砂土场地型钢桩现场载荷试验及其承载特性分析

丁晓勇, 许能权, 邢皓枫. 砂土场地型钢桩现场载荷试验及其承载特性分析[J]. 水文地质工程地质, 2024, 51(3): 69-79. doi: 10.16030/j.cnki.issn.1000-3665.202303037
引用本文: 丁晓勇, 许能权, 邢皓枫. 砂土场地型钢桩现场载荷试验及其承载特性分析[J]. 水文地质工程地质, 2024, 51(3): 69-79. doi: 10.16030/j.cnki.issn.1000-3665.202303037
DING Xiaoyong, XU Nengquan, XING Haofeng. Field load test and bearing characteristics analysis of shaped steel piles in sandy soils[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 69-79. doi: 10.16030/j.cnki.issn.1000-3665.202303037
Citation: DING Xiaoyong, XU Nengquan, XING Haofeng. Field load test and bearing characteristics analysis of shaped steel piles in sandy soils[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 69-79. doi: 10.16030/j.cnki.issn.1000-3665.202303037

砂土场地型钢桩现场载荷试验及其承载特性分析

详细信息
    作者简介: 丁晓勇(1984—),男,硕士,高级工程师,主要从事电力岩土工程研究。E-mail:dingxy4@shanghai-electric.com
    通讯作者: 邢皓枫(1969—),男,博士,教授,主要从事地基处理和桩基工程等研究。E-mail:hfxing@tognji.edu.cn
  • 中图分类号: TU473.1

Field load test and bearing characteristics analysis of shaped steel piles in sandy soils

More Information
  • 型钢短桩因承载机理不清而制约其在实际工程中的应用,但其又因耗材低、强度高、挤土量少、施工容易且运输便捷等优势被广泛应用于沙漠地区光伏发电工程。为了准确揭示沙漠地区型钢桩水平和竖向承载性能,选取某砂土场地,开展不同型号型钢桩(包括截面形状、截面面积、入土深度)的抗水平载荷试验以及竖向抗压、抗拔载荷试验,分析截面形状、截面尺寸以及桩长等参数对型钢桩承载性能的影响规律。研究结果表明:(1)管桩和H型钢桩的水平承载性能显著优于C型钢桩和槽型钢桩,管桩和H型钢桩相较于C型钢桩和槽型钢桩呈现出高抗风荷载的优势,且H型钢桩的水平承载性能与截面尺寸以及桩长密切相关;(2)管桩和H型钢桩的竖向承载性能同样显著优于C型钢桩与槽型钢桩,且H型钢桩的抗压、抗拔承载性能与截面尺寸和桩长呈正相关关系。当桩长相同时,H型钢桩竖向承载性能与管桩相近;(3)在砂土场地中H型钢桩的承载性能相较于其他桩型(C型钢桩、槽型和管桩)更为突出,且与传统的管桩相比,用材更少,能创造更大的经济价值,是沙漠光伏支架基础的优良桩型选择。该研究成果对实际工程具有借鉴作用。

  • 加载中
  • 图 1  砂土颗粒级配曲线

    Figure 1. 

    图 2  桩基平面布置图

    Figure 2. 

    图 3  型钢桩截面形状示意图

    Figure 3. 

    图 4  试桩桩身应变片布置情况图

    Figure 4. 

    图 5  型钢桩现场静载荷试验图

    Figure 5. 

    图 6  H-T-Y关系曲线图

    Figure 6. 

    图 7  水平极限荷载作用下型钢桩挠度、弯矩曲线图

    Figure 7. 

    图 8  竖向抗压静载试验型钢桩Q-S曲线图

    Figure 8. 

    图 9  竖向抗压静载试验型钢桩桩身轴力分布曲线

    Figure 9. 

    图 10  竖向抗压静载试验型钢桩桩身侧摩阻力分布曲线

    Figure 10. 

    图 11  竖向抗拔静载试验型钢桩Q-S曲线

    Figure 11. 

    图 12  竖向抗拔静载试验型钢桩桩身轴力分布曲线

    Figure 12. 

    图 13  竖向抗拔静载试验型钢桩桩身侧摩阻力分布曲线

    Figure 13. 

    表 1  试验场区细砂基础物理力学参数

    Table 1.  Physical and mechanical parameters of fine sandy foundation in the experimental site area

    参数含水率
    /%
    密度
    /(g∙cm−3
    比重孔隙比压缩系数
    /MPa−1
    黏聚力
    /kPa
    内摩擦角
    /(°)
    取值5.391.802.500.820.25028
    下载: 导出CSV

