基于原位试验银川平原湖泊蒸发模型研究

李志萍, 闫静波, 徐敏, 赵贵章, 徐兆祥. 基于原位试验银川平原湖泊蒸发模型研究[J]. 水文地质工程地质, 2023, 50(5): 28-38. doi: 10.16030/j.cnki.issn.1000-3665.202301014
引用本文: 李志萍, 闫静波, 徐敏, 赵贵章, 徐兆祥. 基于原位试验银川平原湖泊蒸发模型研究[J]. 水文地质工程地质, 2023, 50(5): 28-38. doi: 10.16030/j.cnki.issn.1000-3665.202301014
LI Zhiping, YAN Jingbo, XU Min, ZHAO Guizhang, XU Zhaoxiang. A study of the lake evaporation model in Yinchuan Plain based on in-situ test[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 28-38. doi: 10.16030/j.cnki.issn.1000-3665.202301014
Citation: LI Zhiping, YAN Jingbo, XU Min, ZHAO Guizhang, XU Zhaoxiang. A study of the lake evaporation model in Yinchuan Plain based on in-situ test[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 28-38. doi: 10.16030/j.cnki.issn.1000-3665.202301014

基于原位试验银川平原湖泊蒸发模型研究

  • 基金项目: 国家自然科学基金项目(41972261);“一带一路”水与可持续发展科技基金项目(2021490511);宁夏水与环境野外观测站维护运行项目(640000233000000010673);宁夏生态地质调查示范项目(NXCZ20220201)
详细信息
    作者简介: 李志萍(1971-),女,博士,教授,从事地下水污染方面的研究。E-mail:lizhiping@ncwu.edu.cn
    通讯作者: 赵贵章(1976-),男,博士,副教授,从事水文地质方面的研究。E-mail:guizhangzhao@163.com
  • 中图分类号: P343.3

A study of the lake evaporation model in Yinchuan Plain based on in-situ test

More Information
  • 湖泊在流域水循环中具有重要作用,对于地区的气候调节、促进地区经济可持续发展和维护生态环境具有不可替代的作用。量化湖泊蒸发对西北干旱地区水资源与生态需水量评价至关重要。目前已有的湖泊蒸发量计算方法忽略了水深对蒸发的影响。在宁夏水与环境野外科学观测研究站开展不同水深的水面蒸发试验,利用皮尔逊相关性和非线性回归分析,探究水深与水面蒸发的关系。根据计算的水面潜在蒸发量折算系数,拟合得到适用于银川平原水面蒸发的深度蒸发计算模型。以清水湖为例,利用单波束无人船探测湖床形态,得到湖水水深,并将深度蒸发计算模型与Penman-Monteith(PM)公式进行对比分析。结果表明:2 种模型得出的清水湖年平均水面潜在蒸发量相差0.679 mm/d;在月平均水面潜在蒸发量曲线的走势上,PM公式的计算结果受温度影响明显,而深度蒸发计算模型相对温度的变化具有滞后特征,更好地反映了水深对温度的调节作用,使水面潜在蒸发量的计算更加精准。本研究所拟合的深度蒸发计算模型提高了银川平原湖泊水面蒸发的计算精度,为银川市内湖泊生态研究提供了参考,同时也对该地区的水资源利用和生态环境保护产生基础性影响。

  • 加载中
  • 图 1  试验流程

    Figure 1. 

    图 2  原位试验场地布设图

    Figure 2. 

    图 3  监测系统构造

    Figure 3. 

    图 4  深度对水面观测蒸发量的影响关系

    Figure 4. 

    图 5  研究区地理位置

    Figure 5. 

    图 6  单束波无人船

    Figure 6. 

    图 7  清水湖湖床结构

    Figure 7. 

    图 8  PM公式与深度蒸发计算模型计算结果及温度曲线

    Figure 8. 

