气候变化下长江源土壤水时空演化及其环境响应

刘勇, 魏良帅, 黄安邦, 彭博, 舒勤峰. 气候变化下长江源土壤水时空演化及其环境响应[J]. 水文地质工程地质, 2023, 50(5): 39-52. doi: 10.16030/j.cnki.issn.1000-3665.202301034
引用本文: 刘勇, 魏良帅, 黄安邦, 彭博, 舒勤峰. 气候变化下长江源土壤水时空演化及其环境响应[J]. 水文地质工程地质, 2023, 50(5): 39-52. doi: 10.16030/j.cnki.issn.1000-3665.202301034
LIU Yong, WEI Liangshuai, HUANG Anbang, PENG Bo, SHU Qinfeng. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 39-52. doi: 10.16030/j.cnki.issn.1000-3665.202301034
Citation: LIU Yong, WEI Liangshuai, HUANG Anbang, PENG Bo, SHU Qinfeng. Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 39-52. doi: 10.16030/j.cnki.issn.1000-3665.202301034

气候变化下长江源土壤水时空演化及其环境响应

  • 基金项目: 中国地质调查局地质调查项目(DD20221757)
详细信息
    作者简介: 刘勇(1989-),男,博士,工程师,主要从事水文地质和环境地质研究工作。E-mail:1039786137@qq.com
  • 中图分类号: P641.131

Spatial and temporal evolution of soil water and its response to the environment in the Yangtze River source area under climate change

  • 气候变化下,长江源区生态环境和水文循环出现了显著改变。土壤水是水文循环的重要组成部分,正确认识土壤水时空分布规律及其环境响应机制是深入理解长江源区水文循环和生态环境变化的基础。以地面原位观测数据为基础,利用欧洲航天局最新开发的长时间序列和多传感器组合的全球土壤体积含水量数据集(ESA CCI SM V07.1)揭示了长江源区地表土壤水的时空演化规律,探讨了构造作用和冻土类型对土壤水的影响机制。结果表明:(1)长江源地表土壤体积含水量主要集中在0.15~0.20 m3/m3之间,在6—10月处于全年最高值;(2)在垂向上,由表层到深部土壤体积含水量主要呈现出增大-减小-稳定趋势,深部土壤水相对表层有明显的滞后特征,滞后时间一般为1~2个月;(3)在平面上,地表土壤体积含水量整体呈现东南高,并向西北逐渐递减的趋势。越临近构造断裂带,土壤体积含水量越低,且随深度增加呈现出一定的加剧趋势;(4)多年冻土区的地表土壤体积含水量相比邻近区域的季节性冻土区域高,季节性冻土区的地表土壤体积含水量波动变化幅度小于多年冻土区;(5)近40 a来,地表冻土有逐渐融化趋势,2000年后冻土融化加剧,地表土壤体积含水量增加明显。研究成果对于深入理解长江源区水文循环和生态环境的变化具有重要理论意义,可为长江源区水文循环和水资源管理提供参考依据。

  • 加载中
  • 图 1  长江源区域位置分布图[26]

    Figure 1. 

    图 2  西大滩站(ch06)、五道梁站(QT08)、沱沱河站(QT05)实测与CCI土壤体积含水量典型时序分布图

    Figure 2. 

    图 3  实测数据与CCI遥感反演土壤体积含水量数据散点分布图

    Figure 3. 

    图 4  长江源典型监测数据逐月和逐年时序变化特征

    Figure 4. 

    图 5  长江源区1980、2000、2020年7—9月土壤体积含水量空间分布图

    Figure 5. 

    图 6  长江源土壤体积含水量统计图

    Figure 6. 

    图 7  五道梁和西大滩土壤体积含水量动态曲线图

    Figure 7. 

    图 8  监测点年平均土壤体积含水量时序曲线

    Figure 8. 

    图 9  监测点年平均土壤体积含水量M-K统计量曲线图

    Figure 9. 

