河床地形起伏变化对地表水-地下水-湿地水交互过程的影响研究

张丽娟, 吴佩鹏, 张盛艳, 张阳. 河床地形起伏变化对地表水-地下水-湿地水交互过程的影响研究[J]. 水文地质工程地质, 2024, 51(1): 22-29. doi: 10.16030/j.cnki.issn.1000-3665.202303004
引用本文: 张丽娟, 吴佩鹏, 张盛艳, 张阳. 河床地形起伏变化对地表水-地下水-湿地水交互过程的影响研究[J]. 水文地质工程地质, 2024, 51(1): 22-29. doi: 10.16030/j.cnki.issn.1000-3665.202303004
ZHANG Lijuan, WU Peipeng, ZHANG Shengyan, ZHANG Yang. Impact of topographic fluctuation of riverbed on surface water-groundwater-wetland water interaction[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 22-29. doi: 10.16030/j.cnki.issn.1000-3665.202303004
Citation: ZHANG Lijuan, WU Peipeng, ZHANG Shengyan, ZHANG Yang. Impact of topographic fluctuation of riverbed on surface water-groundwater-wetland water interaction[J]. Hydrogeology & Engineering Geology, 2024, 51(1): 22-29. doi: 10.16030/j.cnki.issn.1000-3665.202303004

河床地形起伏变化对地表水-地下水-湿地水交互过程的影响研究

  • 基金项目: 国家自然科学基金项目(42102286);河南省自然资源厅2020年度新立项目(2020-7)
详细信息
    作者简介: 张丽娟(1980—),女,硕士,高级工程师,主要从事生态环境、环境地质等方面的研究。E-mail:50554420@qq.com
    通讯作者: 吴佩鹏(1989—),男,博士,副教授,主要从事地下水系统理论与调控研究。E-mail:hydrogeowu@jlu.edu.cn
  • 中图分类号: P641.6

Impact of topographic fluctuation of riverbed on surface water-groundwater-wetland water interaction

More Information
  • 地表水动力条件变化及河床沉积物岩性空间差异造成河床地形在空间上起伏变化是水沙界面压力空间分布的主要影响因素,影响地表水-地下水、地下水-傍河湿地水交互过程。为研究河床地形起伏变化对地表水-地下水-湿地水交互过程的影响机理,在黄河下游开封柳园口设置研究断面,统计分析河床地形起伏变化特征数据,建立半理想化地下水流数值模型,分析地表水-地下水-湿地水相互作用过程。结果表明:(1)与平整河床相比,河流横断面河床地形空间起伏变化可增大地表水-地下水转换量及地下水-湿地水转化量;(2)河床地形空间起伏变化使河床下伏含水层发育不同级次的地下水流系统,改变了地下水流路径及其径流时间,与平整河床地形相比,河流横断面河床地形起伏变化使得河流下伏含水层地下水流路径复杂化,近河床界面的浅部含水层不同位置发育有滞留区,且随着河床地形起伏程度越大,湿地侧河床下伏含水层及湿地附近含水层地下水年龄增大。研究结果可为黄河下游悬河段地表水-地下水-湿地协同保护提供理论依据。

  • 加载中
  • 图 1  研究区位置及水文地质剖面图

    Figure 1. 

    图 2  垂向网格剖分结果

    Figure 2. 

    图 3  河床起伏变化条件下水沙界面压力分布示意图

    Figure 3. 

    图 4  柳园口断面河床地形

    Figure 4. 

    图 5  河床地形起伏变化条件下河床底地下水流线及水头分布特征

    Figure 5. 

    图 6  河床地形起伏变化条件下地下水流路径分布

    Figure 6. 

    图 7  河床地形起伏变化条件下河床底地下水年龄分布特征

    Figure 7. 

    图 8  河床地形起伏条件下地下水年龄分布

    Figure 8. 