    表 1  相关性分析

    Table 1.  Correlation analysis

    Eg T v H P
    皮尔逊相关系数 1 0.768** 0.034** −0.223** −0.599**
    Sig.(双尾) 0.000 0.000 0.000 0.000
      注:Sig.值表示变量与变量关系的显著性,当某自变量的Sig.值小于0.05时,表明该自变量与因变量有相关性。**代表显著性,表明Sig.值小于0.01,即变量与变量关系的显著性结论犯错误的可能性是1%。
    下载: 导出CSV

    表 2  深度与水面观测蒸发量曲线拟合优度参数

    Table 2.  Goodness-of-fit parameters of depth and observed evaporation curve on water surface

    参数 线性 对数 二次 三次 复合 S型 增长 指数 Logistic
    R2 0.927 0.914 0.738 0.996 0.997 0.997 0.908 0.729 0.917 0.998 0.927
    显著性 0.000 0.003 0.029 0.000 0.000 0.000 0.005 0.031 0.003 0.000 0.000
    下载: 导出CSV

    表 3  不同月份与深度的水面潜在蒸发量折算系数

    Table 3.  Conversion coefficient of water surface evaporation in different months and at different depths

    月份 水面潜在蒸发量折算系数 表达式
    0.5 m 1.0 m 1.5 m 2.0 m 2.5 m 3.0 m
    1 0.290 0.388 0.487 0.585 0.684 0.782 K1=0.197H+0.191
    2 0.366 0.444 0.522 0.600 0.678 0.756 K2=0.156H+0.288
    3 0.385 0.449 0.514 0.578 0.643 0.707 K3=0.129H+0.320
    4 0.454 0.492 0.531 0.569 0.608 0.646 K4=0.077H+0.415
    5 0.660 0.698 0.736 0.774 0.812 0.850 K5=0.076H+0.622
    6 0.707 0.749 0.792 0.834 0.877 0.919 K6=0.085H+0.664
    7 0.797 0.836 0.875 0.914 0.953 0.992 K7=0.078H+0.758
    8 0.811 0.851 0.892 0.932 0.973 1.013 K8=0.081H+0.770
    9 0.669 0.696 0.723 0.750 0.777 0.804 K9=0.054H+0.642
    10 0.472 0.520 0.569 0.617 0.666 0.714 K10=0.097H+0.423
    11 0.337 0.412 0.488 0.563 0.639 0.714 K11=0.151H+0.261
    12 0.422 0.510 0.599 0.687 0.776 0.864 K12=0.177H+0.333
    下载: 导出CSV

    表 4  清水湖各月的日平均水面潜在蒸发量

    Table 4.  Potential evaporation of daily average water surface in the Qingshui Lake in each month

    计算结果 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
    Ki 1.086 0.997 0.906 0.911 0.967 1.120 1.117 1.067 0.887 0.938 0.985 1.209
    日均水面潜在蒸发量/mm 3.925 4.022 4.289 5.226 6.848 7.491 8.309 7.895 6.155 4.729 4.221 3.953
    下载: 导出CSV
  • [1]

    BETTS A K,BALL J H,BELJAARS A C M,et al. The land surface-atmosphere interaction:A review based on observational and global modeling perspectives[J]. Journal of Geophysical Research:Atmospheres,1996,101(D3):7209 – 7225. doi: 10.1029/95JD02135

    [2]

    SCHLESINGER W H,JASECHKO S. Transpiration in the global water cycle[J]. Agricultural and Forest Meteorology,2014,189/190:115 – 117. doi: 10.1016/j.agrformet.2014.01.011

    [3]

    ASSOULINE S,TYLER S W,TANNY J,et al. Evaporation from three water bodies of different sizes and climates:Measurements and scaling analysis[J]. Advances in Water Resources,2008,31(1):160 – 172. doi: 10.1016/j.advwatres.2007.07.003

    [4]

    OKI T,KANAE S. Global hydrological cycles and world water resources[J]. Science,2006,313(5790):1068 – 1072. doi: 10.1126/science.1128845

    [5]

    MCMAHON T A,PEEL M C,LOWE L,et al. Estimating actual,potential,reference crop and pan evaporation using standard meteorological data:A pragmatic synthesis[J]. Hydrology and Earth System Sciences,2013,17(4):1331 – 1363. doi: 10.5194/hess-17-1331-2013

    [6]

    SHAHIN M. Evaporation and evapotranspiration:Water resources and hydrometeorology of the arab region[M]. Dordrecht:Springer Netherlands,2007:171–221.

