沉积盆地深埋型岩溶热储地震探测数据采集参数优选

龙慧, 李胜涛, 穆建强, 刘东林, 岳冬冬, 闫国钰. 沉积盆地深埋型岩溶热储地震探测数据采集参数优选——以雄安新区牛驼镇地热田为例[J]. 水文地质工程地质, 2023, 50(4): 14-25. doi: 10.16030/j.cnki.issn.1000-3665.202301017
引用本文: 龙慧, 李胜涛, 穆建强, 刘东林, 岳冬冬, 闫国钰. 沉积盆地深埋型岩溶热储地震探测数据采集参数优选——以雄安新区牛驼镇地热田为例[J]. 水文地质工程地质, 2023, 50(4): 14-25. doi: 10.16030/j.cnki.issn.1000-3665.202301017
LONG Hui, LI Shengtao, MU Jianqiang, LIU Donglin, YUE Dongdong, YAN Guoyu. Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin: A case study of the Niutuo geothermal field in Xiongan New Area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 14-25. doi: 10.16030/j.cnki.issn.1000-3665.202301017
Citation: LONG Hui, LI Shengtao, MU Jianqiang, LIU Donglin, YUE Dongdong, YAN Guoyu. Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin: A case study of the Niutuo geothermal field in Xiongan New Area[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 14-25. doi: 10.16030/j.cnki.issn.1000-3665.202301017

沉积盆地深埋型岩溶热储地震探测数据采集参数优选

  • 基金项目: 中国地质调查局地质调查项目(DD20221680)
详细信息
    作者简介: 龙慧(1987-),女,硕士,高级工程师,主要从事水工环地质领域地球物理勘探技术方法应用与研究。E-mail:longhui@mail.cgs.gov.cn
    通讯作者: 李胜涛(1982-),男,博士研究生,正高级工程师,主要从事水工环地质及地热热储工程研究。E-mail:list07@mails.jlu.edu.cn
  • 中图分类号: P315;P314

Parameters optimization of seismic data acquisition for deep buried karst geothermal reservoir in sedimentary basin: A case study of the Niutuo geothermal field in Xiongan New Area

More Information
  • 深层非均质性碳酸盐岩储层已经成为我国深部地热资源规模勘探的重要对象,地震探测技术在勘探开发中必不可少,但存在深部能量衰减严重、数据采集噪声发育、构造隆起区基底内幕成像困难等问题。为获取高品质深部地震勘探资料,在华北冀中平原典型地区开展了大量可控震源激发参数和检波器接收参数试验。在野外试验数据的基础上,通过对不同激发参数和接收参数获得的原始单炮记录进行定性分析,同时从频段能量、道集间频率、信噪比等方面进行定量分析,研究可控震源台数、扫描频率、扫描长度、震动次数、驱动幅度和检波器组合方式等参数的选择对地震资料质量的影响。结果表明适用于冀中平原地区深埋型岩溶热储二维地震勘探野外施工参数为:28 t可控震源4台震动4~6次,驱动幅度75%,非线性扫描(斜坡长度−3),扫描频率6~84 Hz,扫描长度12 s。按此参数施工获得原始单炮记录和数据处理剖面的质量较以往有了大幅提高,能够较为清晰地划分牛驼镇凸起构造区深部蓟县系高于庄组底界面。此次优选的地震采集参数对沉积型盆地深部地震勘探有一定的借鉴和指导意义。

  • 加载中
  • 图 1  雷达干扰波分析示意图

    Figure 1. 

    图 2  不同扫描方式定量分析对比图

    Figure 2. 

    图 3  不同震动次数定量分析对比图

    Figure 3. 

    图 4  扫描频率分别设置为6~64,6~72,6~84,6~100 Hz时的不同单炮记录对比图

    Figure 4. 

    图 5  不同扫描频率定量分析对比图

    Figure 5. 

    图 6  不同扫描长度定量分析对比图

    Figure 6. 

    图 7  驱动幅度分别设置为65%、70%和75%时的不同单炮记录对比图

    Figure 7. 

    图 8  不同驱动幅度单炮记录、频谱分析和信噪比对比图

    Figure 8. 

    图 9  不同检波器组合方式频谱分析和信噪比对比图

    Figure 9. 