    表 2  Q355B钢的力学参数

    Table 2.  Mechanical parameters of Q355B steel

    参数 弹性模量/MPa 抗拉强度/MPa 屈服强度/MPa 伸长率/%
    取值 206 000 600 355 16
    下载: 导出CSV

    表 3  桩基参数

    Table 3.  Pile foundation parameters

    水平试桩
    序号
    抗拔试桩
    序号
    抗压试桩
    序号
    试桩
    桩型
    截面
    尺寸/mm
    桩长
    /m
    入土
    深度/m
    1# 9# 17# 钢管桩 φ 152×5.5 2.5 1.8
    2# 10# 18# H型桩 150×75×5×7 2.5 1.8
    3# 11# 19# H型桩 125×60×6×8 2.8 2.1
    4# 12# 20# H型桩 125×60×6×8 2.5 1.8
    5# 13# 21# H型桩 125×60×6×8 2.2 1.5
    6# 14# 22# H型桩 100×45×3×3 2.5 1.8
    7# 15# 23# C型桩 100×40×10×3 2.5 1.8
    8# 16# 24# 槽型桩 80×43×5×8 2.5 1.8
    下载: 导出CSV

    表 4  仪器设备一览表

    Table 4.  List of instruments and equipment

    设备名称设备主要参数
    加载装置液压式油泵装置2套
    反力装置5 t混凝土梁3根,钢梁1根
    测量装置位移计4个
    应变测量装置电阻式应变片1 040个,二相电线400 m
    应变采集装置YE2539型高速静态应变测试仪
    下载: 导出CSV

    表 5  1#—8#试桩水平极限荷载

    Table 5.  1#—8#Horizontal ultimate load of test pile

    试桩编号 1# 2# 3# 4# 5# 6# 7# 8#
    水平极限荷载/ kN 13 10 12 10 9 9 4 6
    下载: 导出CSV
  • [1]

    文冬光,张二勇,王贵玲,等. 干热岩勘查开发进展及展望[J]. 水文地质工程地质,2023,50(4):1 − 13. [WEN Dongguang,ZHANG Eryong,WANG Guiling,et al. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology,2023,50(4):1 − 13. (in Chinese with English abstract)]

    WEN Dongguang, ZHANG Eryong, WANG Guiling, et al. Progress and prospect of hot dry rock exploration and development[J]. Hydrogeology & Engineering Geology, 2023, 50(4): 1 − 13. (in Chinese with English abstract)

    [2]

    孔洋,阮怀宁,黄雪峰,等. 光伏支架抗拔锚固微型桩作用机理研究[J]. 太阳能学报,2020,41(2):262 − 267. [KONG Yang,RUAN Huaining,HUANG Xuefeng,et al. Study on mechanism of action of anti-uplift anchoring micropiles for PV surpport bracket[J]. Acta Energiae Solaris Sinica,2020,41(2):262 − 267. (in Chinese with English abstract)]

    KONG Yang, RUAN Huaining, HUANG Xuefeng, et al. Study on mechanism of action of anti-uplift anchoring micropiles for PV surpport bracket[J]. Acta Energiae Solaris Sinica, 2020, 41(2): 262 − 267. (in Chinese with English abstract)

    [3]

    AL-SOUD M S,HRAYSHAT E S. A 50 MW concentrating solar power plant for Jordan[J]. Journal of Cleaner Production,2009,17(6):625 − 635. doi: 10.1016/j.jclepro.2008.11.002

    [4]

    丁晓勇,许能权,邢皓枫. 沙漠地区光伏支架基础选型与受力分析[J]. 低温建筑技术,2022,44(9):121 − 124. [DING Xiaoyong,XU Nengquan,XING Haofeng. The foundation of photovoltaic support and its mechanics properties in desert area[J]. Low Temperature Architecture Technology,2022,44(9):121 − 124. (in Chinese with English abstract)]

    DING Xiaoyong, XU Nengquan, XING Haofeng. The foundation of photovoltaic support and its mechanics properties in desert area[J]. Low Temperature Architecture Technology, 2022, 44(9): 121 − 124. (in Chinese with English abstract)

    [5]

    明杰,刘志璋,王平. 无地基状态下光伏支架的稳定性测试[J]. 太阳能学报,2012,33(12):2068 − 2073. [MING Jie,LIU Zhizhang,WANG Ping. Exploration of pv bracket without foundation[J]. Acta Energiae Solaris Sinica,2012,33(12):2068 − 2073. (in Chinese with English abstract)]

    MING Jie, LIU Zhizhang, WANG Ping. Exploration of pv bracket without foundation[J]. Acta Energiae Solaris Sinica, 2012, 33(12): 2068 − 2073. (in Chinese with English abstract)

    [6]

    WANG Tengfei,LIU Jiankun,ZHAO Huagang,et al. Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region[J]. Journal of Zhejiang University:Science A,2016,17(7):512 − 524. doi: 10.1631/jzus.A1600407

    [7]

    张海锋,马娜. 光伏支架基础形式介绍及基础设计的探讨[J]. 太阳能,2020(12):66 − 70. [ZHANG Haifeng,MA Na. Introduction of foundation form of pv bracket and discussion of foundation design[J]. Solar Energy,2020(12):66 − 70. (in Chinese with English abstract)]

    ZHANG Haifeng, MA Na. Introduction of foundation form of pv bracket and discussion of foundation design[J]. Solar Energy, 2020(12): 66 − 70. (in Chinese with English abstract)

    [8]

    秦坦. 光伏支架型钢桩受力特性研究[D]. 上海:同济大学,2022. [QIN Tan. Research on mechanical characteristics of photovoltaic support steel piles [D]. Shanghai:Tongji University,2022. (in Chinese with English abstract)]