    表 1  CCI遥感反演数据与实测数据相关性分析

    Table 1.  Correlation analysis between the CCI remote sensing inversion data and actual measurement data

    区域产品类型平均值平均相对误差/%均方根误差/%相关系数案例数
    西大滩被动产品0.22376.218.120.612**174
    主被动组合产品0.23117.4910.330.634**157
    五道梁被动产品0.24608.267.280.555**256
    主被动组合产品0.25597.816.170.689**256
    沱沱河被动产品0.280410.039.700.702**258
    主被动组合产品0.23937.589.030.725**280
      注: **表示在 0.01 级别(双尾)相关性显著。
    下载: 导出CSV

    表 2  CCI数据校正情况

    Table 2.  CCI data correction information

    区域校正模型校正后的
    相关系数
    平均相对
    误差/%
    均方根
    误差/%
    西大滩Y=0.3858x+0.04570.807**4.235.71
    五道梁Y=0.1157x+0.08830.841**3.114.20
    沱沱河Y= 0.4803x−0.03110.815**3.836.33
      注: **表示在 0.01 级别(双尾)相关性显著。
    下载: 导出CSV

    表 3  不同等级土壤体积含水量面积比值

    Table 3.  Area ratio of soil water content of different grades

    土壤体积含水量/(m3·m−3<0.10.1~<0.150.15~<0.200.20~0.25
    面积占比/%8.0713.4554.2624.22
    下载: 导出CSV

    表 4  构造断裂影响站点信息

    Table 4.  Information on sites affected by tectonic rupture

    站点编号位置距断裂距离/km冻土类型
    QT01五道梁0多年冻土
    QT08五道梁9.26多年冻土
    ch06西大滩0多年冻土
    QT09西大滩13.12多年冻土
    下载: 导出CSV
  • [1]

    陈婷. 长江源区生态水文学研究[D]. 北京: 中国地质大学(北京), 2009

    CHEN Ting. Study on ecological hydrology in the headwater region of Changjiang River[D]. Beijing: China University of Geosciences, 2009. (in Chinese with English abstract)

    [2]

    李太兵. 长江源典型多年冻土区小流域径流过程特征研究[D]. 兰州: 兰州大学, 2009

    LI Taibing. Runoff process in a typical small permafrost watershed at the headwaters of Yangtze River[D]. Lanzhou: Lanzhou University, 2009. (in Chinese with English abstract)

    [3]

    吴小丽. 近30年来青藏高原多年冻土区与季节性冻土区土壤水分变化差异[D]. 兰州: 兰州交通大学, 2020

    WU Xiaoli. Different soil water changes in permafrost and seasonally frozen soil regions on the qinghai-tibetan plateau in the last 30 years[D]. Lanzhou: Lanzhou Jiatong University, 2020. (in Chinese with English abstract)

    [4]

    HADDELAND I,HEINKE J,BIEMANS H,et al. Global water resources affected by human interventions and climate change[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(9):3251 − 3256. doi: 10.1073/pnas.1222475110

    [5]

    YANG Kun,YE Baisheng,ZHOU Degang,et al. Response of hydrological cycle to recent climate changes in the Tibetan Plateau[J]. Climatic Change,2011,109(3/4):517 − 534.

    [6]

    COOK B I,BONAN G B,LEVIS S. Soil moisture feedbacks to precipitation in southern Africa[J]. Journal of Climate,2006,19(17):4198 − 4206. doi: 10.1175/JCLI3856.1

    [7]

    LI Ren,ZHAO Lin,WU Tonghua,et al. The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau,China[J]. Environmental Earth Sciences,2014,72(6):2091 − 2099. doi: 10.1007/s12665-014-3117-9

    [8]

    高佳,王文科,赵明,等. 毛乌素沙地裸地与植被覆盖下非冻结期土壤水分时空分布特征[J]. 水文地质工程地质,2022,49(6):34 − 42. [GAO Jia,WANG Wenke,ZHAO Ming,et al. Spatial and temporal distribution characteristics of soil moisture in the non-freezing period under the bare land and vegetation cover in the Mu Us desert[J]. Hydrogeology & Engineering Geology,2022,49(6):34 − 42. (in Chinese with English abstract)

    GAO Jia, WANG Wenke, ZHAO Ming, et al. Spatial and temporal distribution characteristics of soil moisture in the non-freezing period under the bare land and vegetation cover in the Mu Us desert[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 34-42. (in Chinese with English abstract)

    [9]

    LIU Tianwen, HU Cheng, WANG Qing, et al. Conversion relationship of rainfall-soil moisture-groundwater in Quaternary thick cohesive soil in Jianghan Plain, Hubei Province, China[J]. China Geology,2020,3:462 − 472.