    图 10  工区典型单炮记录

    Figure 10. 

    图 11  DZ-6测线地震时间剖面

    Figure 11. 

    表 1  试验内容一览表

    Table 1.  List of experiment contents

    试验点试验内容固定参数试验参数炮数
    1个系统
    试验点
    震动台次驱动幅度75%,扫描频率6~84 Hz,
    非线性扫描(坡度−3),扫描长度12 s
    4台2次、4台4次、4台6次、
    5台2次、5台4次、5台6次
    6
    扫描频率4台2次,驱动幅度75%,非线性扫描(坡度−3),扫描长度12 s6~64,6~72,6~84,6~100 Hz4
    扫描方式4台2次,驱动幅度75%,扫描频率6~84 Hz,扫描长度12 s线性扫描、非线性扫描(坡度分别为−2和−3)3
    扫描长度4台2次,驱动幅度75%,扫描频率6~84 Hz,非线性扫描(坡度−3)12,14,16,20 s4
    驱动幅度4台2次,扫描频率6~84 Hz,非线性扫描(坡度−3),扫描长度12 s65%、70%、75%3
    7个考核
    试验点
    震动台次驱动幅度75%,扫描频率6~84 Hz,
    非线性扫描(坡度−3),扫描长度12 s
    4台2次、4台4次、4台6次、
    5台2次、5台4次、5台6次
    6
    扫描频率4台4次,驱动幅度75%,非线性扫描(坡度−3),扫描长度12 s6~64,6~72,6~84,6~100 Hz4
    扫描长度4台4次,驱动幅度75%,扫描频率6~84 Hz,非线性扫描(坡度−3)12,14,16,20 s4
    合计118
    下载: 导出CSV
  • [1]

    杨海. 中国陆域居里面特征研究[D]. 成都: 成都理工大学, 2015

    YANG Hai. Characteristics of Chinese continental Curie point isotherm[D]. Chengdu: Chengdu University of Technology, 2015. (in Chinese with English abstract)

    [2]

    康玉柱. 中国古生代碳酸盐岩古岩溶储集特征与油气分布[J]. 天然气工业,2008,28(6):1 − 12. [KANG Yuzhu. Characteristics and distribution laws of paleokarst hydrocarbon reservoirs in palaeozoic carbonate formations in China[J]. Natural Gas Industry,2008,28(6):1 − 12. (in Chinese with English abstract)

    KANG Yuzhu. Characteristics and distribution laws of paleokarst hydrocarbon reservoirs in palaeozoic carbonate formations in China[J]. Natural Gas Industry, 2008, 28(6): 1-12. (in Chinese with English abstract)

    [3]

    姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892 − 2910. [JIANG Guangzheng,GAO Peng,RAO Song,et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics,2016,59(8):2892 − 2910. (in Chinese with English abstract)

    JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China(4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910. (in Chinese with English abstract)

    [4]

    庞宏磊. 车镇凹陷沙四上亚段低坡折带湖相碳酸盐岩地震识别及沉积特征[J]. 油气地球物理,2017,15(1):6 − 11. [PANG Honglei. Seismic identification and sedimentary features of lacustrine facies carbonate rock in low slope-breaks of the upper of ES4 in Chezhen Depression[J]. Petroleum Geophysics,2017,15(1):6 − 11. (in Chinese with English abstract)

    PANG Honglei. Seismic identification and sedimentary features of lacustrine facies carbonate rock in low slope-breaks of the upper of ES4 in Chezhen Depression[J]. Petroleum Geophysics, 2017, 15(1): 6-11. (in Chinese with English abstract)

    [5]

    张薇,王贵玲,刘峰,等. 中国沉积盆地型地热资源特征[J]. 中国地质,2019,46(2):255 − 268. [ZHANG Wei,WANG Guiling,LIU Feng,et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China,2019,46(2):255 − 268. (in Chinese with English abstract)

    ZHANG Wei, WANG Guiling, LIU Feng, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 2019, 46(2): 255-268. (in Chinese with English abstract)

    [6]

