Field load test and bearing characteristics analysis of shaped steel piles in sandy soils
-
摘要:
型钢短桩因承载机理不清而制约其在实际工程中的应用,但其又因耗材低、强度高、挤土量少、施工容易且运输便捷等优势被广泛应用于沙漠地区光伏发电工程。为了准确揭示沙漠地区型钢桩水平和竖向承载性能,选取某砂土场地,开展不同型号型钢桩(包括截面形状、截面面积、入土深度)的抗水平载荷试验以及竖向抗压、抗拔载荷试验,分析截面形状、截面尺寸以及桩长等参数对型钢桩承载性能的影响规律。研究结果表明:(1)管桩和H型钢桩的水平承载性能显著优于C型钢桩和槽型钢桩,管桩和H型钢桩相较于C型钢桩和槽型钢桩呈现出高抗风荷载的优势,且H型钢桩的水平承载性能与截面尺寸以及桩长密切相关;(2)管桩和H型钢桩的竖向承载性能同样显著优于C型钢桩与槽型钢桩,且H型钢桩的抗压、抗拔承载性能与截面尺寸和桩长呈正相关关系。当桩长相同时,H型钢桩竖向承载性能与管桩相近;(3)在砂土场地中H型钢桩的承载性能相较于其他桩型(C型钢桩、槽型和管桩)更为突出,且与传统的管桩相比,用材更少,能创造更大的经济价值,是沙漠光伏支架基础的优良桩型选择。该研究成果对实际工程具有借鉴作用。
Abstract:The application of steel short piles in practical engineering is restricted due to its unclear bearing mechanism. However, due to advantages such as low cost, high strength, minimal soil displacement, easy construction, and convenient transportation, these piles are widely used in photovoltaic power projects in desert areas. In order to accurately reveal the horizontal and vertical bearing performance of steel piles in desert regions, horizontal load tests for different types of steel piles (including cross-sectional shape, cross-sectional area, and burial depth) and vertical compression and uplift load tests were conducted in a specific sandy site. The study analyzed the influence of parameters such as cross-sectional shape, cross-sectional size, and pile length on the bearing performance of steel piles. Research findings indicate: (1) The horizontal bearing performance of pipe piles and H-shaped steel piles is signifi-cantly better than that of C-shaped steel piles and trough-shaped steel piles. Compared with C-shaped steel piles and trough-shaped steel piles, pipe piles and H-shaped steel piles exhibit advantages in resisting wind loads, with the horizontal bearing performance of H-shaped steel piles closely related to the cross-sectional size and pile length. (2) The vertical bearing capacity of pipe piles and H-shaped steel piles is also significantly better than that of C-shaped steel piles and trough-shaped steel piles. Moreover, the compressive and tensile bearing performance of H-shaped steel piles is positively correlated with cross-sectional size and pile length. When the length of pile is the same, the vertical bearing capacity of H-shaped steel piles is similar to that of pipe piles. (3) The bearing performance of H-shaped steel piles is more prominent compared to other pile types (C-shaped steel piles, trough-shaped, and pipe piles) in sandy soil area. Furthermore, when compared with traditional pipe piles, H-shaped steel piles requires less materials and can create greater economic value, making them an excellent choice for the foundation of desert photovoltaic bracket foundations. The research results in this paper have reference for engineering applications.