    [7]

    XIAO Wei,WEI Zhongwang,WEN Xuefa. Evapotranspiration partitioning at the ecosystem scale using the stable isotope method:A review[J]. Agricultural and Forest Meteorology,2018,263:346 – 361. doi: 10.1016/j.agrformet.2018.09.005

    [8]

    许文豪,王晓勇,张俊,等. 鄂尔多斯高原湖泊蒸发原位试验研究[J]. 水文地质工程地质,2019,46(5):16 – 23. [XU Wenhao,WANG Xiaoyong,ZHANG Jun,et al. Research on in-situ test of lake evaporation in the Ordos Plateau[J]. Hydrogeology & Engineering Geology,2019,46(5):16 – 23. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.05.03

    XU Wenhao, WANG Xiaoyong, ZHANG Jun, et al. Research on in-situ test of lake evaporation in the Ordos Plateau[J]. Hydrogeology & Engineering Geology, 2019, 465): 1623. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.2019.05.03

    [9]

    STURROCK A M,WINTER T C,ROSENBERRY D O. Energy budget evaporation from Williams Lake:A closed lake in north central Minnesota[J]. Water Resources Research,1992,28(6):1605 – 1617. doi: 10.1029/92WR00553

    [10]

    JASECHKO S,SHARP Z D,GIBSON J J,et al. Terrestrial water fluxes dominated by transpiration[J]. Nature,2013,496(7445):347 – 350. doi: 10.1038/nature11983

    [11]

    WINTER T C. Uncertainties in estimating the water balance of lakes[J]. Journal of the American Water Resources Association,1981,17(1):82 − 115. doi: 10.1111/j.1752-1688.1981.tb02593.x

    [12]

    ZHAO Lingling,XIA Jun,XU Chongyu,et al. Evapotranspiration estimation methods in hydrological models[J]. Journal of Geographical Sciences,2013,23(2):359 – 369. doi: 10.1007/s11442-013-1015-9

    [13]

    ZHAO Xiaosong,LIU Yanbo. Lake fluctuation effectively regulates wetland evapotranspiration:A case study of the largest freshwater lake in China[J]. Water,2014,6(8):2482 − 2500. doi: 10.3390/w6082482

    [14]

    HUA Ding,HAO Xingming,ZHANG Ying,et al. Uncertainty assessment of potential evapotranspiration in arid areas,as estimated by the Penman-Monteith method[J]. Journal of Arid Land,2020,12(1):166 − 180. doi: 10.1007/s40333-020-0093-7

    [15]

    VALLET COULOMB C,LEGESSE D,GASSE F,et al. Lake evaporation estimates in tropical Africa (Lake Ziway,Ethiopia)[J]. Journal of Hydrology,2001,245(1/2/3/4):1 − 18.

    [16]

    METZGER J,NIED M,CORSMEIER U,et al. Dead Sea evaporation by eddy covariance measurements vs. aerodynamic,energy budget,Priestley–Taylor,and Penman estimates[J]. Hydrology and Earth System Sciences,2018,22(2):1135 − 1155. doi: 10.5194/hess-22-1135-2018

    [17]

    XU C Y,SINGH V P. Evaluation and generalization of temperature-based methods for calculating evaporation[J]. Hydrological Processes,2001,15(2):305 − 319. doi: 10.1002/hyp.119

    [18]

    王志杰,李畅游,贾克力,等. 呼伦湖水面蒸发量计算及变化特征分析[J]. 干旱区资源与环境,2012,26(3):88 − 95. [WANG Zhijie,LI Changyou,JIA Keli,et al. Caculation and characteristics of Hulun Lake surface evaporation[J]. Journal of Arid Land Resources and Environment,2012,26(3):88 − 95. (in Chinese with English abstract) doi: 10.13448/j.cnki.jalre.2012.03.032

    WANG Zhijie, LI Changyou, JIA Keli, et al. Caculation and characteristics of Hulun Lake surface evaporation[J]. Journal of Arid Land Resources and Environment, 2012, 263): 8895. (in Chinese with English abstract) doi: 10.13448/j.cnki.jalre.2012.03.032

