基于HYDRUS模拟的ABCD模型变量及参数物理基础研究

王旭东, 韩鹏飞, 张锁, 曹志国, 王路军, 朱晓倩, 邢朕国. 基于HYDRUS模拟的ABCD模型变量及参数物理基础研究[J]. 水文地质工程地质, 2023, 50(5): 20-27. doi: 10.16030/j.cnki.issn.1000-3665.202302015
引用本文: 王旭东, 韩鹏飞, 张锁, 曹志国, 王路军, 朱晓倩, 邢朕国. 基于HYDRUS模拟的ABCD模型变量及参数物理基础研究[J]. 水文地质工程地质, 2023, 50(5): 20-27. doi: 10.16030/j.cnki.issn.1000-3665.202302015
WANG Xudong, HAN Pengfei, ZHANG Suo, CAO Zhiguo, WANG Lujun, ZHU Xiaoqian, XING Zhenguo. Research on the physical basis of variables and parameters of ABCD model based on HYDRUS simulation[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 20-27. doi: 10.16030/j.cnki.issn.1000-3665.202302015
Citation: WANG Xudong, HAN Pengfei, ZHANG Suo, CAO Zhiguo, WANG Lujun, ZHU Xiaoqian, XING Zhenguo. Research on the physical basis of variables and parameters of ABCD model based on HYDRUS simulation[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 20-27. doi: 10.16030/j.cnki.issn.1000-3665.202302015

基于HYDRUS模拟的ABCD模型变量及参数物理基础研究

  • 基金项目: 国家自然科学基金项目(42302280);国家能源集团科技项目(GJNY-21-129)
详细信息
    作者简介: 王旭东(1981-),男,博士,高级工程师,主要从事水文地质研究。E-mail:10000105@ceic.com
    通讯作者: 韩鹏飞(1988-),男,博士,讲师,主要从事水文模型和水文地质研究。E-mail:pfhan@cugb.edu.cn
  • 中图分类号: P33

Research on the physical basis of variables and parameters of ABCD model based on HYDRUS simulation

More Information
  • 以ABCD模型为代表的概念性水文模型是量化水文循环过程的主要手段之一,但是很少有研究检验ABCD模型变量和参数的物理基础及其与传统土壤水力参数的关系。以鄂尔多斯盆地台格庙矿区作为研究区,首先使用HYDRUS-1D软件构建站点尺度土壤-植物-大气连续体模型模拟获取非冻结期“真实的”实际蒸散量,其作为目标函数对ABCD模型进行校正,然后对比ABCD模型模拟的土壤水储量和土壤水渗漏量与SPAC模型模拟的结果,通过开展大量情景模拟探究ABCD模型中关键参数ab与传统土壤水力参数之间的关系。结果表明:在站点尺度,ABCD模型可以用于模拟非冻结期月时间尺度的实际蒸散量和土壤水渗漏量;ABCD模型中参数a与饱和含水率、残余含水率和曲线形状参数具有较强的线性相关性,与饱和渗透系数呈对数关系;参数b与饱和含水率和曲线形状参数n具有较强的线性相关性,与饱和渗透系数和曲线形状参数α呈对数关系。研究结果可以提高对概念性水文模型变量和参数物理基础的认识,拓展水文模型在水文地质中的应用。

  • 加载中
  • 图 1  研究区地形图

    Figure 1. 

    图 2  SPAC模型和ABCD模型模拟的1961—2012年非冻结期逐月实际蒸散量变化

    Figure 2. 

    图 3  SPAC模型和ABCD模型模拟的1961—2012年非冻结期逐月土壤水储量变化

    Figure 3. 

    图 4  SPAC模型和ABCD模型模拟的1961—2012年非冻结期逐月土壤水渗漏量变化对比

    Figure 4. 

    图 5  参数ab与饱和体积含水率(a,b)、残余体积含水率(c,d)、饱和渗透系数(e,f)、曲线形状参数α(g,h)和n(i,j)的关系

    Figure 5. 

    表 1  壤砂土土壤特征参数值

    Table 1.  Characteristic parameter values of the loamy sand soil

    参数 wr/(cm3·cm−3 ws/(cm3·cm−3 α/cm−1 n Ks /(cm·d−1 l
    数值 0.078 0.41 0.124 2.28 350.2 0.5
    下载: 导出CSV

    表 2  叶面积指数逐月平均值[16]

    Table 2.  Mean monthly leaf area index[16]

    月份 3月 4月 5月 6月 7月
    叶面积指数 0.110 0.122 0.144 0.177 0.211
    月份 8月 9月 10月 11月
    叶面积指数 0.232 0.201 0.154 0.108
    下载: 导出CSV
  • [1]

    韩鹏飞,王旭升,蒋小伟,等. 氢氧同位素在地下水流系统的重分布:从高程效应到深度效应[J]. 水文地质工程地质,2023,50(2):1 − 12. [HAN Pengfei,WANG Xusheng,JIANG Xiaowei,et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology,2023,50(2):1 − 12. (in Chinese with English abstract)

    HAN Pengfei, WANG Xusheng, JIANG Xiaowei, et al. Redistribution of hydrogen and oxygen isotopes in groundwater flow systems: From altitude effect to depth effect[J]. Hydrogeology & Engineering Geology, 2023, 502): 112. (in Chinese with English abstract)

    [2]

    韩鹏飞,王旭升. 利用ABCD模型预测流域水文对极端气候的响应[J]. 人民黄河,2016,38(11):16 − 22. [HAN Pengfei,WANG Xusheng. Forecasting the response of a catchment on extreme climate change with ABCD model[J]. Yellow River,2016,38(11):16 − 22. (in Chinese with English abstract)