    表 1  模拟场景设置

    Table 1.  Simulated Scenarios

    编号模拟场景主要变量河床起伏
    Case 1对照模型河床地形
    Case 2河床地形起伏河床地形
    下载: 导出CSV

    表 2  不同河床起伏变化条件下地表水-地下水-湿地水转化水量

    Table 2.  Exchange flux between surface water-groundwater-wetland in the scenarios with different riverbed topography

    模拟
    场景
    hm/m ω 地表水-地下水转化量
    /(m3·d−1
    地下水-湿地水转化量
    /(m3·d−1
    Case 10055.2525.286
    Case 210.10π55.3525.619
    0.08π56.2726.214
    0.05π55.7525.308
    1.50.05π55.3725.158
    0.555.6325.211
    下载: 导出CSV

    表 3  不同河床起伏特征条件下含水层不同点位地下水年龄统计

    Table 3.  Groundwater age at different locations in the aquifer in different scenarios with different riverbed topography

    hm /m ω 地下水年龄/d hm /m ω 地下水年龄/d
    计算点A 计算点B 计算点C 计算点A 计算点B 计算点C
    0.5 0.05π 12.69 15.74 151.48 1.0 0.10π 11.69 13.55 145.65
    1.0 0.05π 10.27 16.87 149.65 1.0 0.08π 10.55 15.08 147.40
    1.5 0.05π 8.80 17.13 148.86 1.0 0.05π 10.27 16.87 149.65
    下载: 导出CSV
  • [1]

    范伟,章光新,李然然. 湿地地表水—地下水交互作用的研究综述[J]. 地球科学进展,2012,27(4):413 − 423. [FAN Wei,ZHANG Guangxin,LI Ranran. Review of groundwater-surface water interactions in wetland[J]. Advances in Earth Science,2012,27(4):413 − 423. (in Chinese with English abstract)

    FAN Wei, ZHANG Guangxin, LI Ranran. Review of groundwater-surface water interactions in wetland[J]. Advances in Earth Science, 2012, 274): 413423. (in Chinese with English abstract)

    [2]

    CHEN Sheming, LIU Futian, ZHANG Zhuo, et al. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years[J]. China Geology, 2021, 4(3): 455 − 462.

    [3]

    许秀丽,李云良,高博,等. 黄河中游汾河入黄口湿地水源组成与地表地下水转化关系[J]. 湖泊科学,2022,34(1):247 − 261. [XU Xiuli,LI Yunliang,GAO Bo,et al. Composition of water sources and transformation relationship between surface water and groundwater in the Fenhe River estuarine wetland of the middle Yellow River[J]. Journal of Lake Sciences,2022,34(1):247 − 261. (in Chinese with English abstract) doi: 10.18307/2022.0120

    XU Xiuli, LI Yunliang, GAO Bo, et al. Composition of water sources and transformation relationship between surface water and groundwater in the Fenhe River estuarine wetland of the middle Yellow River[J]. Journal of Lake Sciences, 2022, 341): 247261. (in Chinese with English abstract) doi: 10.18307/2022.0120

    [4]

    徐华山,赵同谦,孟红旗,等. 滨河湿地地下水水位变化及其与河水响应关系研究[J]. 环境科学,2011,32(2):362 − 367. [XU Huashan,ZHAO Tongqian,MENG Hongqi,et al. Relationship between groundwater level in riparian wetlands and water level in the river[J]. Environmental Science,2011,32(2):362 − 367. (in Chinese with English abstract)

    XU Huashan, ZHAO Tongqian, MENG Hongqi, et al. Relationship between groundwater level in riparian wetlands and water level in the river[J]. Environmental Science, 2011, 322): 362367. (in Chinese with English abstract)

    [5]

    李云良,姚静,谭志强,等. 洪泛湿地系统地表水与地下水转化研究进展综述[J]. 水文,2019,39(2):14 − 21. [LI Yunliang,YAO Jing,TAN Zhiqiang,et al. Advances in surface water-groundwater interactions in floodplain wetlands[J]. Journal of China Hydrology,2019,39(2):14 − 21. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0852.2019.02.003

    LI Yunliang, YAO Jing, TAN Zhiqiang, et al. Advances in surface water-groundwater interactions in floodplain wetlands[J]. Journal of China Hydrology, 2019, 392): 1421. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-0852.2019.02.003

    [6]

    CROSBIE R S,MCEWAN K L,JOLLY I D,et al. Salinization risk in semi-arid floodplain wetlands subjected to engineered wetting and drying cycles[J]. Hydrological Processes,2009,23(24):3440 − 3452. doi: 10.1002/hyp.7445

