Effect of fulvic acid and Cu(II) on the suspended particles clogging of porous media during artificial recharge
-
摘要:
地下水人工回灌是解决地下水超采问题的有效措施,悬浮颗粒物堵塞是影响回灌进行的技术瓶颈。目前多数研究聚焦在悬浮物堵塞方面,然而地表回灌水中重金属离子以及腐殖质对多孔介质物理堵塞的影响缺乏研究。本研究采用室内渗流砂柱试验研究富里酸、Cu(Ⅱ)以及两者共存对多孔介质悬浮物堵塞的影响,分别采用高岭土(SS组)、富里酸+高岭土(SS+FA组)、富里酸+Cu(Ⅱ)+高岭土(SS+FA+Cu组)配置模拟回灌用水。研究结果表明:(1)回灌结束时,SS组、SS+FA组、SS+FA+Cu组多孔介质整体相对渗透系数K’分别降至0.233,0.095,0.182。SS组和SS+FA+Cu组在中上层(0~7.50 cm)相对渗透系数K’均降至0.28以下,而在底层(7.50~10.50 cm)相对渗透系数K’仅降至0.45左右,说明2组多孔介质中上层重度堵塞(0<K’<0.30)、底层中度堵塞(0.30<K’<0.60);SS+FA组在各渗流段(0~10.50 cm)相对渗透系数K’均降至0.18以下,说明SS+FA组各渗流段多孔介质均为重度堵塞,相对其它2组,SS+FA组中悬浮物更易向深层迁移。(2)富里酸、Cu(Ⅱ)的存在会改变悬浮颗粒粒径、荷电性及内部氢键作用,从而影响多孔介质的堵塞发生。(3)相对SS组,SS+FA组富里酸的存在会加剧多孔介质堵塞;SS+FA+Cu组多孔介质整体堵塞程度比SS+FA组小,说明Cu(Ⅱ)会缓解富里酸对堵塞的加剧作用。探明富里酸和Cu(Ⅱ)对多孔介质堵塞的影响机制,能够为人工回灌过程中多孔介质堵塞的防治提供理论基础和科学依据。
Abstract:Artificial recharge is an effective technology to solve the problem of groundwater over-exploitation. Clogging of porous media is the bottleneck affecting groundwater recharge. Most studies have focused on the clogging of suspended particles. Few studies focus on the effects of heavy metal ions and humus in recharge water on the physical clogging. This study conducts sand column experiment to explore the influence of fulvic acid, Cu(II) and their coexistence on the suspended particles clogging of porous media. Kaolin (SS group), fulvic acid + kaolin (SS+FA group), fulvic acid + Cu(II) + kaolin (SS+FA+Cu group) are added to recharge water, respectively. The results show that (1) the relative hydraulic conductivity (K’) of SS group, SS+FA group and SS+FA+Cu group decrease to 0.233, 0.095 and 0.182, respectively. The K’ of SS group and SS+FA+Cu group in 0−7.50 cm decrease to below 0.28, while the K’ in the bottom layer (7.50−10.50 cm) decrease to about 0.45, which indicates that 0−7.50 cm of the porous media in SS group and SS+FA+Cu group are severely clogged (0<K’<0.30) and the bottom layer is moderately clogged (0.30<K’<0.60). The K' of the porous media in SS+FA group among different layers (0−10.50 cm) decrease to below 0.18, which shows that the porous media of SS+FA group in different layers are severely clogged. Compared with the other two experimental groups, the suspended particles in SS+FA group are more likely to migrate into the deeper layer in the sand column. (2) Fulvic acid and Cu(II) can change the particle size, charge and internal hydrogen bonding of the suspended particles, thus affect the clogging process. (3) Compared with SS group, fulvic acid aggravates the clogging of the porous media. The clogging degree of the porous media in SS+FA+Cu group is slighter than that in SS+FA group, which indicates that Cu(II) would alleviate the aggravating effect of fulvic acid on clogging. Exploring the influence mechanism of fulvic acid and Cu(Ⅱ) on porous media clogging can provide a theoretical and scientific basis for the prevention and treatment of porous media clogging in the process of artificial recharge.
