典型锑矿区地下水中锑污染年际变化特征和成因分析

兰建梅, 江涛, 梅金华, 唐晖, 黄文智. 典型锑矿区地下水中锑污染年际变化特征和成因分析[J]. 水文地质工程地质, 2023, 50(5): 192-202. doi: 10.16030/j.cnki.issn.1000-3665.202302052
引用本文: 兰建梅, 江涛, 梅金华, 唐晖, 黄文智. 典型锑矿区地下水中锑污染年际变化特征和成因分析[J]. 水文地质工程地质, 2023, 50(5): 192-202. doi: 10.16030/j.cnki.issn.1000-3665.202302052
LAN Jianmei, JIANG Tao, MEI Jinhua, TANG Hui, HUANG Wenzhi. Characterization and causes of interannual variation of antimony contamination in groundwater of a typical antimony mining area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 192-202. doi: 10.16030/j.cnki.issn.1000-3665.202302052
Citation: LAN Jianmei, JIANG Tao, MEI Jinhua, TANG Hui, HUANG Wenzhi. Characterization and causes of interannual variation of antimony contamination in groundwater of a typical antimony mining area[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 192-202. doi: 10.16030/j.cnki.issn.1000-3665.202302052

典型锑矿区地下水中锑污染年际变化特征和成因分析

  • 基金项目: 国家行政事业类项目(121201014000150003);湖南省自然资源厅科技计划项目(20230150ST);湖南省国土资源厅地质环境项目(湘国土资发〔2017〕6号)
详细信息
    作者简介: 兰建梅(1985-),女,硕士,高级工程师,主要从事水文地质、矿山生态保护与修复方面的研究。E-mail:jianm_lan@163.com
  • 中图分类号: X523

Characterization and causes of interannual variation of antimony contamination in groundwater of a typical antimony mining area

  • 湘中锡矿山锑矿区重金属污染问题突出,近年来矿区大力实施废渣综合整治和生态修复工程,但地下水污染修复成效未知。通过2013—2022年连续10 a 采集的锡矿山锑矿区地下水样品,运用水化学分析、离子相关性分析、地统计学等方法,对地下水化学特征、锑污染年际变化特征、锑污染来源和途径进行了系统研究。结果显示:(1)锡矿山锑矿区地下水水化学类型主要为HCO3·SO4—Ca型,地下水水化学组分的形成过程受固废淋滤和盐岩溶解控制;(2)矿区泥盆系上统佘田桥组、锡矿山组以及矿区外围下石炭统3个灰岩裂隙含水层受到不同程度的锑污染,尤其是佘田桥组含水层,锑质量浓度均值达7.139 mg/L,受辉锑矿氧化影响显著,而锡矿山组、下石炭统含水层锑的来源主要受尾渣、废石等固体废弃物淋滤控制;(3)10 年间佘田桥组地下水锑质量浓度均值差异较大,2013—2015年,锑质量浓度均值为13.31 mg/L,逐年下降,2016—2018年锑质量浓度均值为7.28 mg/L,逐年略升,2019—2022年锑质量浓度均值为6.06 mg/L,整体呈下降趋势。分析表明矿区生态环境逐步转好,研究成果可为矿区生态修复工程实施成效评估、矿区重金属污染防治提供科学依据。

  • 加载中
  • 图 1  研究区水文地质及地下水采样点位置图

    Figure 1. 

    图 2  研究区地下水化学Piper三线图

    Figure 2. 

    图 3  不同含水层地下水中 Sb 质量浓度年际变化情况

    Figure 3. 

    图 4  研究区常规离子相关性分析

    Figure 4. 

    图 5  不同含水层地下水中Sb与常规离子相关关系

    Figure 5. 

    图 6  不同含水层典型水样点Sb、${\rm{SO}}_4^{2-} $质量浓度以及TDS年际变化趋势

    Figure 6. 