    [19]

    孙萌,高斌,肖伟华,等. 近61年三峡库区潜在蒸发量时空演变规律及其驱动因素[J]. 水电能源科学,2022,40(5):1 − 5. [SUN Meng,GAO Bin,XIAO Weihua,et al. Spatiotemporal variability of evapotranspiration in recent 61 years and its response to climate change in the Three Gorges Reservoir area[J]. Water Resources and Power,2022,40(5):1 − 5. (in Chinese with English abstract)

    SUN Meng, GAO Bin, XIAO Weihua, et al. Spatiotemporal variability of evapotranspiration in recent 61 years and its response to climate change in the Three Gorges Reservoir area[J]. Water Resources and Power, 2022, 405): 15. (in Chinese with English abstract)

    [20]

    HAO Xingming,ZHANG Shuhua,LI Weihong,et al. The uncertainty of penman-monteith method and the energy balance closure problem[J]. Journal of Geophysical Research:Atmospheres,2018.

    [21]

    A Ning,SZILAGYI J,NIU Guoyue,et al. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion[J]. Journal of Hydrology,2016,537:27-35.

    [22]

    SHILO E,ZIV B,SHAMIR E,et al. Evaporation from Lake Kinneret,Israel,during hot summer days[J]. Journal of Hydrology,2015,528:264 − 275. doi: 10.1016/j.jhydrol.2015.06.042

    [23]

    SINGH R,SENAY G. Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States[J]. Water,2015,8(1):9. doi: 10.3390/w8010009

    [24]

    SI Jianhua,FENG Qi,YU Tengfei,et al. Inland River terminal lake preservation:Determining basin scale and the ecological water requirement[J]. Environmental Earth Sciences,2015,73(7):3327 − 3334. doi: 10.1007/s12665-014-3621-y

    [25]

    廖杰,王涛,薛娴. 黑河调水以来额济纳盆地湖泊蒸发量[J]. 中国沙漠,2015,35(1):228 − 232. [LIAO Jie,WANG Tao,XUE Xian. Lake’s evaporation in the Ejin Basin since transfering water from the Heihe River[J]. Journal of Desert Research,2015,35(1):228 − 232. (in Chinese with English abstract)

    LIAO Jie, WANG Tao, XUE Xian. Lake’s evaporation in the Ejin Basin since transfering water from the Heihe River[J]. Journal of Desert Research, 2015, 351): 228232. (in Chinese with English abstract)

    [26]

    施成熙,牛克源,陈天珠,等. 水面蒸发器折算系数研究[J]. 地理科学,1986(4):305 – 313. [SHI Chengxi,NIU Keyuan,CHEN Tianzhu,et al. The study of pan coefficients of evaporation pans of water[J]. Scientia Geogrophica Sinica,1986(4):305 – 313. (in Chinese with English abstract)

    SHI Chengxi, NIU Keyuan, CHEN Tianzhu, et al. The study of pan coefficients of evaporation pans of water[J]. Scientia Geogrophica Sinica, 19864): 305313. (in Chinese with English abstract)

    [27]

    SINHASHTHITA W,JEARANAITANAKIJ K. Improving KNN algorithm based on weighted attributes by Pearson correlation coefficient and PSO fine tuning[C]//2020-5th International Conference on Information Technology (InCIT). October 21-22,2020,Chonburi,Thailand. IEEE,2021:27 – 32.

    [28]

    雷震烁,刘松涛,葛杨,等. 基于平均证据和焦元距离的高冲突证据融合方法[J]. 电光与控制,2021,28(4):6 − 10. [LEI Zhenshuo,LIU Songtao,GE Yang,et al. A high-conflict evidence fusion method based on average evidence and focal element distance[J]. Electronics Optics & Control,2021,28(4):6 − 10. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-637X.2021.04.002

    LEI Zhenshuo, LIU Songtao, GE Yang, et al. A high-conflict evidence fusion method based on average evidence and focal element distance[J]. Electronics Optics & Control, 2021, 284): 610. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-637X.2021.04.002

    [29]

    LIU Huizhi,FENG Jianwu,SUN Jihua,et al. Eddy covariance measurements of water vapor and CO2 fluxes above the Erhai Lake[J]. Science China Earth Sciences,2015,58(3):317 − 328. doi: 10.1007/s11430-014-4828-1

    [30]

    GERKEN T,BIERMANN T,BABEL W,et al. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake Basin,Tibetan Plateau[J]. Theoretical and Applied Climatology,2014,117(1):149 − 167.