    张军林,田世澄. 缝洞型碳酸盐岩储层反射波法地震勘探技术的现状与趋势[J]. 石油天然气学报,2013,35(12):62 − 66. [ZHANG Junlin,TIAN Shicheng. Current situation and trend of seismic exploration technique of reflection wave method of fracturevuggy carbonatite reservoirs[J]. Journal of Oil and Gas Technology,2013,35(12):62 − 66. (in Chinese with English abstract)

    ZHANG Junlin, TIAN Shicheng. Current situation and trend of seismic exploration technique of reflection wave method of fracturevuggy carbonatite reservoirs[J]. Journal of Oil and Gas Technology, 2013, 35(12): 62-66. (in Chinese with English abstract)

    [7]

    柴绪兵. 古城地区中下奥陶统碳酸盐岩储层地震预测技术研究[D]. 大庆: 东北石油大学, 2017

    CHAI Xubing. Study on seismic prediction technology of carbonate reservoir in Gucheng area[D]. Daqing: Northeast Petroleum University, 2017. (in Chinese with English abstract)

    [8]

    黄锐. 川东北碳酸盐岩地区地震勘探技术难点与对策[J]. 石油物探,2008,47(5):476 − 482. [HUANG Rui. Technical difficulties in and countermeasures for seismic exploration in the carbonate area of northeast Sichuan Basin[J]. Geophysical Prospecting for Petroleum,2008,47(5):476 − 482. (in Chinese with English abstract)

    HUANG Rui. Technical difficulties in and countermeasures for seismic exploration in the carbonate area of northeast Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2008, 47(5): 476-482. (in Chinese with English abstract)

    [9]

    李博. ZG15区块奥陶系碳酸盐岩地震资料精细解释[J]. 甘肃科技,2018,34(10):16 − 17. [LI Bo. Seismic data interpretation of Ordovician carbonate rocks in ZG15 block[J]. Gansu Science and Technology,2018,34(10):16 − 17. (in Chinese)

    LI Bo. Seismic data interpretation of Ordovician carbonate rocks in ZG15 block[J]. Gansu Science and Technology, 2018, 34(10): 16-17. (in Chinese)

    [10]

    李鹏飞, 崔德育, 黄诚. 地震资料处理解释一体化技术在塔北碳酸盐岩储层识别中的应用[J]. 石油地球物理勘探, 2018, 53(增刊2): 306 – 313

    LI Pengfei, CUI Deyu, HUANG Cheng. Carbonate reservoir identification in Tabei Area, Tarim Basin with integrated seismic data processing and interpretation[J]. Oil Geophysical Prospecting, 2018, 53(Sup 2): 306 – 313. (in Chinese with English abstract)

    [11]

    常少英,李昌,陈娅娜,等. 海相碳酸盐岩储层地震预测技术进展及应用实效[J]. 海相油气地质,2020,25(1):22 − 34. [CHANG Shaoying,LI Chang,CHEN Yana,et al. Progress and application of seismic prediction technology for marine carbonate reservoir[J]. Marine Origin Petroleum Geology,2020,25(1):22 − 34. (in Chinese with English abstract)

    CHANG Shaoying, LI Chang, CHEN Yana, et al. Progress and application of seismic prediction technology for marine carbonate reservoir[J]. Marine Origin Petroleum Geology, 2020, 25(1): 22-34. (in Chinese with English abstract)

    [12]

    杜伟. K1地区地震数据目标处理技术及效果[J]. 石油地质与工程,2018,32(2):43 − 46. [DU Wei. Seismic data processing technology and its effect in K1 area[J]. Petroleum Geology and Engineering,2018,32(2):43 − 46. (in Chinese with English abstract)

    DU Wei. Seismic data processing technology and its effect in K1 area[J]. Petroleum Geology and Engineering, 2018, 32(2): 43-46. (in Chinese with English abstract)

    [13]

    龙姣. FG地区二维地震资料采集技术研究[D]. 成都: 成都理工大学, 2017

    LONG Jiao. Research on 2D seismic acquisition technology in FG area[D]. Chengdu: Chengdu University of Technology, 2017. (in Chinese with English abstract)

    [14]