    表 1  样品测试指标及方法

    Table 1.  Sample testing index and methods

    指标 仪器 方法
    pH 多参数水质分析仪
    (HACH-HQ40d)
    现场测定
    K+、Na+、Ca2+、Mg2+
    Sb质量浓度
    电感耦合等离子体发射光
    谱仪(ICAP 7000 Series)
    《水质 32元素的测定
    电感耦合等离子体发射光谱法》(HJ 776—2015)[27]
    Cl质量浓度 离子色谱仪(ICS-900) 《水质 无机阴离子(F、Cl${\rm{NO}}_2^- $、Br${\rm{NO}}_3^-$${\rm{PO}}_4^{3-} $${\rm{SO}}_3^{2 -} $${\rm{SO}}_4^{2 -} $
    的测定离子色谱法》(HJ 84—2016)[28]
    ${\rm{HCO}}_3^- $质量浓度 滴定管0.01~50.00 mL 《地下水质分析方法 第49部分:碳酸根、
    重碳酸根和氢氧根离子的测定 滴定法》(DZ/T 0064.49—2021)[29]
    ${\rm{SO}}_4^{2 -} $质量浓度 可见分光光度计(721 G) 《地下水质分析方法 第64部分:
    硫酸盐的测定乙二胺四乙酸二钠—钡滴定法》(DZ/T 0064.64—2021)[30]
    下载: 导出CSV

    表 2  各年度地下水样品采集情况统计

    Table 2.  Statistics of groundwater samples collection from 2013 to 2022

    编号 水点类型 所处含水层 2013年7月 2014年6月 2015年7月 2016年9月 2017年12月 2018年6月 2019年6月 2020年7月 2021年9月 2022年10月 小计/组
    Ds1 佘田桥组 10
    Ds2 佘田桥组 5
    Ds3 佘田桥组 5
    Ds4 佘田桥组 9
    Ds5 佘田桥组 6
    Ds6 佘田桥组 5
    Ds7 钻井 佘田桥组 6
    Ds8 钻井 佘田桥组 6
    Ds9 钻井 佘田桥组 4
    Ds10 钻井 佘田桥组 7
    Ds11 钻井 佘田桥组 4
    Dx1 锡矿山组 10
    Dx2 锡矿山组 10
    Dx3 锡矿山组 7
    Dx4 锡矿山组 9
    Dx5 锡矿山组 8
    Dx6 锡矿山组 10
    Dx7 锡矿山组 6
    Dx8 锡矿山组 9
    Dx9 钻井 锡矿山组 7
    Dx10 钻井 锡矿山组 7
    Dx11 钻井 锡矿山组 4
    Dx12 钻井 锡矿山组 5
    Dx13 钻井 锡矿山组 5
    Dx14 钻井 锡矿山组 1
    Dx15 钻井 锡矿山组 5
    C1 下石炭统 8
    C2 下石炭统 4
    C3 钻井 下石炭统 7
    C4 下石炭统 2
    合计/组 12 15 16 22 26 18 16 25 21 20 191
    下载: 导出CSV

