-
摘要:
清洁能源开发利用是当前全球可持续发展共同关注的资源环境问题。干热岩指埋藏于地球深部、内部不存在或仅存在少量流体,温度高于180 °C的高温岩体,作为未来人类可持续利用的重要战略可接替清洁能源,其开发利用备受关注。文章在梳理总结国内外典型干热岩勘查与开发利用进展的基础上,针对干热岩资源研究方向提出几点思考,希望对我国未来干热岩勘查与开发工作起到有益参考借鉴作用。自20世纪70年代提出干热岩概念以来,世界各国开展了多处勘查开发工程探索,在取得大量理论技术突破的同时,也存在不少失败的案例。虽然全球投入建设的干热岩开发工程数量总体上不断增加,为干热岩勘查开发积累了宝贵经验,但是迄今为止尚未建造有商业规模的储层,由于缺乏持续经费支持、水力压裂诱发微地震等问题,多数被迫终止。目前来看,全球干热岩开发正逐渐进入新的探索阶段,欧美各国纷纷加强相关基础理论和技术攻关。我国近年来在干热岩资源调查评价和勘查开发方面取得了重要阶段性成果,编制了大地热流、居里面深度、控热构造等系列基础图件,初步估算了我国陆域干热岩资源潜力,并在青海共和、福建漳州、广东惠州、河北马头营、山西大同、江苏兴化等地区相继开展了干热岩勘查开发探索。其中,青海共和盆地恰卜恰地区在4 000 m深度探获超过200 °C的高温干热岩体。2019年在青海共和启动我国首个干热岩勘查试采示范工程,2020年完成干热岩储层规模化建造,有效改造体积超千万立方米,并于2021年实现试验性发电并网,在干热岩深部探测、高温硬岩钻探、规模化储层建造、循环连通、有机朗肯循环发电等方面取得了系列基础成果,推动了我国干热岩在勘查开发方面的实质性进展。总体来看,全球干热岩勘查开发取得了长足进展,实践证明干热岩资源是一种十分有发展前途的绿色能源,有望未来成为全球重要战略能源。然而,干热岩现有开发利用路径及其配套技术、装备与商业化开发预期相比还存在较大差距。我国干热岩资源开发尽管实现了从“0”到“1”的突破,但距离国际水平还有较长的路要走,仍需要在高温硬岩钻完井、深部储层精细刻画、安全规模化储层建造、高效换热取热等方面推动颠覆性技术创新,破解规模化、经济性开发难题。
Abstract:The exploitation and utilization of clean energy is a resource and environmental issue of common concern for global sustainable development. As a vital strategic and sustainable future energy, hot dry rock (HDR) has attracted more and more attention. In this paper some thoughts on the future research direction of HDR resources in China are provided based on a worldwide experience summary, hoping to provide a useful reference for the future exploration and engineering development of HDR. Since the concept of HDR was put forward in the 1970s, the number of worldwide HDR construction has been increasingly growing. Although a lot of theoretical and technical breakthroughs have been made, only a small fraction of projects still in operation due to the lack of sustained financial support, induced microearthquakes and other issues. At present, the global development of HDR is gradually entering a new stage of exploration, and the basic theories of HDR to tackle the key problems are strengthening around the world. Since 2012, the China Geological Survey has organized and implemented the nationwide terrestrial HDR resources survey, evaluation, exploration and development, and significant stage progress has been achieved. A series of fundamental maps have been compiled, such as terrestrial heat flow value, curie surface depth, distribution of acidic rock, and heat-controlling structure in China. The resource potential of terrestrial HDR in China has been preliminarily estimated and a sounding basis for the target site selection is provided. HDR exploration and evaluation have been carried out in typical areas of Qinghai, Shandong, Hebei, Shanxi and Jiangsu provinces, and a breakthrough has been achieved in the Gonghe Basin of Qinghai. The first HDR resources exploration and production demonstration project in China was carried out in 2019, which made a series of meaningful outcomes in deep HDR exploration, high-temperature hard rock drilling, large-scale reservoir stimulation, reservoir connectivity and flow circulation, organic Rankine cycle (ORC) power generation, etc. The large-scale reservoir stimulation was carried out in 2020, and the first power generation test was completed in 2021. In general, the global exploration and development of HDR has made great progress. Practice has proved that HDR resources are a promising green energy and are expected to become an inexhaustible energy support for the world in the future. However, there is still a large gap between the existing path of HDR development and utilization and the economics of its supporting technologies compared with commercial development expectations at present. Although the development of HDR resources in China has achieved a breakthrough from “0” to “1”, there is still a long way to go from the international level. In order to solve the problems of large-scale and economic development, it is still needed to promote disruptive technological innovation in high temperature hard rock drilling and completion, fine characterization of deep reservoirs, safe large-scale reservoir construction, efficient heat transfer and heat recovery and other aspects.