-
Key words:
- desert area /
- photovoltaic support /
- section-steel pile /
- loading test /
- bearing capacity
-
-
表 1 试验场区细砂基础物理力学参数
Table 1. Physical and mechanical parameters of fine sandy foundation in the experimental site area
参数 含水率
/%密度
/(g∙cm−3)比重 孔隙比 压缩系数
/MPa−1黏聚力
/kPa内摩擦角
/(°)取值 5.39 1.80 2.50 0.82 0.25 0 28 表 2 Q355B钢的力学参数
Table 2. Mechanical parameters of Q355B steel
参数 弹性模量/MPa 抗拉强度/MPa 屈服强度/MPa 伸长率/% 取值 206 000 600 355 16 表 3 桩基参数
Table 3. Pile foundation parameters
水平试桩
序号抗拔试桩
序号抗压试桩
序号试桩
桩型截面
尺寸/mm桩长
/m入土
深度/m1# 9# 17# 钢管桩 φ 152×5.5 2.5 1.8 2# 10# 18# H型桩 150×75×5×7 2.5 1.8 3# 11# 19# H型桩 125×60×6×8 2.8 2.1 4# 12# 20# H型桩 125×60×6×8 2.5 1.8 5# 13# 21# H型桩 125×60×6×8 2.2 1.5 6# 14# 22# H型桩 100×45×3×3 2.5 1.8 7# 15# 23# C型桩 100×40×10×3 2.5 1.8 8# 16# 24# 槽型桩 80×43×5×8 2.5 1.8 表 4 仪器设备一览表
Table 4. List of instruments and equipment
设备名称 设备主要参数 加载装置 液压式油泵装置2套 反力装置 5 t混凝土梁3根,钢梁1根 测量装置 位移计4个 应变测量装置 电阻式应变片1 040个,二相电线400 m 应变采集装置 YE2539型高速静态应变测试仪 表 5 1#—8#试桩水平极限荷载
Table 5. 1#—8#Horizontal ultimate load of test pile
试桩编号 1# 2# 3# 4# 5# 6# 7# 8# 水平极限荷载/ kN 13 10 12 10 9 9 4 6 -
[1] 文冬光,张二勇,王贵玲,等. 干热岩勘查开发进展及展望[J]. 水文地质工程地质,2023,50(4):1 − 13. [WEN Dongguang,ZHANG Eryong,WANG Guiling,et al. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology,2023,50(4):1 − 13. (in Chinese with English abstract)]
WEN Dongguang, ZHANG Eryong, WANG Guiling, et al. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 1 − 13. (in Chinese with English abstract)
[2] 孔洋,阮怀宁,黄雪峰,等. 光伏支架抗拔锚固微型桩作用机理研究[J]. 太阳能学报,2020,41(2):262 − 267. [KONG Yang,RUAN Huaining,HUANG Xuefeng,et al. Study on mechanism of action of anti-uplift anchoring micropiles for PV surpport bracket[J]. Acta Energiae Solaris Sinica,2020,41(2):262 − 267. (in Chinese with English abstract)]
KONG Yang, RUAN Huaining, HUANG Xuefeng, et al. Study on mechanism of action of anti-uplift anchoring micropiles for PV surpport bracket[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 262 − 267. (in Chinese with English abstract)
[3] AL-SOUD M S,HRAYSHAT E S. A 50 MW concentrating solar power plant for Jordan[J]. Journal of Cleaner Production,2009,17(6):625 − 635. doi: 10.1016/j.jclepro.2008.11.002
[4] 丁晓勇,许能权,邢皓枫. 沙漠地区光伏支架基础选型与受力分析[J]. 低温建筑技术,2022,44(9):121 − 124. [DING Xiaoyong,XU Nengquan,XING Haofeng. The foundation of photovoltaic support and its mechanics properties in desert area[J]. Low Temperature Architecture Technology,2022,44(9):121 − 124. (in Chinese with English abstract)]
DING Xiaoyong, XU Nengquan, XING Haofeng. The foundation of photovoltaic support and its mechanics properties in desert area[J]. Low Temperature Architecture Technology, 2022, 44(9): 121 − 124. (in Chinese with English abstract)
[5] 明杰,刘志璋,王平. 无地基状态下光伏支架的稳定性测试[J]. 太阳能学报,2012,33(12):2068 − 2073. [MING Jie,LIU Zhizhang,WANG Ping. Exploration of pv bracket without foundation[J]. Acta Energiae Solaris Sinica,2012,33(12):2068 − 2073. (in Chinese with English abstract)]
MING Jie, LIU Zhizhang, WANG Ping. Exploration of pv bracket without foundation[J]. Acta Energiae Solaris Sinica, 2012, 33(12): 2068 − 2073. (in Chinese with English abstract)
[6] WANG Tengfei,LIU Jiankun,ZHAO Huagang,et al. Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region[J]. Journal of Zhejiang University:Science A,2016,17(7):512 − 524. doi: 10.1631/jzus.A1600407