    表 3  研究区地下水化学指标统计

    Table 3.  Statistics of groundwater chemistry in the study area

    年份 样品
    数量/组
    层位 物化参数 pH 质量浓度/(mg·L−1 TDS/(mg·L−1
    K+ Na+ Ca2+ Mg2+ Cl ${\rm{SO}}_4^{2 -} $ ${\rm{HCO}}_3^- $
    2013年 12 佘田桥组 均值 7.83 4.29 8.79 79.27 5.05 12.16 118.06 121.28 426.17
    锡矿山组 均值 8.01 0.94 5.49 94.36 9.37 7.41 131.25 180.39 445.32
    下石炭统 均值 8.20 0.60 1.98 96.71 4.71 5.70 81.94 202.13 415.52
    2014年 15 佘田桥组 均值 6.83 2.33 22.88 50.48 3.95 4.69 125.49 72.00 313.20
    锡矿山组 均值 7.21 0.90 17.13 71.38 7.66 2.74 144.08 117.84 378.67
    下石炭统 均值 7.27 0.53 12.47 63.49 2.91 1.18 97.17 123.57 318.28
    2015年 16 佘田桥组 均值 8.42 3.15 19.37 51.23 5.76 5.69 77.95 126.98 259.45
    锡矿山组 均值 8.01 1.57 13.48 75.00 6.50 3.96 72.77 196.00 291.75
    下石炭统 均值 7.55 0.61 2.71 88.15 3.44 0.94 65.40 205.00 276.31
    2016年 22 佘田桥组 均值 7.34 3.95 41.48 72.63 8.66 21.44 148.99 137.97 380.53
    锡矿山组 均值 7.67 2.37 14.70 94.23 9.44 5.24 135.12 204.92 378.55
    下石炭统 均值 7.41 1.20 6.93 100.13 12.35 1.21 87.40 267.67 349.09
    2017年 26 佘田桥组 均值 7.37 8.08 126.90 243.11
    锡矿山组 均值 7.74 4.58 134.92 273.80
    下石炭统 均值 7.64 13.09 252.07 355.33
    2018年 18 佘田桥组 均值 6.84 4.91 248.83 530.67
    锡矿山组 均值 7.30 4.74 207.62 560.73
    下石炭统 均值 7.24 1.40 55.50 298.00
    2019年 16 佘田桥组 均值 6.73 4.74 198.66 422.80
    锡矿山组 均值 7.47 5.37 113.47 402.40
    下石炭统 均值 7.42 0.46 23.10 192.00
    2020年 25 佘田桥组 均值 7.38 5.63 25.97 113.62 9.70 9.18 206.29 187.12 506.51
    锡矿山组 均值 7.27 2.03 8.89 119.61 10.80 4.29 133.48 233.14 417.57
    下石炭统 均值 7.53 1.01 1.22 78.00 4.59 0.49 73.00 199.50 269.49
    2021年 21 佘田桥组 均值 6.97 4.95 37.27 77.74 9.11 4.32 188.08 168.21 435.00
    锡矿山组 均值 7.32 2.37 7.30 71.37 9.76 3.41 103.78 213.60 319.30
    下石炭统 均值 7.33 0.75 1.83 61.53 7.69 0.41 62.00 245.67 266.67
    2022年 20 佘田桥组 均值 7.89 3.30 38.42 106.22 13.54 7.55 193.08 176.62 487.83
    锡矿山组 均值 8.00 1.49 7.86 119.10 11.68 4.69 116.45 218.91 375.82
    下石炭统 均值 7.95 1.04 2.20 94.30 9.09 0.66 65.03 204.00 276.67
    2013—
    2022年
    191 佘田桥组 最小值 4.05 0.47 0.88 21.38 1.61 0.00 57.90 6.10 102.00
    最大值 8.90 10.80 192.00 209.00 35.10 141.00 638.00 356.00 1110.00
    均 值 7.31 4.14 28.66 81.75 8.64 6.94 173.64 154.78 397.88
    标准差 0.85 2.65 36.73 41.18 6.51 8.36 130.85 102.98 207.80
    锡矿山组 最小值 6.81 0.32 0.77 28.60 2.17 0.53 26.90 37.20 157.00
    最大值 8.63 5.56 68.20 179.00 37.20 29.80 541.00 373.00 982.00
    均 值 7.57 1.73 10.31 96.28 9.82 4.92 136.01 199.79 390.01
    标准差 0.41 1.41 11.97 39.79 7.32 6.10 98.22 68.68 160.79
    下石炭统 最小值 6.88 0.26 1.22 57.20 2.86 0.37 23.10 108.31 172.00
    最大值 8.34 2.39 21.63 112.00 27.00 6.08 114.00 301.00 454.84
    均 值 7.58 0.84 4.09 83.56 6.98 1.33 71.78 212.49 294.69
      注:表中“—”为测试数据缺失。表中“标准差”为无量纲。下石炭统因为水样数据少(1~3个),不符合标准差使用条件,故未统计标准差。
    下载: 导出CSV

    表 4  2013—2022年各含水层地下水Sb质量浓度统计

    Table 4.  Statistics of antimony concentrations in groundwater of each aquifer from 2013 to 2022