-
Key words:
- hot dry rock /
- exploration and development /
- progress /
- prospects
-
图 1 世界主要EGS工程分布(据文献[31]修改)
Figure 1.
图 2 芬顿山场地位置及区域地质图(据文献[36])
Figure 2.
图 3 Soultz场地位置、区域地质及钻井轨迹平面(据文献[41])
Figure 3.
图 4 日本肘折EGS系统(据文献[45])
Figure 4.
图 5 韩国浦项盆地及PX-1试采场地地质特征(据文献[48])
Figure 5.
-
[1] JIANG Fangming,CHEN Jiliang,HUANG Wenbo,et al. A three-dimensional transient model for EGS subsurface thermo-hydraulic process[J]. Energy,2014,72:300 − 310. doi: 10.1016/j.energy.2014.05.038
[2] 许天福,张炜. 增强型地热工程国际发展和我国前景展望[J]. 石油科学通报,2016,1(1):38 − 44. [XU Tianfu,ZHANG Wei. Enhanced geothermal systems:International developments and China’s prospects[J]. Petroleum Science Bulletin,2016,1(1):38 − 44. (in Chinese with English abstract)
XU Tianfu, ZHANG Wei. Enhanced Geothermal Systems: International developments and China’s prospects[J]. Petroleum Science Bulletin, 2016, 1(1)38-44(in Chinese with English abstract)
[3] GRANT M A, BIXLEY P F. Geothermal Reservoir Engineering[M]. 2nd ed. Amsterdam: Elsevier, 2011.
[4] SMITH M C. The Los Alamos scientific laboratory dry hot rock geothermal project (LASL Group Q-22)[J]. Geothermics,1975,4(1/2/3/4):27 − 39.
[5] BREEDE K,DZEBISASHVILI K,LIU Xiaolei,et al. A systematic review of enhanced (or engineered) geothermal systems:Past,present and future[J]. Geothermal Energy,2013,1(1):1 – 27. doi: 10.1186/2195-9706-1-4
[6] KUMARI W G P,RANJITH P G. Sustainable development of enhanced geothermal systems based on geotechnical research—A review[J]. Earth-Science Reviews,2019,199:102955. doi: 10.1016/j.earscirev.2019.102955
[7] 廖志杰,万天丰,张振国. 增强型地热系统:潜力大、开发难[J]. 地学前缘,2015,22(1):335 − 344. [LIAO Zhijie,WAN Tianfeng,ZHANG Zhenguo. The enhanced geothermal system (EGS):Huge capacity and difficult exploitation[J]. Earth Science Frontiers,2015,22(1):335 − 344. (in Chinese with English abstract)
LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system EGS: Huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335-344. (in Chinese with English abstract)
[8] LU S M. A global review of enhanced geothermal system (EGS)[J]. Renewable and Sustainable Energy Reviews,2018,81:2902 − 2921. doi: 10.1016/j.rser.2017.06.097
[9] 蔺文静,王贵玲,邵景力,等. 我国干热岩资源分布及勘探:进展与启示[J]. 地质学报,2021,95(5):1366 − 1381. [LIN Wenjing,WANG Guiling,SHAO Jingli,et al. Distribution and exploration of hot dry rock resources in China:Progress and inspiration[J]. Acta Geologica Sinica,2021,95(5):1366 − 1381. (in Chinese with English abstract)
LIN Wenjing, WANG Guiling, SHAO Jingli, et al. Distribution and exploration of hot dry rock resources in China: Progress and inspiration[J]. Acta Geologica Sinica, 2021, 95(5): 1366-1381. (in Chinese with English abstract)
[10] MA Feng, WANG Guiling, SUN Hongli, et al. Indication of hydrogen and oxygen stable isotopes on the characteristics and circulation patterns of medium-low temperature geothermal resources in the Guanzhong Basin, China[J]. Journal of Groundwater Science and Engineering, 2022, 10(1): 70 – 86.