    [10]

    ZHU Liang, YANG Mingnan, LIU Jingtao, et al. Evolution of the freeze-thaw cycles in the source region of the Yellow River under the influence of climate change and its hydrological effects[J]. Journal of Groundwater Science and Engineering,2022,10(4):322 − 334.

    [11]

    卞建民,刘彩虹,杨晓舟. 吉林西部大安灌区土壤贮水能力空间变异特征及土壤水分有效性[J]. 吉林大学学报(地球科学版),2017,47(2):554 − 563. [BIAN Jianmin,LIU Caihong,YANG Xiaozhou. Spatial distribution of soil water storage capacity and soil water availability in west Jilin Province[J]. Journal of Jilin University (Earth Science Edition),2017,47(2):554 − 563. (in Chinese with English abstract)

    [BIAN Jianmin, LIU Caihong, YANG Xiaozhou.Spatial distribution of soil water storage capacity and soil water availability in west Jilin Province[J].Journal of Jilin University (Earth Science Edition),2017,47(2):554-563.(in Chinese with English abstract)

    [12]

    张超,王会肖. 土壤水分研究进展及简要评述[J]. 干旱地区农业研究,2003,21(4):117 − 120. [ZHANG Chao,WANG Huixiao. A brief review of advances in soil water research[J]. Agricultural Research in the Arid Areas,2003,21(4):117 − 120. (in Chinese with English abstract)

    ZHANG Chao, WANG Huixiao. A brief review of advances in soil water research[J]. Agricultural Research in the Arid Areas, 2003, 21(4): 117-120. (in Chinese with English abstract)

    [13]

    杨丽萍,苏志强,侯成磊,等. 基于随机森林的干旱区全极化SAR土壤含水量反演[J]. 吉林大学学报(地球科学版),2022,52(4):1255 − 1264. [YANG Liping,SU Zhiqiang,HOU Chenglei,et al. Soil moisture content retrieval in arid area based on random forest using polarimetric SAR data[J]. Journal of Jilin University (Earth Science Edition),2022,52(4):1255 − 1264. (in Chinese with English abstract)

    YANG Liping, SU Zhiqiang, HOU Chenglei, et al. Soil moisture content retrieval in arid area based on random forest using polarimetric SAR data[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(4): 1255-1264. (in Chinese with English abstract)

    [14]

    胡顺,凌抗,王俊友,等. 西北典型内陆流域地下水与湿地生态系统协同演化机制[J]. 水文地质工程地质,2022,49(5):22 − 31. [HU Shun,LING Kang,WANG Junyou,et al. Co-evolution mechanism of groundwater and wetland ecosystem in a typical inland watershed in northwest China[J]. Hydrogeology & Engineering Geology,2022,49(5):22 − 31. (in Chinese with English abstract)

    HU Shun, LING Kang, WANG Junyou, et al. Co-evolution mechanism of groundwater and wetland ecosystem in a typical inland watershed in northwest China[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 22-31. (in Chinese with English abstract)

    [15]

    田晴,陆建忠,陈晓玲,等. 基于长时序CCI土壤湿度数据的长江流域农业干旱时空演变[J]. 长江流域资源与环境,2022,31(2):472 − 481. [TIAN Qing,LU Jianzhong,CHEN Xiaoling,et al. Spatio-temporal evolution of agricultural drought in the Yangtze River Basin based on long-term CCI soil moisture data[J]. Resources and Environment in the Yangtze Basin,2022,31(2):472 − 481. (in Chinese with English abstract)

    TIAN Qing, LU Jianzhong, CHEN Xiaoling, et al. Spatio-temporal evolution of agricultural drought in the Yangtze River Basin based on long-term CCI soil moisture data[J]. Resources and Environment in the Yangtze Basin, 2022, 31(2): 472-481. (in Chinese with English abstract)

    [16]

    ZENG Jiangyuan,LI Zhen,CHEN Quan,et al. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in situ observations[J]. Remote Sensing of Environment,2015,163:91 − 110. doi: 10.1016/j.rse.2015.03.008

    [17]