    年份 佘田桥组 锡矿山组 下石炭统
    数量
    /个
    最小值
    /(mg·L−1
    最大值
    /(mg·L−1
    均值
    /(mg·L−1
    标准差 变异系数 数量
    /个
    最小值
    /(mg·L−1
    最大值
    /(mg·L−1
    均值
    /(mg·L−1
    标准差 变异系数 数量
    /个
    最小值
    /(mg·L−1
    最大值
    /(mg·L−1
    均值
    /(mg·L−1
    2013年 2 10.350 42.380 26.364 8 0.020 0.986 0.258 0.307 1.192 2 0.032 0.097 0.064
    2014年 5 1.205 39.160 9.755 16.468 1.688 8 0.012 2.775 0.504 0.929 1.844 2 0.012 0.222 0.117
    2015年 6 0.890 13.100 3.813 4.649 1.219 8 0.001 0.360 0.119 0.138 1.165 2 0.004 0.520 0.262
    2016年 9 0.048 46.100 6.730 14.830 2.204 10 0.006 0.540 0.165 0.173 1.045 3 0.017 0.130 0.089
    2017年 11 0.051 44.700 7.011 13.144 1.875 13 0.007 0.470 0.165 0.170 1.032 2 0.009 0.018 0.014
    2018年 6 0.067 34.000 8.105 12.951 1.598 11 0.001 3.080 0.524 0.896 1.711 1 0.460 0.460 0.460
    2019年 5 0.040 18.500 6.476 7.585 1.171 10 0.015 16.500 1.930 5.139 2.662 1 0.270 0.270 0.270
    2020年 9 0.086 20.800 6.036 7.299 1.209 14 0.008 1.040 0.359 0.409 1.065 2 0 0.117 0.059
    2021年 8 0.470 24.100 5.284 8.005 1.515 10 0.004 0.850 0.244 0.238 0.977 3 0.017 0.037 0.025
    2022年 6 0.019 28.800 6.445 11.068 1.717 11 0.003 0.920 0.202 0.271 1.341 3 0.008 0.011 0.009
    下载: 导出CSV

    表 5  典型地下水采样点基本信息表

    Table 5.  Basic information of typical groundwater sampling points

    编号 水点类型 含水岩组 位置 与污染源关系 水位标高/m
    Dx2 泉点 锡矿山组 北矿谭家社区 北矿宝大兴老矿山废石渣堆东侧 562
    Dx4 泉点 锡矿山组 北矿七里江社区半山坡 593
    Dx6 泉点 锡矿山组 南矿泉山村玄山河西侧 物华锑矿采矿废石堆南西450 m 358
    Dx8 泉点 锡矿山组 南矿泉山村陈家湾 446
    Ds4 泉点 佘田桥组 北矿新生村 北矿宝大兴老矿山露采区北侧坡脚 535
    Ds8 水文钻井 佘田桥组 北矿老陶唐北 北矿宝大兴老矿山露采区东侧坡脚 538
    Ds10 水文钻井 佘田桥组 南矿黄光村 南矿飞水岩露采区历史废渣堆下 430
    Dx9 水文钻井 锡矿山组 北矿东十八茅湾 611
    C3 水文钻井 下石炭统 北矿谭家社区/揭露F75 581
    下载: 导出CSV
  • [1]

    温冰. 湖南锡矿山水环境中锑来源及迁移转化的多元同位素解析[D]. 武汉:中国地质大学,2017. [WEN Bing. Implications of isotope for sources,migration and transformation of antimony in the water environment of the Xikuangshan,Hunan[D]. Wuhan:China University of Geosciences,2017. (in Chinese with English abstract)

    WEN Bing. Implications of isotope for sources, migration and transformation of antimony in the water environment of the Xikuangshan, Hunan[D]. Wuhan: China University of Geosciences, 2017. (in Chinese with English abstract)

    [2]

    FRENGSTAD B,MIDTGÅRD SKREDE A K,BANKS D,et al. The chemistry of Norwegian groundwaters:III. The distribution of trace elements in 476 crystalline bedrock groundwaters,as analysed by ICP-MS techniques[J]. Science of the Total Environment,2000,246(1):21 − 40. doi: 10.1016/S0048-9697(99)00413-1

    [3]

    LAHERMO P,TARVAINEN T,HATAKKA T,et al. One thousand wells-the physical-chemical quality of finnish well waters in 1999[M]. Espoo:Geological Survey of Finland,2002:257−261.