    HAN Pengfei, WANG Xusheng. Forecasting the response of a catchment on extreme climate change with ABCD model[J]. Yellow River, 2016, 3811): 1622. (in Chinese with English abstract)

    [3]

    陈坰烽,张万昌. 概念性水文模型遗传算法多目标参数优选研究[J]. 水利水电技术,2007,38(6):5 − 7. [CHEN Jiongfeng,ZHANG Wanchang. Study on optimization of multi-objective parameter of genetic algorithm for conceptual hydrological model[J]. Water Resources and Hydropower Engineering,2007,38(6):5 − 7. (in Chinese with English abstract) doi: 10.13928/j.cnki.wrahe.2007.06.002

    CHEN Jiongfeng, ZHANG Wanchang. Study on optimization of multi-objective parameter of genetic algorithm for conceptual hydrological model[J]. Water Resources and Hydropower Engineering, 2007, 386): 57. (in Chinese with English abstract) doi: 10.13928/j.cnki.wrahe.2007.06.002

    [4]

    葛路,刘登嵩,许月萍,等. 水文模型在不同时间尺度的适用性研究[J]. 科技通报,2022,38(1):13 − 19. [GE Lu,LIU Dengsong,XU Yueping,et al. Study on the applicability of hydrological models to different time scales[J]. Bulletin of Science and Technology,2022,38(1):13 − 19. (in Chinese with English abstract) doi: 10.13774/j.cnki.kjtb.2022.01.003

    GE Lu, LIU Dengsong, XU Yueping, et al. Study on the applicability of hydrological models to different time scales[J]. Bulletin of Science and Technology, 2022, 381): 1319. (in Chinese with English abstract) doi: 10.13774/j.cnki.kjtb.2022.01.003

    [5]

    OCHSNER T E,COSH M H,CUENCA R H,et al. State of the art in large-scale soil moisture monitoring[J]. Soil Science Society of America Journal,2013,77(6):1888 − 1919. doi: 10.2136/sssaj2013.03.0093

    [6]

    ZHUO Lu,HAN Dawei. Could operational hydrological models be made compatible with satellite soil moisture observations?[J]. Hydrological Processes,2016,30(10):1637 − 1648. doi: 10.1002/hyp.10804

    [7]

    ZHUO Lu,HAN Dawei. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling[J]. Journal of Hydrology,2016,535:637 − 651. doi: 10.1016/j.jhydrol.2016.02.033

    [8]

    HAN Pengfei,WANG Xusheng,ISTANBULLUOGLU E. A null-parameter formula of storage-evapotranspiration relationship at catchment scale and its application for a new hydrological model[J]. Journal of Geophysical Research:Atmospheres,2018,123(4):2082 − 2097.

    [9]

    HAN Pengfei,ISTANBULLUOGLU E,WAN Li,et al. A new hydrologic sensitivity framework for unsteady-state responses to climate change and its application to catchments with croplands in Illinois[J]. Water Resources Research,2021,57(8):e2020WR027762.

    [10]

    HAN Pengfei,WANG Xusheng,WAN Li,et al. Croplands decreased stability of streamflow with changing climate:An investigation of catchments in Illinois[J]. Journal of Hydrology,2022,606:127461. doi: 10.1016/j.jhydrol.2022.127461

    [11]

    SANKARASUBRAMANIAN A,VOGEL R M. Annual hydroclimatology of the United States[J]. Water Resources Research,2002,38(6):1 − 12.

    [12]

    ALLEY W M. On the treatment of evapotranspiration,soil moisture accounting,and aquifer recharge in monthly water balance models[J]. Water Resources Research,1984,20(8):1137 − 1149. doi: 10.1029/WR020i008p01137

    [13]

    THOMAS H A. Improved methods for national water assessment[R]. Washington:U. S. Water Resources Council,1981.

    [14]

    MUALEM Y. A new model for predicting the hydraulic conductivity of unsaturated porous media[J]. Water Resources Research,1976,12(3):513 − 522. doi: 10.1029/WR012i003p00513

    [15]

    FEDDES R A,BRESLER E,NEUMAN S P. Field test of a modified numerical model for water uptake by root systems[J]. Water Resources Research,1974,10(6):1199 − 1206. doi: 10.1029/WR010i006p01199

    [16]

    雷磊,王双明,徐晗,等. 鄂尔多斯盆地海流兔河流域叶面积指数的时空变化及其与气象因子的关系[J]. 水土保持通报,2015,35(6):277 − 280. [LEI Lei,WANG Shuangming,XU Han,et al. Temporal and spatial variation of leaf area index and its relation to meteorological factors of Hailiutu River Basin in Ordos’ s basin[J]. Bulletin of Soil and Water Conservation,2015,35(6):277 − 280. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.20150924.001

    LEI Lei, WANG Shuangming, XU Han, et al. Temporal and spatial variation of leaf area index and its relation to meteorological factors of Hailiutu River Basin in Ordos’ s basin[J]. Bulletin of Soil and Water Conservation, 2015, 356): 277280. (in Chinese with English abstract) doi: 10.13961/j.cnki.stbctb.20150924.001

    [17]

    NASH J E,SUTCLIFFE J V. River flow forecasting through conceptual models part I:A discussion of principles[J]. Journal of Hydrology,1970,10(3):282 − 290. doi: 10.1016/0022-1694(70)90255-6

  • 加载中

(5)

(2)

计量
  • 文章访问数:  1123
  • PDF下载数:  54
  • 施引文献:  0
出版历程
收稿日期:  2023-02-18
修回日期:  2023-03-10
刊出日期:  2023-09-15

目录