[11] 张超,张盛生,李胜涛,等. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报,2018,61(11):4545 − 4557. [ZHANG Chao,ZHANG Shengsheng,LI Shengtao,et al. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe Basin,northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,2018,61(11):4545 − 4557. (in Chinese with English abstract)
ZHANG Chao, ZHANG Shengsheng, LI Shengtao, et al. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe Basin, northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 2018, 61(11): 4545-4557. (in Chinese with English abstract)
[12] ZHANG Eryong,WEN Dongguang,WANG Guiling. et al. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin,Qinghai Province,China[J]. China Geology ,2022,5(3):372 − 382. doi: 10.31035/cg2022038
[13] KONG Yanlong,PAN Sheng,REN Yaqian,et al. Catalog of enhanced geothermal systems based on heat sources[J]. Acta Geologica Sinica(English Edition),2021,95(6):1882 − 1891. doi: 10.1111/1755-6724.14876
[14] 张超,胡圣标,黄荣华,等. 干热岩地热资源热源机制研究现状及其对成因机制研究的启示[J]. 地球物理学进展,2022,37(5):1907 − 1919. [ZHANG Chao,HU Shengbiao,HUANG Ronghua,et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics,2022,37(5):1907 − 1919. (in Chinese with English abstract)
ZHANG Chao, HU Shengbiao, HUANG Ronghua, et al. Research status of heat source mechanism of the hot dry rock geothermal resources and its implications to the studies of genetic mechanism[J]. Progress in Geophysics, 2022, 37(5): 1907-1919. (in Chinese with English abstract)
[15] LIN Wenjing, WANG Guiling, GAN Haonan, et al. Heat source model for enhanced geothermal systems (EGS) under different geological conditions in China[J/OL]. Gondwana Research, (2022-08-19)[2023-03-20]. https://doi.org/10.1016/j.gr.2022.08.007.