    刘强,杜今阳,施建成,等. 青藏高原表层土壤湿度遥感反演及其空间分布和多年变化趋势分析[J]. 中国科学:地球科学,2013,43(10):1677 − 1690. [LIU Qiang,DU Jinyang,SHI Jiancheng,et al. Remote sensing inversion of surface soil moisture in Qinghai-Tibet Plateau and its spatial distribution and multi-year variation trend analysis[J]. Scientia Sinica (Terrae),2013,43(10):1677 − 1690. (in Chinese with English abstract) doi: 10.1360/zd-2013-43-10-1677

    LIU Qiang, DU Jinyang, SHI Jiancheng, et al. Remote sensing inversion of surface soil moisture in Qinghai-Tibet Plateau and its spatial distribution and multi-year variation trend analysis[J]. Scientia Sinica (Terrae), 2013, 43(10): 1677-1690. (in Chinese with English abstract) doi: 10.1360/zd-2013-43-10-1677

    [18]

    万国宁,杨梅学,王学佳,等. 青藏高原中部BJ站土壤湿度不同时间尺度的变化[J]. 土壤通报,2012,43(2):286 − 293. [WAN Guoning,YANG Meixue,WANG Xuejia,et al. Variations in soil moisture at different time scales of BJ site on the central Tibetan Plateau[J]. Chinese Journal of Soil Science,2012,43(2):286 − 293. (in Chinese with English abstract)

    WAN Guoning, YANG Meixue, WANG Xuejia, et al. Variations in soil moisture at different time scales of BJ site on the central Tibetan Plateau[J]. Chinese Journal of Soil Science, 2012, 43(2): 286-293. (in Chinese with English abstract)

    [19]

    石磊,杜军,周刊社,等. 1980—2012年青藏高原土壤湿度时空演变特征[J]. 冰川冻土,2016,38(5):1241 − 1248. [SHI Lei,DU Jun,ZHOU Kanshe,et al. The temporal-spatial variations of soil moisture over the Tibetan Plateau during 1980-2012[J]. Journal of Glaciology and Geocryology,2016,38(5):1241 − 1248. (in Chinese with English abstract)

    SHI Lei, DU Jun, ZHOU Kanshe, et al. The temporal-spatial variations of soil moisture over the Tibetan Plateau during 1980-2012[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1241-1248. (in Chinese with English abstract)

    [20]

    卓嘎,德吉卓玛,尼玛吉. 青藏高原土壤湿度分布特征及其对长江中下游6、7月降水的影响[J]. 高原气象,2017,36(3):657 − 666. [ZHUOGA,DEJIZHUOMA,NI Maji. Distribution of soil moisture over the qinghai-tibetan plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River Basin[J]. Plateau Meteorology,2017,36(3):657 − 666. (in Chinese with English abstract)

    ZHUOGA, DEJIZHUOMA, NI Maji. Distribution of soil moisture over the qinghai-tibetan plateau and its effect on the precipitation in June and July over the mid-lower reaches of Yangtze River Basin[J]. Plateau Meteorology, 2017, 36(3): 657-666. (in Chinese with English abstract)

    [21]

    CROW W T,HUFFMAN G J,BINDLISH R,et al. Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals[J]. Journal of Hydrometeorology,2009,10(1):199 − 212. doi: 10.1175/2008JHM986.1

    [22]

    GOYAL R K. Sensitivity of evapotranspiration to global warming:A case study of arid zone of Rajasthan (India)[J]. Agricultural Water Management,2004,69(1):1 − 11. doi: 10.1016/j.agwat.2004.03.014

    [23]

    李元寿,王根绪,赵林,等. 青藏高原多年冻土活动层土壤水分对高寒草甸覆盖变化的响应[J]. 冰川冻土,2010,32(1):157 − 165. [LI Yuanshou,WANG Genxu,ZHAO Lin,et al. Response of soil moisture in the permafrost active layer to the change of alpine meadow coverage on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2010,32(1):157 − 165. (in Chinese with English abstract)

    LI Yuanshou, WANG Genxu, ZHAO Lin, et al. Response of soil moisture in the permafrost active layer to the change of alpine meadow coverage on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32(1): 157-165. (in Chinese with English abstract)

    [24]