    [7]

    曾献奎,卢文喜,王伟卓,等. 地下水与地表水耦合模拟模型研究与展望[J]. 人民黄河,2009,31(11):47 − 49. [ZENG Xiankui,LU Wenxi,WANG Weizhuo,et al. Research and prospect of coupling simulation model of groundwater and surface water[J]. Yellow River,2009,31(11):47 − 49. (in Chinese)

    ZENG Xiankui, LU Wenxi, WANG Weizhuo, et al. Research and prospect of coupling simulation model of groundwater and surface water[J]. Yellow River, 2009, 3111): 4749. (in Chinese)

    [8]

    王国梁,梁修雨. 考虑河床渗透性影响的基流退水过程解析模型[J]. 地质科技通报,2023,42(4):201 − 209. [WANG Guoliang,LIANG Xiuyu. An analytical model for baseflow recession considering riverbank permeability[J]. Bulletin of Geological Science and Technology,2023,42(4):201 − 209. (in Chinese with English abstract)

    WANG Guoliang, LIANG Xiuyu. An analytical model for baseflow recession considering riverbank permeability[J]. Bulletin of Geological Science and Technology, 2023, 424): 201209. (in Chinese with English abstract)

    [9]

    BOANO F,HARVEY J W,MARION A,et al. Hyporheic flow and transport processes:mechanisms,models,and biogeochemical implications[J]. Reviews of Geophysics,2014,52(4):603 − 679. doi: 10.1002/2012RG000417

    [10]

    BOUCHEZ C,COOK P G,PARTINGTON D,et al. Comparison of surface water-groundwater exchange fluxes derived from hydraulic and geochemical methods and a regional groundwater model[J]. Water Resources Research,2021,57(3):e2020WR029137. doi: 10.1029/2020WR029137

    [11]

    CARDENAS M B. Hyporheic zone hydrologic science:A historical account of its emergence and a prospectus[J]. Water Resources Research,2015,51(5):3601 − 3616. doi: 10.1002/2015WR017028

    [12]

    TONINA D,BUFFINGTON J M. Hyporheic exchange in gravel bed rivers with pool-riffle morphology:Laboratory experiments and three-dimensional modeling[J]. Water Resources Research,2007,43(1):W01421.

    [13]

    鲁程鹏,束龙仓,陈洵洪. 河床地形影响潜流交换作用的数值分析[J]. 水科学进展,2012,23(6):789 − 795. [LU Chengpeng,SHU Longcang,CHEN Xunhong. Numerical analysis of the impacts of bedform on hyporheic exchange[J]. Advances in Water Science,2012,23(6):789 − 795. (in Chinese with English abstract)

    LU Chengpeng, SHU Longcang, CHEN Xunhong. Numerical analysis of the impacts of bedform on hyporheic exchange[J]. Advances in Water Science, 2012, 236): 789795. (in Chinese with English abstract)

    [14]

    BEHZADI F,WALLACE C D,WARD D,et al. Bed form-induced hyporheic exchange and geochemical hotspots[J]. Advances in Water Resources,2021,156:104025. doi: 10.1016/j.advwatres.2021.104025

    [15]

    LEE A,AUBENEAU A F,CARDENAS M B. The sensitivity of hyporheic exchange to fractal properties of riverbeds[J]. Water Resources Research,2020,56(5):e2019W − e26560W.

    [16]

    王永久,田海峰,夏浩铭,等. 黄河花园口至柳园口段河道变迁遥感监测[J]. 人民黄河,2020,42(增刊2):61 − 63. [WANG Yongjiu,TIAN Haifeng,XIA Haoming,et al. Remote sensing monitoring of river course change from Huayuankou to Liuyuankou of the Yellow River[J]. Yellow River,2020,42(Sup 2):61 − 63. (in Chinese)

    WANG Yongjiu, TIAN Haifeng, XIA Haoming, et al. Remote sensing monitoring of river course change from Huayuankou to Liuyuankou of the Yellow River[J]. Yellow River, 2020, 42(Sup 2): 61 − 63. (in Chinese)

    [17]