[16] 冉恒谦,冯起赠. 我国干热岩勘查的有关技术问题[J]. 探矿工程(岩土钻掘工程)),2010,37(10):17 − 21. [RAN Hengqian,FENG Qizeng. Some technical issues on hot dry rock exploration in China[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling),2010,37(10):17 − 21. (in Chinese with English abstract)
RAN Hengqian, FENG Qizeng. Some technical issues on hot dry rock exploration in China[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(10)17-21. (in Chinese with English abstract)
[17] 杨冶,姜志海,岳建华,等. 干热岩勘探过程中地球物理方法技术应用探讨[J]. 地球物理学进展,2019,34(4):1556 − 1567. [YANG Ye,JIANG Zhihai,YUE Jianhua,et al. Discussion on application of geophysical methods in hot dry rock(HDR) exploration[J]. Progress in Geophysics,2019,34(4):1556 − 1567. (in Chinese with English abstract)
YANG Ye, JIANG Zhihai, YUE Jianhua, et al. Discussion on application of geophysical methods in Hot Dry Rock(HDR) exploration[J]. Progress in Geophysics, 2019, 34(4): 1556-1567. (in Chinese with English abstract)
[18] 何治亮,张英,冯建赟,等. 基于工程开发原则的干热岩目标区分类与优选[J]. 地学前缘,2020,27(1):81 − 93. [HE Zhiliang,ZHANG Ying,FENG Jianyun,et al. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China[J]. Earth Science Frontiers,2020,27(1):81 − 93. (in Chinese with English abstract)
HE Zhiliang, ZHANG Ying, FENG Jianyun, et al. Classification of geothermal resources based on engineering considerations and HDR EGS site screening in China[J]. Earth Science Frontiers, 2020, 27(1): 81-93. (in Chinese with English abstract)
[19] 郭建春,肖勇,蒋恕,等. 深层干热岩水力剪切压裂认识与实践[J]. 地质学报,2021,95(5):1582 − 1593. [GUO Jianchun,XIAO Yong,JIANG Shu,et al. Understanding and practice of hydraulic shearing in deep hot dry rocks[J]. Acta Geologica Sinica,2021,95(5):1582 − 1593. (in Chinese with English abstract)
GUO Jianchun, XIAO Yong, JIANG Shu, et al. Understanding and practice of hydraulic shearing in deep hot dry rocks[J]. Acta Geologica Sinica, 2021, 95(5): 1582-1593. (in Chinese with English abstract)
[20] 陈作,张保平,周健,等. 干热岩热储体积改造技术研究与试验[J]. 石油钻探技术,2020,48(6):82 − 87. [CHEN Zuo,ZHANG Baoping,ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J]. Petroleum Drilling Techniques,2020,48(6):82 − 87. (in Chinese with English abstract)
CHEN Zuo, ZHANG Baoping, ZHOU Jian, et al. Research and test on the stimulated reservoir volume technology of hot dry rock[J], Petroleum Drilling Techniques, 2020, 48(6): 82-86. (in Chinese with English abstract)
[21] 王璜,王贵玲,岳高凡,等. 天然裂缝影响下的花岗岩水力裂缝扩展数值模拟[J]. 地质学报,2020,94(7):2124 − 2130. [WANG Huang,WANG Guiling,YUE Gaofan,et al. Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures[J]. Acta Geologica Sinica,2020,94(7):2124 − 2130. (in Chinese with English abstract)
WANG Huang, WANG Guiling, YUE Gaofan, et al. Numerical simulation of granite hydraulic fracture propagation under the influence of natural fractures[J]. Acta Geologica Sinica. 2020, 94(7): 2124-2130. (in Chinese with English abstract)
[22] 徐胜强,张旭东,张保平,等. 测斜仪监测技术在共和盆地干热岩井压裂中的应用研究[J]. 钻探工程,2021,48(2):42 − 48. [XU Shengqiang,ZHANG Xudong,ZHANG Baoping,et al. Application of inclinometer monitoring technology in Gonghe hot dry rock well fracturing[J]. Drilling Engineering,2021,48(2):42 − 48. (in Chinese with English abstract)
XU Shengqiang, ZHANG Xudong, ZHANG Baoping, et al. Application of inclinometer monitoring technology in Gonghe hot dry rock well fracturing[J]. Drilling Engineering, 2021.48(2): 42-48. (in Chinese with English abstract)
[23] MAJER E L,PETERSON J EJ E. The impact of injection on seismicity at The Geysers,California Geothermal Field[J]. International Journal of Rock Mechanics & Mining Sciences,2007,44(8):1079 − 1090.