    [4]

    REIMANN C,BJORVATN K,FRENGSTAD B,et al. Drinking water quality in the Ethiopian section of the East African Rift Valley I—data and health aspects[J]. Science of the Total Environment,2003,311(1/2/3):65 − 80.

    [5]

    贺军. 吉林省靖宇县天然矿泉水及其周围环境微量元素含量的现况调查[D]. 长春:吉林大学,2013. [HE Jun. The cross-sectional investigation on trace element content of natural mineral water and surroundings in Jingyu County of Jilin Province[D]. Changchun:Jilin University,2013. (in Chinese with English abstract)

    HE Jun. The cross-sectional investigation on trace element content of natural mineral water and surroundings in Jingyu County of Jilin Province[D]. Changchun: Jilin University, 2013. (in Chinese with English abstract)

    [6]

    付鹏宇,梁杏,常致凯,等. 资水尾闾地下水Sb含量分布及来源[J/OL]. 地球科学,(2022-04-15)[2023-02-11]. https://kns.cnki.net/kcms/detail/42.1874.P.20220414.1419.032.html. [FU Pengyu,LIANG Xing,CHANG Zhikai,et al. Antimony concentration and distribution in groundwater of Zi River estuary and source analysis[J/OL]. Earth Science,(2022-04-15)[2023-02-11]. (in Chinese with English abstract)

    FU Pengyu, LIANG Xing, CHANG Zhikai, et al. Antimony concentration and distribution in groundwater of Zi River estuary and source analysis[J/OL]. Earth Science, (2022-04-15)[2023-02-11]. (in Chinese with English abstract)

    [7]

    FU Zhiyou,WU Fengchang,MO Changli,et al. Comparison of arsenic and antimony biogeochemical behavior in water,soil and tailings from Xikuangshan,China[J]. Science of the Total Environment,2016,539:97 − 104. doi: 10.1016/j.scitotenv.2015.08.146

    [8]

    NIEDZIELSKI P,SIEPAK J,SIEPAK M. Total content of arsenic,antimony and selenium in groundwater samples from western Poland[J]. Polish Journal of Environmental Studies,2001,10(5):347 − 350.

    [9]

    AKSOY N,ŞIMŞEK C,GUNDUZ O. Groundwater contamination mechanism in a geothermal field:A case study of Balcova,Turkey[J]. Journal of Contaminant Hydrology,2009,103(1/2):13 − 28.

    [10]

    FILELLA M,BELZILE N,CHEN Yuwei. Antimony in the environment:A review focused on natural waters[J]. Earth-Science Reviews,2002,57(1/2):125 − 176.

    [11]

    丁建华,杨毅恒,邓凡. 中国锑矿资源潜力及成矿预测[J]. 中国地质,2013,40(3):846 − 858. [DING Jianhua,YANG Yiheng,DENG Fan. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China,2013,40(3):846 − 858. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2013.03.016

    DING Jianhua, YANG Yiheng, DENG Fan. Resource potential and metallogenic prognosis of antimony deposits in China[J]. Geology in China, 2013, 403): 846858. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2013.03.016

    [12]

    王修,王建平,刘冲昊,等. 我国锑资源形势分析及可持续发展策略[J]. 中国矿业,2014,23(5):9 − 13. [WANG Xiu,WANG Jianping,LIU Chonghao,et al. Situation analysis and sustainable development strategy of antimony resources in China[J]. China Mining Magazine,2014,23(5):9 − 13. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4051.2014.05.004

    WANG Xiu, WANG Jianping, LIU Chonghao, et al. Situation analysis and sustainable development strategy of antimony resources in China[J]. China Mining Magazine, 2014, 235): 913. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4051.2014.05.004

    [13]

    HE Mengchang,WANG Xiangqin,WU Fengchang,et al. Antimony pollution in China[J]. Science of the Total Environment,2012,421/422:41 − 50. doi: 10.1016/j.scitotenv.2011.06.009

    [14]

    ROUTH J,IKRAMUDDIN M. Trace-element geochemistry of Onion Creek near Van Stone lead-zinc mine (Washington,USA)—chemical analysis and geochemical modeling[J]. Chemical Geology,1996,133(1/2/3/4):211 − 224.

