layer in the loess of the Zhangqiu,Shandong Province[D]. Jinan:Shandong Normal University,2018. (in Chinese with English abstract)

    KONG Fanbiao. Fabric characteristics of gravel layer in the loess of the Zhangqiu, Shandong Province[D]. Jinan: Shandong Normal University, 2018. (in Chinese with English abstract)

    [25]

    蒋裕强,陆廷清. 石油与天然气地质概论[M]. 北京:石油工业出版社,2010. [JIANG Yuqiang,LU Tingqing. Introduction to petroleum and natural gas geology[M]. Beijing:Petroleum Industry Press,2010. (in Chinese).

    JIANG Yuqiang, LU Tingqing. Introduction to petroleum and natural gas geology[M]. Beijing: Petroleum Industry Press, 2010. (in Chinese).

    [26]

    张国厅. 高寒山区表层岩体的温度效应研究——以四川藏区主要公路为例[D]. 成都:成都理工大学,2017. [ZHANG Guoting. Study on temperature effect of shallow rock mass in alpine area:A case study of rockfall along Tibet region roads[D]. Chengdu:Chengdu University of Technology,2017. (in Chinese with English abstract)

    ZHANG Guoting. Study on temperature effect of shallow rock mass in alpine area: A case study of rockfall along Tibet region roads[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

    [27]

    王楚骄. 东缘进藏交通廊道地温分布及隧址区地温分析方法[D]. 成都:西南交通大学,2013. [WANG Chujiao. The distribution of geotemperature field of sichuan-tibet highway & the method to simulate ground temperature of tunnel site[D]. Chengdu:Southwest Jiaotong University,2013. (in Chinese with English abstract)

    WANG Chujiao. The distribution of geotemperature field of sichuan-tibet highway & the method to simulate ground temperature of tunnel site[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese with English abstract)

    [28]

    孙占学,张文,胡宝群,等. 沁水盆地大地热流与地温场特征[J]. 地球物理学报,2006,49(1):130 − 134. [SUN Zhanxue,ZHANG Wen,HU Baoqun,et al. Features of heat flow and the geothermal field of the Qinshui Basin[J]. Chinese Journal of Geophysics,2006,49(1):130 − 134. (in Chinese with English abstract)

    SUN Zhanxue, ZHANG Wen, HU Baoqun, et al. Features of heat flow and the geothermal field of the Qinshui Basin[J]. Chinese Journal of Geophysics, 2006, 491): 130134. (in Chinese with English abstract)

    [29]

    刘晓燕,赵军,石成,等. 土壤恒温层温度及深度研究[J]. 太阳能学报,2007,28(5):494 − 498. [LIU Xiaoyan,ZHAO Jun,SHI Cheng,et al. Study on soil layer of constant temperature[J]. Acta Energiae Solaris Sinica,2007,28(5):494 − 498. (in Chinese with English abstract)

    LIU Xiaoyan, ZHAO Jun, SHI Cheng, et al. Study on soil layer of constant temperature[J]. Acta Energiae Solaris Sinica, 2007, 285): 494498. (in Chinese with English abstract)

    [30]

    邹邦银. 热力学与分子物理学[M]. 武汉:华中师范大学出版社,2004. [ZOU Bangyin. Thermodynamics and molecular physics[M]. Wuhan:Central China Normal University Press,2004. (in Chinese)

    ZOU Bangyin. Thermodynamics and molecular physics[M]. Wuhan: Central China Normal University Press, 2004. (in Chinese)

    [31]

    WALKER J M. One-degree increments in soil temperatures affect maize seedling behavior[J]. Soil Science Society of America Journal,1969,33(5):729 − 736. doi: 10.2136/sssaj1969.03615995003300050031x

    [32]

    吴丹. 不同光照、播量和根系温度对工厂化水稻育秧的影响[D]. 南京:南京农业大学,2015. [WU Dan. Effect of different light,sowing rate and root temperature on growth and developmeng of rice seedlings[D]. Nanjing:Nanjing Agricultural University,2015. (in Chinese with English abstract)

    WU Dan. Effect of different light, sowing rate and root temperature on growth and developmeng of rice seedlings[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese with English abstract)

    [33]

    刘炜. 秸秆覆盖的土壤温度效应及其影响小麦生长的机理研究[D]. 杨凌:西北农林科技大学,2007. [LIU Wei. Effect of straw mulching on soil temperature and mechanism of mulching impact on wheat growth[D]. Yangling:Northwest A & F University,2007. (in Chinese with English abstract)

    LIU Wei. Effect of straw mulching on soil temperature and mechanism of mulching impact on wheat growth[D]. Yangling: Northwest A & F University, 2007. (in Chinese with English abstract)

    [34]

    曲明南. CO2升高和短期高温胁迫对玉米幼苗生理生化指标的影响[D]. 沈阳:沈阳农业大学,2013. [QU Mingnan. Effects of elevated CO2 and short-term heat stress on physiological and biochemical variables in maize seedlings[D]. Shenyang:Shenyang Agricultural University,2013. (in Chinese with English abstract)

    QU Mingnan. Effects of elevated CO2 and short-term heat stress on physiological and biochemical variables in maize seedlings[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese with English abstract)

    [35]

    樊维. 裂隙岩体植物根劈作用机理研究[D]. 重庆:重庆交通大学,2016. [FAN Wei. The mechanism study of rock-broken process by root-growth of plant in fractured rock[D]. Chongqing:Chongqing Jiaotong University,2016. (in Chinese with English abstract)

    FAN Wei. The mechanism study of rock-broken process by root-growth of plant in fractured rock[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese with English abstract)

    [36]

    MUELLER K E,TILMAN D,FORNARA D A,et al. Root depth distribution and the diversity-productivity relationship in a long-term grassland experiment[J]. Ecology,2013,94(4):787 − 793. doi: 10.1890/12-1399.1

    [37]

    李慧强. 都江堰市蒲虹路边坡草本植物根系分布及抗拉特性研究[D]. 雅安:四川农业大学,2015. [LI Huiqiang. Research on the distribution and tensile properties of the root system of the slope herbaceous plant in puhong road,Dujiangyan City[D]. Yaan:Sichuan Agricultural University,2015. (in Chinese with English abstract)

    LI Huiqiang. Research on the distribution and tensile properties of the root system of the slope herbaceous plant in puhong road, Dujiangyan City[D]. Yaan: Sichuan Agricultural University, 2015. (in Chinese with English abstract)

    [38]

    蔡施泽. 上海常见园林乔木根系分布特征与土壤蓄渗关系研究及应用[D]. 上海:上海交通大学,2017. [CAI Shize. Relationship between Shanghai common ornamental trees’ root distribution and soil infiltration characteristics[D]. Shanghai:Shanghai Jiao Tong University,2017. (in Chinese with English abstract)

    CAI Shize. Relationship between Shanghai common ornamental trees’ root distribution and soil infiltration characteristics[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese with English abstract)

  • 加载中

(7)

(3)

计量
  • 文章访问数:  750
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2022-10-14
修回日期:  2022-12-23
刊出日期:  2023-09-15

目录