[24] 张杰,谢经轩. 多分支井增强型地热开发系统设计及产能评价[J]. 天然气工业,2021,41(3):179 − 188. [ZHANG Jie,XIE Jingxuan. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry,2021,41(3):179 − 188. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2021.03.021
ZHANG Jie, XIE Jingxuan. Design and productivity evaluation of multi-lateral well enhanced geothermal development system[J]. Natural Gas Industry, 2021, 41(3): 179-188. (in Chinese with English abstract) doi: 10.3787/j.issn.1000-0976.2021.03.021
[25] 苏长寿, 阴文行, 冯红喜, 等. 液动潜孔锤技术应用于干热岩钻井的可行性探讨[J]. 探矿工程(岩土钻掘工程), 2017, 44(3): 14 − 16, 266
SU Changshou, YIN Wenhang, FENG Hongxi, et al. Feasibility study on application of hydraulic hammer technology in hot dry rock drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(3): 14 − 16. (in Chinese with English abstrac)
[26] CAPUANO L, HUH M, RAYMOND D W, et al. Enhanced geothermal systems (EGS) well construction technology evaluation report[R]. Albuquerque, New Mexico: Sandia National Laboratories, 2008.
[27] 甘浩男,王贵玲,蔺文静,等. 增强型地热系统环境地质影响现状研究与对策建议[J]. 地质力学学报,2020,26(2):211 − 220. [GAN Haonan,WANG Guiling,LIN wenjing,et al. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures[J]. Journal of Geomechanics,2020,26(2):211 − 220. (in Chinese with English abstract)
GAN Haonan, WANG Guiling, LIN wenjing, et al. 2020. Research on the status quo of environmental geology impact of enhanced geothermal system and countermeasures [J]. Journal of Geomechanics, 2020, 26 (2): 211- 220. (in Chinese with English abstract)
[28] 尹欣欣,蒋长胜,翟鸿宇,等. 全球干热岩资源开发诱发地震活动和灾害风险管控[J]. 地球物理学报,2021,64(11):3817 − 3836. [YIN Xinxin,JIANG Changsheng,ZHAI Hongyu,et al. Review of induced seismicity and disaster risk control in dry hot rock resource development worldwide[J]. Chinese Journal of Geophysics,2021,64(11):3817 − 3836. (in Chinese with English abstract) doi: 10.6038/cjg2021O0448
YIN Xinxin, JIANG Changsheng, ZHAI Hongyu, et al. Review of induced seismicity and disaster risk control in dry hot rock resource development worldwide[J]. Chinese Journal of Geophysics, 2021, 64(11): 3817-3836. (in Chinese with English abstract) doi: 10.6038/cjg2021O0448
[29] FRYER B, SIDDIQI G, LALOUI L. Injection-induced seismicity: Strategies for reducing risk using high stress path reservoirs and temperature-induced stress preconditioning[J]. Geophysical Journal International. 2020, 220(2): 1436 − 1446.
[30] OLASOLO P, JUÁREZ M C, MORALES M P, et al. Enhanced geothermal systems (EGS): A review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133 − 144.
[31] POLLACK A, HORNE R, MUKERJI T. What are the challenges in developing enhanced geothermal systems (EGS)? Observations from 64 EGS Sites[C]// Reykjavik: Proceedings World Geothermal Congress, 2021.
[32] 张森琦,文冬光,许天福,等. 美国干热岩“地热能前沿瞭望台研究计划”与中美典型EGS场地勘查现状对比[J]. 地学前缘,2019,26(2):321 − 334. [ZHANG Senqi,WEN Dongguang,XU Tianfu,et al. The US Frontier Observatory for Research in Geothermal Energy Project and comparison of typical EGS site exploration status in China and US[J]. Earth Science Frontiers,2019,26(2):321 − 334. (in Chinese with English abstract)
ZHANG Senqi, WEN Dongguang, XU Tianfu, et al. The U. S. Frontier Observatory For Research in Geothermal Energy Project and comparison of typical EGS site exploration status in China and U. S[J]. Earth Science Frontiers, 2019, 26(2): 321-334. (in Chinese with English abstract)
[33] 许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42 − 45
XU Tianfu, ZHANG Yanjun, ZENG Zhaofa, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32): 42 − 45. (in Chinese with English abstract)
[34] 陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13 − 21
LU Chuan, WANG Guiling. Current status and prospect of hot dry rock research[J]. Science & Technology Review, 2015, 33(19): 13 − 21. (in Chinese with English abstract)
[35] HARRISON T M, MORGAN P,BLACKWELL D D. Constraints on the age of heating at the Fenton Hill Site,Valles Caldera,New Mexico[J]. Journal of Geophysical Research:Solid Earth,1986,91(B2):1899 − 1908.