    [15]

    MILHAM L,CRAW D. Antimony mobilization through two contrasting gold ore processing systems,New Zealand[J]. Mine Water and the Environment,2009,28(2):136 − 145. doi: 10.1007/s10230-009-0071-y

    [16]

    HILLER E,LALINSKÁ B,CHOVAN M,et al. Arsenic and antimony contamination of waters,stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians,Slovakia[J]. Applied Geochemistry,2012,27(3):598 − 614. doi: 10.1016/j.apgeochem.2011.12.005

    [17]

    FLAKOVA R,ZENISOVA Z,SRACEK O,et al. The behavior of arsenic and antimony at Pezinok mining site,southwestern part of the Slovak Republic[J]. Environmental Earth Sciences,2012,66(4):1043 − 1057. doi: 10.1007/s12665-011-1310-7

    [18]

    HE Mengchang,YANG Jurong. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue[J]. Science of the Total Environment,1999,243/244:149 − 155. doi: 10.1016/S0048-9697(99)00370-8

    [19]

    国家市场监督管理总局,国家标准化管理委员会. 生活饮用水卫生标准:GB 5749—2022[S]. 北京:中国标准出版社,2022. [State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Standards for drinking water quality:GB 5749—2022[S]. Beijing:Standards Press of China,2022. (in Chinese)

    State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Standards for drinking water quality: GB 5749—2022[S]. Beijing: Standards Press of China, 2022. (in Chinese)

    [20]

    ZHOU Jianwei,NYIRENDA M T,XIE Lina,et al. Mine waste acidic potential and distribution of antimony and arsenic in waters of the Xikuangshan Mine,China[J]. Applied Geochemistry,2017,77:52 − 61. doi: 10.1016/j.apgeochem.2016.04.010

    [21]

    HAO Chunming,LIU Min,PENG Yingao,et al. Comparison of antimony sources and hydrogeochemical processes in shallow and deep groundwater near the xikuangshan mine,Hunan Province,China[J]. Mine Water and the Environment,2022,41(1):194 − 209. doi: 10.1007/s10230-021-00833-8

    [22]

    李小倩,张彬,周爱国,等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质,2014,41(6):103 − 109. [LI Xiaoqian,ZHANG Bin,ZHOU Aiguo,et al. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology,2014,41(6):103 − 109. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.06.019

    LI Xiaoqian, ZHANG Bin, ZHOU Aiguo, et al. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology, 2014, 416): 103109. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2014.06.019

    [23]

    黄艳超,武雪芳,周羽化,等. 水环境中锑污染及其修复技术研究进展[J]. 南京师大学报(自然科学版),2015,38(4):122 − 128. [HUANG Yanchao,WU Xuefang,ZHOU Yuhua,et al. Research progress of antimony contamination in water environment and remediation techniques[J]. Journal of Nanjing Normal University (Natural Science Edition),2015,38(4):122 − 128. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4616.2015.04.022

    HUANG Yanchao, WU Xuefang, ZHOU Yuhua, et al. Research progress of antimony contamination in water environment and remediation techniques[J]. Journal of Nanjing Normal University (Natural Science Edition), 2015, 384): 122128. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4616.2015.04.022

    [24]

    吴文晖,邹辉,朱岗辉,等. 湘中某矿区地下水重金属污染特征及健康风险评估[J]. 生态与农村环境学报,2018,34(11):1027 − 1033. [WU Wenhui,ZOU Hui,ZHU Ganghui,et al. Heavy metal pollution characteristics and health risk assessment of groundwater of a mine area in central Hunan[J]. Journal of Ecology and Rural Environment,2018,34(11):1027 − 1033. (in Chinese with English abstract) doi: 10.11934/j.issn.1673-4831.2018.11.010

