Research on the physical basis of variables and parameters of ABCD model based on HYDRUS simulation
-
摘要:
以ABCD模型为代表的概念性水文模型是量化水文循环过程的主要手段之一,但是很少有研究检验ABCD模型变量和参数的物理基础及其与传统土壤水力参数的关系。以鄂尔多斯盆地台格庙矿区作为研究区,首先使用HYDRUS-1D软件构建站点尺度土壤-植物-大气连续体模型模拟获取非冻结期“真实的”实际蒸散量,其作为目标函数对ABCD模型进行校正,然后对比ABCD模型模拟的土壤水储量和土壤水渗漏量与SPAC模型模拟的结果,通过开展大量情景模拟探究ABCD模型中关键参数a和b与传统土壤水力参数之间的关系。结果表明:在站点尺度,ABCD模型可以用于模拟非冻结期月时间尺度的实际蒸散量和土壤水渗漏量;ABCD模型中参数a与饱和含水率、残余含水率和曲线形状参数具有较强的线性相关性,与饱和渗透系数呈对数关系;参数b与饱和含水率和曲线形状参数n具有较强的线性相关性,与饱和渗透系数和曲线形状参数α呈对数关系。研究结果可以提高对概念性水文模型变量和参数物理基础的认识,拓展水文模型在水文地质中的应用。
Abstract:The conceptual hydrological model represented by the ABCD model is one of the main methods to quantify and analyze the hydrological cycle processes. However, few studies have examined the physical basis of the variables and parameters of the ABCD model and quantified the relationship between parameters in the conceptual hydrological model and traditional soil hydraulic parameters. In this study, we select the Taigemiao mining area in the Ordos basin as the research site. The HYDRUS-1D software is used to construct the soil-plant-atmosphere continuum (SPAC) model at a site scale for obtaining the “real” actual evapotranspiration during the non-freezing period. The actual evapotranspiration obtained from the SPAC model is considered as the objective function of the ABCD model for calibrating the ABCD model. The soil water storage and soil water leakage simulated by the ABCD model are compared with the results of the SPAC model. The relationships between the parameters of a and b in the ABCD model and the traditional soil hydraulic parameters are analyzed through a large number of scenario simulations. The results show that the ABCD model can better simulate the site-scale monthly actual evapotranspiration and soil water leakage during the non-freezing period. It is indicated that parameter a in the ABCD model has a strong linear correlation with the saturated water content, residual water content and curve shape parameters, while it shows a negative logarithmic relation to the saturated coefficient of permeability. It is also found that parameter b has a strong linear correlation with the saturated water content and curve shape parameter n, while the logarithmic relationships is revealed between parameter b and the saturated coefficient of permeability and curve shape parameter α. This study can improve the understanding of the physical basis of variables and parameters in conceptual hydrological models, and expands the application of hydrological models to hydrogeology.
-
Key words:
- hydrological model /
- ABCD model /
- soil hydraulic parameters /
- HYDRUS /
- Ordos basin /
- Taigemiao mining area
-
-
表 1 壤砂土土壤特征参数值
Table 1. Characteristic parameter values of the loamy sand soil
参数 wr/(cm3·cm−3) ws/(cm3·cm−3) α/cm−1 n Ks /(cm·d−1) l 数值 0.078 0.41 0.124 2.28 350.2 0.5 -
[1] 韩鹏飞,王旭升,蒋小伟,等. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应[J]. 水文地质工程地质,2023,50(2):1 − 12. [HAN Pengfei,WANG Xusheng,JIANG Xiaowei,et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology,2023,50(2):1 − 12. (in Chinese with English abstract)
HAN Pengfei, WANG Xusheng, JIANG Xiaowei, et al . Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology,2023 ,50 (2 ):1 −12 . (in Chinese with English abstract)[2] 韩鹏飞,王旭升. 利用ABCD模型预测流域水文对极端气候的响应[J]. 人民黄河,2016,38(11):16 − 22. [HAN Pengfei,WANG Xusheng. Forecasting the response of a catchment on extreme climate change with ABCD model[J]. Yellow River,2016,38(11):16 − 22. (in Chinese with English abstract)
HAN Pengfei, WANG Xusheng . Forecasting the response of a catchment on extreme climate change with ABCD model[J]. Yellow River,2016 ,38 (11 ):16 −22 . (in Chinese with English abstract)[3] 陈坰烽,张万昌. 概念性水文模型遗传算法多目标参数优选研究[J]. 水利水电技术,2007,38(6):5 − 7. [CHEN Jiongfeng,ZHANG Wanchang. Study on optimization of multi-objective parameter of genetic algorithm for conceptual hydrological model[J]. Water Resources and Hydropower Engineering,2007,38(6):5 − 7. (in Chinese with English abstract) doi: 10.13928/j.cnki.wrahe.2007.06.002