[36] KELKAR S,WOLDEGABRIEL G,REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill,USA[J]. Geothermics,2016,63:5 − 14. doi: 10.1016/j.geothermics.2015.08.008
[37] LAUGHLIN A W,EDDY A C,LANEY R,et al. Geology of the Fenton Hill,New Mexico,hot dry rock site[J]. Journal of Volcanology and Geothermal Research,1983,15(1/2/3):21 − 41. doi: 10.1016/0377-0273(83)90094-X
[38] MIT-led Interdisciplinary Panel. The future of geothermal energy-impact of enhanced geothermal systems (EGS) on the United States in the 21st century[R]. 2006.
[39] LAUGHLIN A W,PETTITT R A,WEST F G,et al. Status of the Los Alamos experiment to extract geothermal energy from hot dry rock[J]. Geology,1977,5(4):237 − 240. doi: 10.1130/0091-7613(1977)5<237:SOTLAE>2.0.CO;2
[40] AICHHOLZER C,DURINGER P,ORCIANI S,et al. New stratigraphic interpretation of the Soultz-sous-Forêts 30-year-old geothermal wells calibrated on the recent one from Rittershoffen (Upper Rhine Graben,France)[J]. Geothermal Energy,2016,4(1):1 − 26. doi: 10.1186/s40517-016-0043-y
[41] HOOIJKAAS G R,GENTER A,DEZAYES C. Deep-seated geology of the granite intrusions at the Soultz EGS site based on data from 5 km-deep boreholes[J]. Geothermics,2006,35(5/6):484 − 506.
[42] VIDAL J,GENTER A. Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben:Insights from geothermal wells[J]. Geothermics,2018,74(1):57 − 73.
[43] GÉRARD A,GENTER A,KOHL T,et al. The deep EGS (enhanced geothermal system) project at Soultz-sous-Forêts (Alsace,France)[J]. Geothermics,2006,35(5/6):473 − 483. doi: 10.1016/j.geothermics.2006.12.001
[44] SCHILL E,GENTER A,CUENOT N,et al. Hydraulic performance history at the Soultz EGS reservoirs from stimulation and long-term circulation tests[J]. Geothermics,2017,70:110 − 124. doi: 10.1016/j.geothermics.2017.06.003
[45] TENMA N,YAMAGUCHI T,ZYVOLOSKI G. The Hijiori hot dry rock test site,Japan:Evaluation and optimization of heat extraction from a two-layered reservoir[J]. Geothermics,2008,37(1):19 − 52. doi: 10.1016/j.geothermics.2007.11.002
[46] KURIYAGAWA M,TENMA N. Development of hot dry rock technology at the Hijiori test site[J]. Geothermics,1999,28(4/5):627 − 636.
[47] LIM W, HAMM S Y, LEE C, et al. Geothermal characteristics of deep wells using geophysical logs in Pohang area, Korea[C]// AGU Fall Meeting Abstracts, 2016.
[48] LEE T J, SONG Y, JEON J, et al. Three dimensional geological model of Pohang EGS Pilot Site, Korea[C]// Melbourne: Proceedings World Geothermal Congress, 2015.
[49] ELLSWORTH W L,GIARDINI D,TOWNEND J,et al. Triggering of the Pohang,Korea,earthquake (Mw 5.5) by enhanced geothermal system stimulation[J]. Seismological Research Letters,2019,90(5):1844 − 1858.