[7] 张海锋,马娜. 光伏支架基础形式介绍及基础设计的探讨[J]. 太阳能,2020(12):66 − 70. [ZHANG Haifeng,MA Na. Introduction of foundation form of pv bracket and discussion of foundation design[J]. Solar Energy,2020(12):66 − 70. (in Chinese with English abstract)]
ZHANG Haifeng, MA Na. Introduction of foundation form of pv bracket and discussion of foundation design[J]. Solar Energy, 2020(12): 66 − 70. (in Chinese with English abstract)
[8] 秦坦. 光伏支架型钢桩受力特性研究[D]. 上海:同济大学,2022. [QIN Tan. Research on mechanical characteristics of photovoltaic support steel piles [D]. Shanghai:Tongji University,2022. (in Chinese with English abstract)]
QIN Tan. Research on mechanical characteristics of photovoltaic support steel piles [D]. Shanghai: Tongji University, 2022. (in Chinese with English abstract)
[9] 卢家骏. 光伏支架型钢桩竖向承载特性研究[D]. 上海:同济大学,2023. [LU Jiajun. The vertical bearing charac-teristics of profiled steel pile for photovoltaic support[D]. Shanghai: Tongji University, 2023. (in Chinese with Eng-lish abstract)]
LU Jiajun. The vertical bearing charac-teristics of profiled steel pile for photovoltaic support[D]. Shanghai: Tongji University, 2023. (in Chinese with Eng-lish abstract)
[10] 马文勇,柴晓兵,马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报,2021,42(11):10 − 18. [MA Wenyong,CHAI Xiaobing,MA Chengcheng. Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta Energiae Solaris Sinica,2021,42(11):10 − 18. (in Chinese with English abstract)]
MA Wenyong, CHAI Xiaobing, MA Chengcheng. Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 10 − 18. (in Chinese with English abstract)
[11] 潘启科,李根森,陈春华,等. 光伏支架刚性桩基础设计方法分析[J]. 武汉大学学报(工学版),2021,54(增刊2):207 − 210. [PAN Qike,LI Gensen,CHEN Chunhua,et al. Analysis on design method of rigid pile foundation of photovoltaic support[J]. Engineering Journal of Wuhan University,2021,54(Sup 2):207 − 210. (in Chinese with English abstract)]
PAN Qike, LI Gensen, CHEN Chunhua, et al. Analysis on design method of rigid pile foundation of photovoltaic support[J]. Engineering Journal of Wuhan University, 2021, 54(Sup 2): 207 − 210. (in Chinese with English abstract)
[12] 唐湘,樊尊龙. 严寒地区季节性冻土影响下光伏支架PHC桩基础设计的研究[J]. 太阳能,2022(3):87 − 91. [TANG Xiang,FAN Zunlong. Study on design of PHC pile foundation of PV bracket under influence of seasonal frozen soil in severe cold area[J]. Solar Energy,2022(3):87 − 91. (in Chinese with English abstract)]
TANG Xiang, FAN Zunlong. Study on design of PHC pile foundation of PV bracket under influence of seasonal frozen soil in severe cold area[J]. Solar Energy, 2022(3): 87 − 91. (in Chinese with English abstract)
[13] 明小燕,奚泉,周毅. 锚杆灌注桩基础在山地光伏电站光伏支架基础中的应用研究[J]. 太阳能,2021(1):73 − 77. [MING Xiaoyan,XI Quan,ZHOU Yi. Research on application of anchor rod cast-in-place pile foundation in pv bracket foundation of mountain PV power station[J]. Solar Energy,2021(1):73 − 77. (in Chinese with English abstract)]
MING Xiaoyan, XI Quan, ZHOU Yi. Research on application of anchor rod cast-in-place pile foundation in pv bracket foundation of mountain PV power station[J]. Solar Energy, 2021(1): 73 − 77. (in Chinese with English abstract)