    钱开铸. 长江源区水文周期特征及其对气候变化的响应[D]. 北京: 中国地质大学(北京), 2013

    QIAN Kaizhu. Hydrological periods and its responses to climate change in the source region of Yangtze River, China[D]. Beijing: China University of Geosciences, 2013. (in Chinese with English abstract)

    [25]

    ZHAO Lin,ZOU Defu,HU Guojie,et al. A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau,China[J]. Earth System Science Data,2021,13(8):4207 − 4218. doi: 10.5194/essd-13-4207-2021

    [26]

    ZOU Defu,ZHAO Lin,SHENG Yu,et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere,2017,11(6):2527 − 2542. doi: 10.5194/tc-11-2527-2017

    [27]

    DORIGO W,WAGNER W,ALBERGEL C,et al. ESA CCI soil moisture for improved earth system understanding:State-of-the art and future directions[J]. Remote Sensing of Environment,2017,203:185 − 215. doi: 10.1016/j.rse.2017.07.001

    [28]

    AN Ru,ZHANG Ling,WANG Zhe,et al. Validation of the ESA CCI soil moisture product in China[J]. International Journal of Applied Earth Observation and Geoinformation,2016,48:28 − 36. doi: 10.1016/j.jag.2015.09.009

    [29]

    黄荟羽,李恩键,安娟,等. 克拉默法与曼-肯德尔法对降水突变检验的对比分析[J]. 现代农业科技,2018(8):184 − 185. [HUANG Huiyu,LI Enjian,AN Juan,et al. Comparative analysis of kramer method and Mann-Kendall method for sudden change test of precipitation[J]. Modern Agricultural Science and Technology,2018(8):184 − 185. (in Chinese with English abstract)

    HUANG Huiyu, LI Enjian, AN Juan, et al. Comparative analysis of kramer method and Mann-Kendall method for sudden change test of precipitation[J]. Modern Agricultural Science and Technology, 2018(8): 184-185. (in Chinese with English abstract)

    [30]

    陈喜,黄日超,黄峰,等. 西北内陆河流域水循环和生态演变与功能保障机制研究[J]. 水文地质工程地质,2022,49(5):12 − 21. [CHEN Xi,HUANG Richao,HUANG Feng,et al. A comprehensive study of the maintaining mechanisms for hydrological cycle and ecological evolution and function in the northwest inland river basins of China[J]. Hydrogeology & Engineering Geology,2022,49(5):12 − 21. (in Chinese with English abstract)

    CHEN Xi, HUANG Richao, HUANG Feng, et al. A comprehensive study of the maintaining mechanisms for hydrological cycle and ecological evolution and function in the northwest inland river basins of China[J]. Hydrogeology & Engineering Geology, 2022, 49(5): 12-21. (in Chinese with English abstract)

    [31]

    闫柏琨,李文鹏,甘甫平,等. 基于地表水循环遥感观测的黑河流域水平衡分析[J]. 水文地质工程地质,2022,49(3):44 − 56. [YAN Bokun,LI Wenpeng,GAN Fuping,et al. Water balance analysis based on remote sensing observation of surface water cycle in the Heihe River watershed[J]. Hydrogeology & Engineering Geology,2022,49(3):44 − 56. (in Chinese with English abstract)

    YAN Bokun, LI Wenpeng, GAN Fuping, et al. Water balance analysis based on remote sensing observation of surface water cycle in the Heihe River watershed[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 44-56. (in Chinese with English abstract)

    [32]

    崔赢,沈宇鹏,张中琼. 环境因素对兴-贝型多年冻土分布与发育的影响[J]. 吉林大学学报(地球科学版),2021,51(5):1427 − 1440. [CUI Ying,SHEN Yupeng,ZHANG Zhongqiong. Influence of environmental factors on distribution and development of Xing’an-Baikal permafrost[J]. Journal of Jilin University (Earth Science Edition),2021,51(5):1427 − 1440. (in Chinese with English abstract)

    CUI Ying, SHEN Yupeng, ZHANG Zhongqiong. Influence of environmental factors on distribution and development of Xing’an-Baikal permafrost[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1427-1440. (in Chinese with English abstract)

  • 加载中

(9)

(4)

计量
  • 文章访问数:  1196
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2023-01-08
修回日期:  2023-03-07
刊出日期:  2023-09-15

目录