    [31]

    张德朋. 利用多种方法计算巴丹吉林沙漠湖面蒸发量[D]. 北京:中国地质大学(北京),2016. [ZHANG Depeng. Calculation of lake evaporation in Badain Jaran Desert by various methods[D]. Beijing:China University of Geosciences,2016. (in Chinese with English abstract)

    ZHANG Depeng. Calculation of lake evaporation in Badain Jaran Desert by various methods[D]. Beijing: China University of Geosciences, 2016. (in Chinese with English abstract)

    [32]

    马己安,冯克鹏,李王成,等. 基于水面蒸发量的宁夏中部干旱带土壤蒸发量估算研究[J]. 灌溉排水学报,2020,39(10):35 – 41. [MA Ji’an,FENG Kepeng,LI Wangcheng,et al. Using water surface evaporation to estimate soil surface evaporation in arid regions in central Ningxia[J]. Journal of Irrigation and Drainage,2020,39(10):35 – 41. (in Chinese with English abstract)

    MA Ji’an, FENG Kepeng, LI Wangcheng, et al. Using water surface evaporation to estimate soil surface evaporation in arid regions in central Ningxia[J]. Journal of Irrigation and Drainage, 2020, 3910): 3541. (in Chinese with English abstract)

    [33]

    闵骞. 利用彭曼公式预测水面蒸发量[J]. 水利水电科技进展,2001,21(1):37 – 39. [MIN Qian. Prediction of water surface evaporation by penman formula[J]. Advances in Science and Technology of Water Resources,2001,21(1):37 – 39. (in Chinese with English abstract)

    MIN Qian. Prediction of water surface evaporation by penman formula[J]. Advances in Science and Technology of Water Resources, 2001, 211): 3739. (in Chinese with English abstract)

    [34]

    姜海波,唐凯,何新林. 抑制干旱区平原水库蒸发试验及蒸发模型研究[J]. 干旱区资源与环境,2016,30(1):119 – 124. [JIANG Haibo,TANG Kai,HE Xinlin. Experimental study on inhibiting water surface evaporation of reservoir in arid region[J]. Journal of Arid Land Resources and Environment,2016,30(1):119 – 124. (in Chinese with English abstract)

    JIANG Haibo, TANG Kai, HE Xinlin. Experimental study on inhibiting water surface evaporation of reservoir in arid region[J]. Journal of Arid Land Resources and Environment, 2016, 301): 119124. (in Chinese with English abstract)

    [35]

    郭小娇,石建省. 水分蒸散发研究国内外进展与趋势[J]. 地质论评,2019,65(6):1473 – 1486. [GUO Xiaojiao,SHI Jiansheng. Global review of the research progress and trend of evapotranspiration[J]. Geological Review,2019,65(6):1473 – 1486. (in Chinese with English abstract)

    GUO Xiaojiao, SHI Jiansheng. Global review of the research progress and trend of evapotranspiration[J]. Geological Review, 2019, 656): 14731486. (in Chinese with English abstract)

    [36]

    DAVID R M. 水文学手册[M]. 张建云,李纪生,译. 北京:科学出版社,2002. [DAVID R M. Handbook of hydrology[M] . ZHANG Jianyun,LI Jisheng,trans. Beijing:Science Press,2002. (in Chinese)

    DAVID R M. Handbook of hydrology[M] . ZHANG Jianyun, LI Jisheng, trans. Beijing: Science Press, 2002. (in Chinese)

  • 加载中

(8)

(4)

计量
  • 文章访问数:  1290
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2023-01-14
修回日期:  2023-03-17
刊出日期:  2023-09-15

目录