[14] LI Wenwen,STUEDLEIN A W,CHEN Yumin,et al. Response of pile groups with X and circular cross-sections subject to lateral spreading:3D numerical simulations[J]. Soil Dynamics and Earthquake Engineering,2019,126:105774. doi: 10.1016/j.soildyn.2019.105774
[15] LV Yaru,ZHANG Dongdong,RONG Xiaoli,et al. Mechanism of downdrag for floating H-pile subjected to surcharge[J]. Soil Mechanics and Foundation Engineering,2017,54(2):110 − 116. doi: 10.1007/s11204-017-9442-8
[16] SHI Cheng,KARAGAH H,DAWOOD M,et al. Numerical investigation of H-shaped short steel piles with localized severe corrosion[J]. Engineering Structures,2014,73:114 − 124. doi: 10.1016/j.engstruct.2014.04.048
[17] XIAO Y,CHEN L. Behavior of model steel H-pile-to-pile-cap connections[J]. Journal of Constructional Steel Research,2013,80:153 − 162. doi: 10.1016/j.jcsr.2012.09.008
[18] ARTHUR K O,CHARLES W W,et al. Performance of long-driven H-piles in granitic saprolite[J]. Journal of Geotechnical & Geoenvironmental Engineering,2009,135(2):246 − 258.
[19] YANG J,THAM L G,LEE P K,et al. Observed performance of long steel H-piles jacked into sandy soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(1):24 − 35. doi: 10.1061/(ASCE)1090-0241(2006)132:1(24)
[20] 杨仲轩,黄中原,郭望波,等. 砂性土打入桩竖向承载力计算方法评价[J]. 太原理工大学学报,2022,53(4):766 − 771. [YANG Zhongxuan,HUANG Zhongyuan,GUO Wangbo,et al. Database assessment of design methods for axial bearing capacity of driven piles in sand[J]. Journal of Taiyuan University of Technology,2022,53(4):766 − 771. (in Chinese with English abstract)]
YANG Zhongxuan, HUANG Zhongyuan, GUO Wangbo, et al. Database assessment of design methods for axial bearing capacity of driven piles in sand[J]. Journal of Taiyuan University of Technology, 2022, 53(4): 766 − 771. (in Chinese with English abstract)
[21] 叶观宝,秦粮凯,张振,等. 循环荷载下水泥土桩复合体动力参数试验研究[J]. 水文地质工程地质,2022,49(1):48 − 56. [YE Guanbao,QIN Liangkai,ZHANG Zhen,et al. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology,2022,49(1):48 − 56. (in Chinese with English abstract)]
YE Guanbao, QIN Liangkai, ZHANG Zhen, et al. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 48 − 56. (in Chinese with English abstract)
[22] 张玲,陈金海,欧强. 基于能量法的轴横向荷载作用下单桩受力变形分析[J]. 水文地质工程地质,2020,47(5):81 − 91. [ZHANG Ling,CHEN Jinhai,OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology,2020,47(5):81 − 91. (in Chinese with English abstract)]
ZHANG Ling, CHEN Jinhai, OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 81 − 91. (in Chinese with English abstract)
[23] 中华人民共和国住房和城乡建设部. 《建筑基桩检测技术规范》:JGJ 106—2014[S]. 北京:中国建筑工业出版社2014. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for testing of building foundation piles:JGJ 106—2014[S]. Beijing:China Construction Industry Press,2014. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for testing of building foundation piles: JGJ 106—2014[S]. Beijing: China Construction Industry Press, 2014. (in Chinese)
[24] 中华人民共和国住房和城乡建设部. 《建筑桩基技术规范》:JGJ 94—2008[S]. 北京:中国建筑工业出版社2008. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for building pile foundations:JGJ 94—2008 [S]. Beijing:China Construction Industry Press,2014. (in Chinese)]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for building pile foundations: JGJ 94—2008 [S]. Beijing: China Construction Industry Press, 2014. (in Chinese)
-