-
Key words:
- porous media /
- clogging /
- suspended particles /
- fulvic acid /
- Cu(II) /
- groundwater over-exploitation /
- land subsidence
-
表 1 渗流试验主要组别及参数设计
Table 1. Parameters of different experimental groups
试验组别 模拟回灌用水 高岭土浊度
/NTU富里酸质量浓度
/(mg·L−1)Cu(Ⅱ)质量浓度
/(mg·L−1)CK组 纯水 − − − FA组 富里酸 − 5.00 − SS组 高岭土 100 − − SS+FA组 高岭土+富里酸 100 5.00 − SS+FA+
Cu组高岭土+富里酸+
Cu(Ⅱ)100 5.00 1.00 表 2 不同组别悬浮物Zeta电位及粒径
Table 2. Zeta potential and particle size of suspended solids in different experimental groups
试验组别 悬浮颗粒 悬浮颗粒共存物质 Zeta电位/mV 中位粒径/μm SS组 高岭土 无 −5.64 2.47 SS+FA组 高岭土 富里酸 −8.56 2.05 SS+FA+Cu组 高岭土 富里酸+Cu(Ⅱ) −7.22 2.37 -
[1] HAO Aibing,ZHANG Yilong ,ZHANG Eryong ,et al. Review:Groundwater resources and related environmental issues in China[J]. Hydrogeology Journal,2018,26(5):1325 − 1337. doi: 10.1007/s10040-018-1787-1
[2] 靳博文,王文科,段磊,等. 保定平原区地下水生态水位阈值的探讨[J]. 水文地质工程地质,2022,49(5):166 − 175. [JIN Bowen,WANG Wenke,DUAN Lei,et al. Discussion on the threshold of groundwater ecological water level in Baoding plain area[J]. Hydrogeology & Engineering Geology,2022,49(5):166 − 175. (in Chinese)
JIN Bowen, WANG Wenke, DUAN Lei, et al. Discussion on the threshold of groundwater ecological water level in Baoding plain area[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 166-175. (in Chinese)
[3] 郭海朋,李文鹏,王丽亚,等. 华北平原地下水位驱动下的地面沉降现状与研究展望[J]. 水文地质工程地质,2021,48(3):162 − 171. [GUO Haipeng,LI Wenpeng,WANG Liya,et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology,2021,48(3):162 − 171. (in Chinese with English abstract)
GUO Haipeng, LI Wenpeng, WANG Liya, et al. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 162-171. (in Chinese with English abstract)
[4] 葛伟丽,李元杰,张春明,等. 基于InSAR技术的内蒙古巴彦淖尔市地面沉降演化特征及成因分析[J]. 水文地质工程地质,2022,49(4):198 − 206. [GE Weili,LI Yuanjie,ZHANG Chunming,et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology & Engineering Geology,2022,49(4):198 − 206. (in Chinese with English abstract)
GE Weili, LI Yuanjie, ZHANG Chunming, et al. An attribution analysis of land subsidence features in the city of Bayannur in Inner Mongolia based on InSAR[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 198-206. (in Chinese with English abstract)
[5] 冶雪艳,孙邱杰,杜新强,等. 地下水人工补给过程介质堵塞及控制研究进展[J]. 中国环境科学,2022,42(9):4145 − 4156. [YE Xueyan,SUN Qiujie,DU Xinqiang,et al. Research progress on medium blockage and control in artificial groundwater recharge process[J]. China Environmental Science,2022,42(9):4145 − 4156. (in Chinese)
YE Xueyan, SUN Qiujie, DU Xinqiang, et al. Research progress on medium blockage and control in artificial groundwater recharge process[J]. China Environmental Science, 2022, 42(9): 4145-4156. (in Chinese)
[6] 高宗军,徐海龙,夏璐. 地下水人工回灌含水介质微生物堵塞试验研究[J]. 水文地质工程地质,2020,47(3):8 − 16. [GAO Zongjun,XU Hailong,XIA Lu. An experimental study of bioclogging of aquifer media during artificial reinjection of groundwater[J]. Hydrogeology & Engineering Geology,2020,47(3):8 − 16. (in Chinese with English abstract)
GAO Zongjun, XU Hailong, XIA Lu. An experimental study of bioclogging of aquifer media during artificial reinjection of groundwater[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 8-16. (in Chinese with English abstract)
[7] BLOETSCHER F,SHAM C H,RATICK S J. Aquifer storage and recovery:Can an updated inventory predict future system success?[J]. Journal AWWA,2020,112(10):48 − 55. doi: 10.1002/awwa.1594
[8] ZAIDI M,AHFIR N D,ALEM A,et al. Assessment of clogging of managed aquifer recharge in a semi-arid region[J]. Science of the Total Environment,2020,730:139107. doi: 10.1016/j.scitotenv.2020.139107
[9] WANG Zijia ,DU Xinqiang ,YANG Yuesuo ,et al. Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge[J]. Journal of Environmental Sciences,2012,24(8):1418 − 1424. doi: 10.1016/S1001-0742(11)60961-3
[10] DU Xinqiang ,FANG Yunqing ,WANG Zijia,et al. The prediction methods for potential suspended solids clogging types during managed aquifer recharge[J]. Water,2014,6(4):961 − 975. doi: 10.3390/w6040961
[11] DU Xinqiang ,YE Xueyan ,ZHANG Xiaowan . Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge[J]. Hydrological Processes,2018,32(14):2254 − 2262. doi: 10.1002/hyp.13162
[12] BRADFORD S A,TORKZABAN S,WALKER S L. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media[J]. Water Research,2007,41(13):3012 − 3024. doi: 10.1016/j.watres.2007.03.030
[13] XU Shangping ,LIAO Qian,SAIERS J E. Straining of nonspherical colloids in saturated porous media[J]. Environmental Science & Technology,2008,42(3):771 − 778.