    高俊,李燕燕,王贵玲,等. 雄安新区高阳地热田蓟县系热储特征及资源量评估[J]. 地球学报,2023,44(1):133 − 144. [GAO Jun,LI Yanyan,WANG Guiling,et al. Geothermal reservoirs characteristics and resource assessment of Jixian system in Gaoyang geothermal field,Xiongan New Area[J]. Acta Geoscientica Sinica,2023,44(1):133 − 144. (in Chinese with English abstract)

    GAO Jun, LI Yanyan, WANG Guiling, et al. Geothermal reservoirs characteristics and resource assessment of Jixian system in Gaoyang geothermal field, Xiongan New Area[J]. Acta Geoscientica Sinica, 2023, 44(1): 133-144. (in Chinese with English abstract)

    [15]

    姚亚辉, 贾小丰, 李胜涛, 等. 雄安新区D01井岩溶热储下伏太古界中热流测定研究[J]. 中国地质, 2022, 49(6): 1723 – 1731.

    YAO Yahui, JIA Xiaofeng, LI Shengtao, et al. Heat flow determination of Archean strata under the karst thermal reservoir of D01 well in Xiongan New Area[J]. Geology in China, 2022, 49(6): 1723 – 1731.(in Chinese with English abstract)

    [16]

    邢一飞, 王慧群, 李捷, 等. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质, 2022, 49(6): 1711 – 1722.

    XING Yifei, WANG Huiqun, LI Jie, et al. Chemical field of geothermal water in Xiongan New Area and analysis of influencing factors[J]. Geology in China, 2022, 49(6): 1711 – 1722.(in Chinese with English abstract)

    [17]

    杨海盟,戴俊生,汪必峰,等. 牛驼镇凸起发育过程[J]. 东北石油大学学报,2014,38(6):22 − 29. [YANG Haimeng,DAI Junsheng,WANG Bifeng,et al. Development process of Niutuozhen uplift[J]. Journal of Northeast Petroleum University,2014,38(6):22 − 29. (in Chinese with English abstract)

    YANG Haimeng, DAI Junsheng, WANG Bifeng, et al. Development process of Niutuozhen uplift[J]. Journal of Northeast Petroleum University, 2014, 38(6): 22-29. (in Chinese with English abstract)

    [18]

    王凯,张杰,白大为,等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质,2021,48(5):1453 − 1468. [WANG Kai,ZHANG Jie,BAI Dawei,et al. Geothermal-geological model of Xiongan New Area:Evidence from geophysics[J]. Geology in China,2021,48(5):1453 − 1468. (in Chinese with English abstract)

    WANG Kai, ZHANG Jie, BAI Dawei, et al. Geothermal-geological model of Xiongan New Area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453-1468. (in Chinese with English abstract)

    [19]

    岳航羽,王凯,张杰,等. 雄安新区及周边深反射地震高精度成像技术[J]. 石油地球物理勘探,2022,57(4):855 − 869. [YUE Hangyu,WANG Kai,ZHANG Jie,et al. High-precision imaging technology of deep reflection seismic in Xiongan New Area and its surroundings[J]. Oil Geophysical Prospecting,2022,57(4):855 − 869. (in Chinese with English abstract)

    YUE Hangyu, WANG Kai, ZHANG Jie, et al. High-precision imaging technology of deep reflection seismic in Xiongan New Area and its surroundings[J]. Oil Geophysical Prospecting, 2022, 57(4): 855-869. (in Chinese with English abstract)

    [20]

    陈鹏,于常青,韩建光,等. 低频可控震源在哈拉湖冻土区二维地震勘探试验研究[J]. 地球物理学进展,2018,33(2):562 − 570. [CHEN Peng,YU Changqing,HAN Jianguang,et al. Low-frequency vibroseis experimental study of 2D seismic exploration for Hala Lake’s permafrost region[J]. Progress in Geophysics,2018,33(2):562 − 570. (in Chinese with English abstract)

    CHEN Peng, YU Changqing, HAN Jianguang, et al. Low-frequency vibroseis experimental study of 2D seismic exploration for Hala Lake’s permafrost region[J]. Progress in Geophysics, 2018, 33(2): 562-570. (in Chinese with English abstract)

    [21]

    陈玉达,林君,邢雪峰. 可控震源技术发展与应用[J]. 石油物探,2020,59(5):666 − 682. [CHEN Yuda,LIN Jun,XING Xuefeng. Development and application of vibroseis technology[J]. Geophysical Prospecting for Petroleum,2020,59(5):666 − 682. (in Chinese with English abstract)