    WU Wenhui, ZOU Hui, ZHU Ganghui, et al. Heavy metal pollution characteristics and health risk assessment of groundwater of a mine area in central Hunan[J]. Journal of Ecology and Rural Environment, 2018, 3411): 10271033. (in Chinese with English abstract) doi: 10.11934/j.issn.1673-4831.2018.11.010

    [25]

    文世新,胡正全,陈湘立,等. 湖南省冷水江市锡矿山锑矿区地质勘查与水文地质调查报告[R]. 长沙:中国有色金属长沙勘察设计研究院有限公司,2021. [WEN Shixin,HU Zhengquan,CHEN Xiang Li,et al. Geological exploration and hydrogeological survey report of tin mine antimony mining area in Lengshuijiang City,Hunan Province[R]. Changsha:China Nonferrous Metal Changsha Survey and Design Institute Co. LTD. ,2021. (in Chinese with English abstract)

    WEN Shixin, HU Zhengquan, CHEN Xiang Li, et al. Geological exploration and hydrogeological survey report of tin mine antimony mining area in Lengshuijiang City, Hunan Province[R]. Changsha: China Nonferrous Metal Changsha Survey and Design Institute Co. LTD. , 2021. (in Chinese with English abstract)

    [26]

    中华人民共和国自然资源部. 地下水质分析方法 第2部分:水样的采集和保存:DZ/T 0064.2—2021[S]. [Ministry of Natural Resources of the People’s Republic of China. Methods for analysis of underground water quality Part 2: Collection and preservation of water samples:DZ/T 0064.2—2021[S]. (in Chinese)

    Ministry of Natural Resources of the People’s Republic of China. Methods for analysis of underground water quality Part 2: Collection and preservation of water samples: DZ/T 0064.2—2021[S]. (in Chinese)

    [27]

    中华人民共和国环境保护部. 水质 32元素的测定 电感耦合等离子体发射光谱法:HJ 776—2015[S]. 北京:中国环境科学出版社,2015. [Ministry of Environmental Protection of the People’s Republic of China. Water quality-Determination of 32 elements-Inductively coupled plasma optical emission spectrometry:HJ 776—2015[S]. Beijing:China Environmental Science Press,2015 (in Chinese)

    Ministry of Environmental Protection of the People’s Republic of China. Water quality-Determination of 32 elements-Inductively coupled plasma optical emission spectrometry: HJ 776—2015[S]. Beijing: China Environmental Science Press, 2015 (in Chinese)

    [28]

    中华人民共和国环境保护部. 水质无机阴离子(F、Cl、 ${{\rm{NO}}_2^- }$、Br、 ${{\rm{NO}}_3^- } $、 ${{\rm{PO}}_4^3} $、 ${{\rm{SO}}_3^{ 2-}} $、 ${{\rm{SO}}_4^{ 2-}} $)的测定 离子色谱法:HJ 84—2016[S]. 北京:中国环境科学出版社,2015. [Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of inorangic anions(F、Cl、 ${{\rm{NO}}_2^-} $、Br、 ${{\rm{NO}}_3^- } $、 ${{\rm{PO}}_4^3} $、 ${{\rm{SO}}_3^{ 2-}} $、 ${{\rm{SO}}_4^{ 2-}} $)-ion chromatography:HJ 84—2016[S]. Beijing:China Environmental Science Press,2016 (in Chinese)

    Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of inorangic anions(F、Cl、${{\rm{NO}}_2^-} $、Br、 ${{\rm{NO}}_3^- } $、${{\rm{PO}}_4^3} $、${{\rm{SO}}_3^{2-}} $、${{\rm{SO}}_4^{2-}} $)-ion chromatography: HJ 84—2016[S]. Beijing: China Environmental Science Press, 2016 (in Chinese)

    [29]