    邵敏,张奇. 分布式水文模型中河流水深及其与地下水相互作用的耦合模拟[J]. 水文地质工程地质,2012,39(2):13 − 18. [SHAO Min,ZHANG Qi. Compled simulation of river water depth and its interactions with groundwater in a spatially distributed hydrological model[J]. Hydrogeology & Engineering Geology,2012,39(2):13 − 18. (in Chinese with English abstract)

    SHAO Min, ZHANG Qi. Compled simulation of river water depth and its interactions with groundwater in a spatially distributed hydrological model[J]. Hydrogeology & Engineering Geology, 2012, 392): 1318. (in Chinese with English abstract)

    [18]

    姜瑞雪,韩冬梅,宋献方,等. 潮白河再生水补给河道对周边浅层地下水影响的数值模拟研究[J]. 水文地质工程地质,2022,49(6):43 − 54. [JIANG Ruixue,HAN Dongmei,SONG Xianfang,et al. Numerical modeling of the impacts of reclaimed water recharge to the Chaobai River channel on the ambient shallow groundwater[J]. Hydrogeology & Engineering Geology,2022,49(6):43 − 54. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202201044

    JIANG Ruixue, HAN Dongmei, SONG Xianfang, et al. Numerical modeling of the impacts of reclaimed water recharge to the Chaobai River channel on the ambient shallow groundwater[J]. Hydrogeology & Engineering Geology, 2022, 496): 4354. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202201044

    [19]

    河南省地质调查院. 黄河下游河南段悬河稳定性评价报告[R]. 郑州:河南省地质调查院,2003. [Henan academy of geology. Stability evaluation of the suspended river in the lower reaches of the Yellow River[R]. Zhengzhou:河南省地质调查院,2003. (in Chinese)

    Henan academy of geology. Stability evaluation of the suspended river in the lower reaches of the Yellow River[R]. Zhengzhou: 河南省地质调查院, 2003. (in Chinese)

    [20]

    吴佩鹏,束龙仓,李福林,等. 层状非均质性影响下河流对地下水的补给过程研究[J]. 水文地质工程地质,2023,50(3):44 − 53. [WU Peipeng,SHU Longcang,LI Fulin,et al. Influence of stratified heterogeneity on the recharge from surface water to groundwater[J]. Hydrogeology & Engineering Geology,2023,50(3):44 − 53. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202208065

    WU Peipeng, SHU Longcang, LI Fulin, et al. Influence of stratified heterogeneity on the recharge from surface water to groundwater[J]. Hydrogeology & Engineering Geology, 2023, 503): 4453. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.202208065

    [21]

    ANDERSON M P,WOESSNER W W,HUNT R J. Applied ground water modeling:Simulation of flow and advective transport[C]//Applied Ground Water Modeling:Simulation of Flow and Advective Transport,2015.

    [22]

    M Fehlman H. Resistance Components and Velocity Distributions of Open Channel Flows Over Bedforms[D]. Colorado State University,1985.

    [23]

    ELLIOTT A H,BROOKS N H. Transfer of nonsorbing solutes to a streambed with bed forms:laboratory experiments[J]. Water Resources Research,1997,33(1):137 − 151. doi: 10.1029/96WR02783

    [24]

    ELLIOTT A H,BROOKS N H. Transfer of nonsorbing solutes to a streambed with bed forms:Theory[J]. Water Resources Research,1997,33(1):123 − 136. doi: 10.1029/96WR02784

    [25]

    KASAHARA T,WONDZELL S. M. Geomorphic controls on hyporheic exchange flow in mountain streams[J]. Water Resources Research,2003,39

    [26]

    CHENG D,SONG J,WANG W,et al. Influences of riverbed morphology on patterns and magnitudes of hyporheic water exchange within a natural river confluence[J]. Journal Of Hydrology,2019,574:75 − 84. doi: 10.1016/j.jhydrol.2019.04.025

    [27]

    MOVAHEDI N,DEHGHANI A A,SCHMIDT C,et al. Hyporheic exchanges due to channel bed and width undulations[J]. Advances In Water Resources,2021,149:103857. doi: 10.1016/j.advwatres.2021.103857

  • 加载中

(8)

(3)

计量
  • 文章访问数:  907
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2023-03-02
修回日期:  2023-05-16
刊出日期:  2024-01-15

目录