[14] TANG Yao,YAO Xinyu ,CHEN Yining,et al. Experiment research on physical clogging mechanism in the porous media and its impact on permeability[J]. Granular Matter,2020,22(2):1 − 14.
[15] YE Xxueyan ,DU Xinqiang ,et al. Mechanism of suspended kaolinite particle clogging in porous media during managed aquifer recharge[J]. Groundwater,2019,57(5):764 − 771. doi: 10.1111/gwat.12872
[16] 冶雪艳,杜新强,张赫轩,等. 回灌过程中离子强度和水流流速对胶体粒子在多孔介质中堵塞的影响[J]. 化工学报,2017,68(12):4793 − 4801. [YE Xueyan,CUI Ruijuan ,DU Xinqiang,ZHANG Hexuan,et al. Effects of solution ionic strength and flow velocity on colloid clogging in saturated porous media during artificial recharge[J]. CIESC Journal,2017,68(12):4793 − 4801. (in Chinese with English abstract)
YE Xueyan, DU Xinqiang, ZHANG Hexuan, et al. Effects of solution ionic strength and flow velocity on colloid clogging in saturated porous media during artificial recharge[J]. CIESC Journal, 2017, 68(12): 4793-4801. (in Chinese with English abstract)
[17] 李颖. 水体中重金属、腐殖酸和粘土颗粒物之间的相互作用研究[D]. 济南: 山东大学, 2010
LI Y. Interaction between heavy metals, humic acid and clay particles in water [D]. Jinan: Shandong University, 2010. (in Chinese)
[18] 丁翔,李忠武,徐卫华,等. DOM对沉积物悬浮颗粒吸附铜的促进作用及机制[J]. 环境科学,2021,42(8):3837 − 3846. [DING Xiang,LI Zhongwu,XU Weihua,et al. Promotion and mechanisms of DOM on copper adsorption by suspended sediment particles[J]. Environmental Science,2021,42(8):3837 − 3846. (in Chinese with English abstract)
DING Xiang, LI Zhongwu, XU Weihua, et al. Promotion and mechanisms of DOM on copper adsorption by suspended sediment particles[J]. Environmental Science, 2021, 42(8): 3837-3846. (in Chinese with English abstract)
[19] 赵康,陈冲,商建英. 腐殖酸-高岭石胶体对铀(Ⅵ)在饱和多孔介质中迁移过程的影响[J]. 水土保持学报,2018,32(6):286 − 293. [ZHAO Kang,CHEN Chong,SHANG Jianying. Effect of humic acid-kaolinite on uranium transport in saturated porous media[J]. Journal of Soil and Water Conservation,2018,32(6):286 − 293. (in Chinese with English abstract)
ZHAO Kang, CHEN Chong, SHANG Jianying. Effect of humic acid-kaolinite on uranium transport in saturated porous media[J]. Journal of Soil and Water Conservation, 2018, 32(6): 286-293. (in Chinese with English abstract)
[20] SHANG Jianying ,LIU Chongxuan ,WANG Zheming ,et al. Effect of grain size on uranium(VI) surface complexation kinetics and adsorption additivity[J]. Environmental Science & Technology,2011,45(14):6025 − 6031.
[21] MIBUS J,SACHS S,PFINGSTEN W,et al. Migration of uranium(IV)/(VI) in the presence of humic acids in quartz sand:a laboratory column study[J]. Journal of Contaminant Hydrology,2007,89(3/4):199 − 217.