    中华人民共和国自然资源部. 地下水质分析方法 第49部分:碳酸根、重碳酸根和氢氧根离子的测定 滴定法:DZ/T 0064.2—2021[S]. [Ministry of Natural Resources of the People’s Republic of China.Methods for analysis of groundwater quality—Part 49:Determination of carbonate,bicarbonate ions,hydroxy—Titration:DZ/T 0064.2—2021[S]. (in Chinese)

    Ministry of Natural Resources of the People’s Republic of China.Methods for analysis of groundwater quality—Part 49: Determination of carbonate, bicarbonate ions, hydroxy—Titration: DZ/T 0064.2—2021[S]. (in Chinese)

    [30]

    中华人民共和国自然资源部. 《地下水质分析方法 第64部分:硫酸盐的测定 乙二胺四乙酸二钠—钡滴定法:DZ/T 0064.64—2021[S]. [Ministry of Natural Resources of the People’s Republic of China. Methods for analysis of groundwater quality—Part 64:Determination of sulfate—EDTA-barium titration:DZ/T 0064.64—2021[S]. (in Chinese)

    Ministry of Natural Resources of the People’s Republic of China. Methods for analysis of groundwater quality—Part 64: Determination of sulfate—EDTA-barium titration: DZ/T 0064.64—2021[S]. (in Chinese)

    [31]

    李琬钰,周建伟,贾晓岑,等. 湖南锡矿山锑矿区水环境中DOM三维荧光特征及其对锑污染的指示意义[J]. 地质科技通报,2022,41(4):215 − 224. [LI Wanyu,ZHOU Jianwei,JIA Xiaocen,et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan,Hunan Province[J]. Bulletin of Geological Science and Technology,2022,41(4):215 − 224. (in Chinese with English abstract)

    LI Wanyu, ZHOU Jianwei, JIA Xiaocen, et al. EEMs characteristics of dissolved organic matter in water environment and its implications for antimony contamination in antimony mine of Xikuangshan, Hunan Province[J]. Bulletin of Geological Science and Technology, 2022, 414): 215224. (in Chinese with English abstract)

    [32]

    谢李娜,周建伟,郝春明,等. 湘中锡矿山北矿区地下水化学特征及污染成因[J]. 地质科技情报,2016,35(2):197 − 202. [XIE Lina,ZHOU Jianwei,HAO Chunming,et al. Hydrochemical characteristics and contaminative causes of groundwater in the north area of Xikuangshan antimony mine,Hunan Province[J]. Geological Science and Technology Information,2016,35(2):197 − 202. (in Chinese with English abstract)

    XIE Lina, ZHOU Jianwei, HAO Chunming, et al. Hydrochemical characteristics and contaminative causes of groundwater in the north area of Xikuangshan antimony mine, Hunan Province[J]. Geological Science and Technology Information, 2016, 352): 197202. (in Chinese with English abstract)

    [33]

    SUN Ximeng,LI Yi,LIU Chao,et al. Morphological distribution and formation mechanisms of antimony in the shallow groundwater of the xikuangshan antimony mine in Hunan,China[J]. Frontiers in Environmental Science,2022,10:950096. doi: 10.3389/fenvs.2022.950096

    [34]

    李建胜,梁汉青. 冷水江市锡矿山地区砷碱渣综合利用处理对策研究[J]. 湖南有色金属,2010,26(5):53 − 55. [LI Jiansheng,LIANG Hanqing. Treatment strategies study on the comprehensive utilization of arsenic-alkali residue in Xikuangshan area[J]. Hunan Nonferrous Metals,2010,26(5):53 − 55. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-5540.2010.05.016

    LI Jiansheng, LIANG Hanqing. Treatment strategies study on the comprehensive utilization of arsenic-alkali residue in Xikuangshan area[J]. Hunan Nonferrous Metals, 2010, 265): 5355. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-5540.2010.05.016

  • 加载中

(6)

(5)

计量
  • 文章访问数:  994
  • PDF下载数:  34
  • 施引文献:  0
出版历程
收稿日期:  2023-02-21
修回日期:  2023-03-29
刊出日期:  2023-09-15

目录