doi: 10.13928/j.cnki.wrahe.2007.06.002CHEN Jiongfeng, ZHANG Wanchang . Study on optimization of multi-objective parameter of genetic algorithm for conceptual hydrological model[J]. Water Resources and Hydropower Engineering,2007 ,38 (6 ):5 −7 . (in Chinese with English abstract)[4] 葛路,刘登嵩,许月萍,等. 水文模型在不同时间尺度的适用性研究[J]. 科技通报,2022,38(1):13 − 19. [GE Lu,LIU Dengsong,XU Yueping,et al. Study on the applicability of hydrological models to different time scales[J]. Bulletin of Science and Technology,2022,38(1):13 − 19. (in Chinese with English abstract) doi: 10.13774/j.cnki.kjtb.2022.01.003
doi: 10.13774/j.cnki.kjtb.2022.01.003GE Lu, LIU Dengsong, XU Yueping, et al . Study on the applicability of hydrological models to different time scales[J]. Bulletin of Science and Technology,2022 ,38 (1 ):13 −19 . (in Chinese with English abstract)[5] OCHSNER T E,COSH M H,CUENCA R H,et al. State of the art in large-scale soil moisture monitoring[J]. Soil Science Society of America Journal,2013,77(6):1888 − 1919. doi: 10.2136/sssaj2013.03.0093
[6] ZHUO Lu,HAN Dawei. Could operational hydrological models be made compatible with satellite soil moisture observations?[J]. Hydrological Processes,2016,30(10):1637 − 1648. doi: 10.1002/hyp.10804
[7] ZHUO Lu,HAN Dawei. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling[J]. Journal of Hydrology,2016,535:637 − 651. doi: 10.1016/j.jhydrol.2016.02.033
[8] HAN Pengfei,WANG Xusheng,ISTANBULLUOGLU E. A null-parameter formula of storage-evapotranspiration relationship at catchment scale and its application for a new hydrological model[J]. Journal of Geophysical Research:Atmospheres,2018,123(4):2082 − 2097.
[9] HAN Pengfei,ISTANBULLUOGLU E,WAN Li,et al. A new hydrologic sensitivity framework for unsteady-state responses to climate change and its application to catchments with croplands in Illinois[J]. Water Resources Research,2021,57(8):e2020WR027762.
[10] HAN Pengfei,WANG Xusheng,WAN Li,et al. Croplands decreased stability of streamflow with changing climate:An investigation of catchments in Illinois[J]. Journal of Hydrology,2022,606:127461. doi: 10.1016/j.jhydrol.2022.127461
[11] SANKARASUBRAMANIAN A,VOGEL R M. Annual hydroclimatology of the United States[J]. Water Resources Research,2002,38(6):1 − 12.
[12] ALLEY W M. On the treatment of evapotranspiration,soil moisture accounting,and aquifer recharge in monthly water balance models[J]. Water Resources Research,1984,20(8):1137 − 1149. doi: 10.1029/WR020i008p01137
[13] THOMAS H A. Improved methods for national water assessment[R]. Washington:U. S. Water Resources Council,1981.
[14] MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513 − 522. doi: 10.1029/WR012i003p00513
[15] FEDDES R A,BRESLER E,NEUMAN S P. Field test of a modified numerical model for water uptake by root systems[J]. Water Resources Research,1974,10(6):1199 − 1206. doi: 10.1029/WR010i006p01199
[16] 雷磊,王双明,徐晗,等. 鄂尔多斯盆地海流兔河流域叶面积指数的时空变化及其与气象因子的关系[J]. 水土保持通报,2015,35(6):277 − 280. [LEI Lei,WANG Shuangming,XU Han,et al. Temporal and spatial variation of leaf area index and its relation to meteorological factors of Hailiutu River Basin in Ordos’ s basin[J]. Bulletin of Soil and Water Conservation,2015,35(6):277 − 280. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.20150924.001
doi: 10.13961/j.cnki.stbctb.20150924.001LEI Lei, WANG Shuangming, XU Han, et al . Temporal and spatial variation of leaf area index and its relation to meteorological factors of Hailiutu River Basin in Ordos’ s basin[J]. Bulletin of Soil and Water Conservation,2015 ,35 (6 ):277 −280 . (in Chinese with English abstract)[17] NASH J E,SUTCLIFFE J V. River flow forecasting through conceptual models part I:A discussion of principles[J]. Journal of Hydrology,1970,10(3):282 − 290. doi: 10.1016/0022-1694(70)90255-6
-