    CHEN Yuda, LIN Jun, XING Xuefeng. Development and application of vibroseis technology[J]. Geophysical Prospecting for Petroleum, 2020, 59(5): 666-682. (in Chinese with English abstract)

    [22]

    邸志欣. 哈拉阿拉特山山前构造带三维地震采集技术研究[D]. 青岛: 中国海洋大学, 2013

    DI Zhixin. 3D seismic acquisition technology research for piedmont tectonic belt in Halaalate mountain[D]. Qingdao: Ocean University of China, 2013. (in Chinese with English abstract)

    [23]

    蓝加达. 可控震源非线性扫描在高分辨率地震采集中的应用[J]. 石油物探,2008,47(2):208 − 211. [LAN Jiada. Application of vibroseis nonlinear sweep in high resolution seismic data acquisition in S area[J]. Geophysical Prospecting for Petroleum,2008,47(2):208 − 211. (in Chinese with English abstract)

    LAN Jiada. Application of vibroseis nonlinear sweep in high resolution seismic data acquisition in S area, [J]. Geophysical Prospecting for Petroleum, 2008, 47(2): 208-211. (in Chinese with English abstract)

    [24]

    吴华,张保卫,王凯,等. 哈拉湖地区浅层地震勘探可控震源激发参数对比试验[J]. 物探与化探,2018,42(5):1033 − 1041. [WU Hua,ZHANG Baowei,WANG Kai,et al. Comparative test of vibroseis excitation parameters for shallow seismic exploration in Har Hu area[J]. Geophysical and Geochemical Exploration,2018,42(5):1033 − 1041. (in Chinese with English abstract)

    WU Hua, ZHANG Baowei, WANG Kai, et al. Comparative test of vibroseis excitation parameters for shallow seismic exploration in Har Hu area[J]. Geophysical and Geochemical Exploration, 2018, 42(5): 1033-1041. (in Chinese with English abstract)

    [25]

    孙海川. 可控震源地震采集技术在H探区煤炭勘查中的实验[J]. 物探与化探,2020,44(1):42 − 49. [SUN Haichuan. Experimental study of vibroseis seismic acquisition technology on coal exploration in H prospecting area[J]. Geophysical and Geochemical Exploration,2020,44(1):42 − 49. (in Chinese with English abstract)

    SUN Haichuan. Experimental study of vibroseis seismic acquisition technology on coal exploration in H prospecting area[J]. Geophysical and Geochemical Exploration, 2020, 44(1): 42-49. (in Chinese with English abstract)

    [26]

    李忠雄,卫红伟,马龙,等. 羌塘盆地可控震源采集试验分析[J]. 石油地球物理勘探,2017,52(2):199 − 208. [LI Zhongxiong,WEI Hongwei,MA Long,et al. Vibroseis acquisition tests in Qiangtang Basin[J]. Oil Geophysical Prospecting,2017,52(2):199 − 208. (in Chinese with English abstract)

    LI Zhongxiong, WEI Hongwei, MA Long, et al. Vibroseis acquisition tests in Qiangtang Basin[J]. Oil Geophysical Prospecting, 2017, 52(2): 199-208. (in Chinese with English abstract)

    [27]

    刘小峰,槐永军,刘会林,等. 根据工区地表条件确定合适的可控震源驱动幅度[J]. 物探装备,2018,28(6):399 − 403. [LIU Xiaofeng,HUAI Yongjun,LIU Huilin,et al. How to determine the appropriate driving level of vibroseis according to the surface conditions of the work area[J]. Equipment for Geophysical Prospecting,2018,28(6):399 − 403. (in Chinese with English abstract)

    LIU Xiaofeng, HUAI Yongjun, LIU Huilin, et al. How to determine the appropriate driving level of vibroseis according to the surface conditions of the work area[J]. Equipment for Geophysical Prospecting, 2018, 28(6): 399-403. (in Chinese with English abstract)

  • 加载中

(11)

(1)

计量
  • 文章访问数:  905
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2023-01-11
修回日期:  2023-05-04
刊出日期:  2023-07-15

目录