[50] GRIGOLI F,CESCA S,RINALDI A P,et al. The November 2017 Mw 5.5 Pohang earthquake:A possible case of induced seismicity in South Korea[J]. Science,2018,360:1003 − 1006. doi: 10.1126/science.aat2010
[51] MCKITTRICK A. FORGE ahead-roadmap released for DOE’s Frontier Observatory for Research in Geothermal Energy[J]. Bulletin,2019,48:36 − 38.
[52] SIMMONS S F, KIRBY S, ALLIS R, et al. The current geoscientific understanding of the Utah FORGE site[C]// Reykjavik: Proceedings World Geothermal Congress, 2021.
[53] MOORE J, MCLENNAN J, ALLIS R, et al. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): An international laboratory for enhanced geothermal system technology development[C]// California: Workshop on Geothermal Reservoir Engineering, 2020.
[54] 甘浩男, 王贵玲, 蔺文静, 等. 中国干热岩资源主要赋存类型与成因模式[J]. 科技导报, 2015, 33(19): 22 – 27.
GAN Haonan, WANG Guiling, LIN Wenjing, et al. Research on the occurrence types and genetic models of hot dry rock resources in China[J]. Science & Technology Review, 2015, 33(19): 22 – 27. (in Chinese with English abstract)
[55] 汪集旸, 胡圣标, 庞忠和, 等.中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25 − 31
WANG Jiyang, HU Shengbiao, PANG Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25 − 31. (in Chinese with English abstract)
[56] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807 − 811
LIN Wenjing, LIU Zhiming, MA Feng, et al. An estimation of HDR resources in China’s mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807 − 811. (in Chinese with English abstract)
[57] 自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告(2018年)[R]. 北京: 中国石化出版社, 2018.
China Geological Survey, Ministry of Natural Resources, New and Renewable Energy Department, National Energy Administration, Institutes of Science and Development, Chinese Academy of Sciences, et al. China geothermal energy development report[R]. Beijing: China Petrochemical Press, 2018. (in Chinese)
[58] 张森琦,付雷,张杨,等. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业,2020,40(9):156 − 169. [ZHANG Senqi,FU Lei,ZHANG Yang,et al. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry,2020,40(9):156 − 169. (in Chinese with English abstract)
ZHANG Senqi, FU Lei, ZHANG Yang, et al. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high-precision aeromagnetic data[J]. Natural Gas Industry, 2020, 40(9): 156-169. (in Chinese with English abstract)
[59] 张森琦,李旭峰,宋健,等. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学,2021,46(4):1416 − 1436. [ZHANG Senqi,LI Xufeng,SONG Jian,et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science,2021,46(4):1416 − 1436. (in Chinese with English abstract)
ZHANG Senqi, LI Xufeng, SONG Jian, et al. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 2021(4): 1416-1436. (in Chinese with English abstract)
[60] 张森琦,严维德,黎敦朋,等. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质,2018,45(6):1087 − 1102. [ZHANG Senqi,YAN Weide,LI Dunpeng,et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin,Qinghai Province[J]. Geology in China,2018,45(6):1087 − 1102. (in Chinese with English abstract)
ZHANG Senqi, YAN Weide, LI Dunpeng, et al. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 2018, 45(6): 1087-1102. (in Chinese with English abstract)
[61] 鲁辉. 苏北盆地东台坳陷碳酸盐岩热储层特征研究与评价[J]. 中国煤炭地质,2022,34(4):32 − 38. [LU Hui. Dongtai depression carbonate rock geothermal reservoir features research and assessment in North Jiangsu Basin[J]. Coal Geology of China,2022,34(4):32 − 38. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2022.04.07
HUI Lu. Dongtai depression carbonate rock geothermal reservoir features research and assessment in north Jiangsu basin[J]. Coal Geology of China, 2022, 34(4): 32-38. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-1803.2022.04.07
[62] XU Jianan,FENG Bo,CUI Zhenpeng,et al. Comparative study of acid and alkaline stimulants with granite in an enhanced geothermal system[J]. Acta Geologica Sinica (English Edition),2021,95(6):1926 − 1939. doi: 10.1111/1755-6724.14870