[22] FU Zhiyou ,GUO Wenjing ,DANG Zhi,et al. Refocusing on nonpriority toxic metals in the aquatic environment in China[J]. Environmental Science & Technology,2017,51(6):3117 − 3118.
[23] LIU Baolin ,DONG Deming ,HUA Xiuyi ,et al. Spatial distribution and ecological risk assessment of heavy metals in surface sediment of Songhua River,northeast China[J]. Chinese Geographical Science,2021,31(2):223 − 233. doi: 10.1007/s11769-021-1186-8
[24] 谢冰怡. 不同类型胶体对铅、镉在饱和多孔介质中运移的影响研究[D]. 杨凌: 西北农林科技大学, 2017
XIE Bingyi. The influence of different colloids on the transport of lead and cadmium in saturated porous media[D]. Yangling: Northwest A & F University, 2017. (in Chinese with English abstract)
[25] TANG Xiangyu,WEISBROD N. Colloid-facilitated transport of lead in natural discrete fractures[J]. Environmental Pollution,2009,157(8/9):2266 − 2274.
[26] 王晓龙. 悬浮颗粒影响下镉离子渗透迁移特性试验研究[D]. 北京: 北京交通大学, 2018
WANG Xiaolong. Experimental study on the seepage migration characteristics of cadmium ion under the effect of suspended particles[D]. Beijing: Beijing Jiao tong University, 2018. (in Chinese)
[27] 刘璐璐. 速度和浓度变化状态下悬浮颗粒与铅离子耦合迁移特性研究[D]. 北京: 北京交通大学, 2019
LIU Lulu. Study on coupled migration characteristics of suspended particles and lead ions when changing the seepage velocity and concentration[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese with English abstract)
[28] BAI Bing,ZHAI Zhen Qian,RAO Dengyu . The seepage transport of heavy metal Pb2+ through sand column in the presence of silicon powders[J]. Journal of Hydrology and Hydromechanics,2019,67(4):349 − 358. doi: 10.2478/johh-2019-0016
[29] 孟庆玲,姜岩,张家豪. 腐殖酸、高岭土和铜在含水层介质中的协同迁移[J]. 科学技术与工程,2019,19(15):349 − 352. [MENG Qingling,JIANG Yan,ZHANG Jiahao. Co-transport of humic acid,kaolinite and copper in saturated porous media[J]. Science Technology and Engineering,2019,19(15):349 − 352. (in Chinese with English abstract)
MENG Qingling, JIANG Yan, ZHANG Jiahao. Co-transport of humic acid, kaolinite and copper in saturated porous media[J]. Science Technology and Engineering, 2019, 19(15): 349-352. (in Chinese with English abstract)
[30] WANG Huan,XIN Jia,ZHENG Xilai ,et al. Clogging evolution in porous media under the coexistence of suspended particles and bacteria:insights into the mechanisms and implications for groundwater recharge[J]. Journal of Hydrology,2020,582:124554. doi: 10.1016/j.jhydrol.2020.124554
[31] YAN Chaorui ,CHENG Tang,SHANG Jianying . Effect of bovine serum albumin on stability and transport of kaolinite colloid[J]. Water Research,2019,155:204 − 213. doi: 10.1016/j.watres.2019.02.022
[32] AKBOUR R A,DOUCH J,HAMDANI M,et al. Transport of kaolinite colloids through quartz sand:influence of humic acid,Ca2+,and trace metals[J]. Journal of Colloid and Interface Science,2002,253(1):1 − 8. doi: 10.1006/jcis.2002.8523
[33] ZHU Miao,WANG Hongtao ,KELLER A A,et al. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths[J]. Science of the Total Environment,2014,487:375 − 380. doi: 10.1016/j.scitotenv.2014.04.036
[34] 夏璐,郑西来,段玉环,等. 砂柱微生物堵塞过程及机理分析[J]. 水利学报,2014,45(6):749 − 755. [XIA Lu,ZHENG Xilai,DUAN Yuhuan,et al. Analysis of process and mechanism of bioclogging in aqueous media[J]. Journal of Hydraulic Engineering,2014,45(6):749 − 755. (in Chinese with English abstract)
XIA Lu, ZHENG Xilai, DUAN Yuhuan, et al. Analysis of process and mechanism of bioclogging in aqueous media[J]. Journal of Hydraulic Engineering, 2014, 45(6): 749-755. (in Chinese with English abstract)