    QIN Tan. Research on mechanical characteristics of photovoltaic support steel piles [D]. Shanghai: Tongji University, 2022. (in Chinese with English abstract)

    [9]

    卢家骏. 光伏支架型钢桩竖向承载特性研究[D]. 上海:同济大学,2023. [LU Jiajun. The vertical bearing charac-teristics of profiled steel pile for photovoltaic support[D]. Shanghai: Tongji University, 2023. (in Chinese with Eng-lish abstract)]

    LU Jiajun. The vertical bearing charac-teristics of profiled steel pile for photovoltaic support[D]. Shanghai: Tongji University, 2023. (in Chinese with Eng-lish abstract)

    [10]

    马文勇,柴晓兵,马成成. 柔性支撑光伏组件风荷载影响因素试验研究[J]. 太阳能学报,2021,42(11):10 − 18. [MA Wenyong,CHAI Xiaobing,MA Chengcheng. Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta Energiae Solaris Sinica,2021,42(11):10 − 18. (in Chinese with English abstract)]

    MA Wenyong, CHAI Xiaobing, MA Chengcheng. Experimental study on wind load influencing factors of flexible support photovoltaic modules[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 10 − 18. (in Chinese with English abstract)

    [11]

    潘启科,李根森,陈春华,等. 光伏支架刚性桩基础设计方法分析[J]. 武汉大学学报(工学版),2021,54(增刊2):207 − 210. [PAN Qike,LI Gensen,CHEN Chunhua,et al. Analysis on design method of rigid pile foundation of photovoltaic support[J]. Engineering Journal of Wuhan University,2021,54(Sup 2):207 − 210. (in Chinese with English abstract)]

    PAN Qike, LI Gensen, CHEN Chunhua, et al. Analysis on design method of rigid pile foundation of photovoltaic support[J]. Engineering Journal of Wuhan University, 2021, 54(Sup 2): 207 − 210. (in Chinese with English abstract)

    [12]

    唐湘,樊尊龙. 严寒地区季节性冻土影响下光伏支架PHC桩基础设计的研究[J]. 太阳能,2022(3):87 − 91. [TANG Xiang,FAN Zunlong. Study on design of PHC pile foundation of PV bracket under influence of seasonal frozen soil in severe cold area[J]. Solar Energy,2022(3):87 − 91. (in Chinese with English abstract)]

    TANG Xiang, FAN Zunlong. Study on design of PHC pile foundation of PV bracket under influence of seasonal frozen soil in severe cold area[J]. Solar Energy, 2022(3): 87 − 91. (in Chinese with English abstract)

    [13]

    明小燕,奚泉,周毅. 锚杆灌注桩基础在山地光伏电站光伏支架基础中的应用研究[J]. 太阳能,2021(1):73 − 77. [MING Xiaoyan,XI Quan,ZHOU Yi. Research on application of anchor rod cast-in-place pile foundation in pv bracket foundation of mountain PV power station[J]. Solar Energy,2021(1):73 − 77. (in Chinese with English abstract)]

    MING Xiaoyan, XI Quan, ZHOU Yi. Research on application of anchor rod cast-in-place pile foundation in pv bracket foundation of mountain PV power station[J]. Solar Energy, 2021(1): 73 − 77. (in Chinese with English abstract)

    [14]

    LI Wenwen,STUEDLEIN A W,CHEN Yumin,et al. Response of pile groups with X and circular cross-sections subject to lateral spreading:3D numerical simulations[J]. Soil Dynamics and Earthquake Engineering,2019,126:105774. doi: 10.1016/j.soildyn.2019.105774

    [15]

    LV Yaru,ZHANG Dongdong,RONG Xiaoli,et al. Mechanism of downdrag for floating H-pile subjected to surcharge[J]. Soil Mechanics and Foundation Engineering,2017,54(2):110 − 116. doi: 10.1007/s11204-017-9442-8

    [16]

    SHI Cheng,KARAGAH H,DAWOOD M,et al. Numerical investigation of H-shaped short steel piles with localized severe corrosion[J]. Engineering Structures,2014,73:114 − 124. doi: 10.1016/j.engstruct.2014.04.048

    [17]

    XIAO Y,CHEN L. Behavior of model steel H-pile-to-pile-cap connections[J]. Journal of Constructional Steel Research,2013,80:153 − 162. doi: 10.1016/j.jcsr.2012.09.008

    [18]

    ARTHUR K O,CHARLES W W,et al. Performance of long-driven H-piles in granitic saprolite[J]. Journal of Geotechnical & Geoenvironmental Engineering,2009,135(2):246 − 258.

    [19]

    YANG J,THAM L G,LEE P K,et al. Observed performance of long steel H-piles jacked into sandy soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(1):24 − 35. doi: 10.1061/(ASCE)1090-0241(2006)132:1(24)

    [20]

    杨仲轩,黄中原,郭望波,等. 砂性土打入桩竖向承载力计算方法评价[J]. 太原理工大学学报,2022,53(4):766 − 771. [YANG Zhongxuan,HUANG Zhongyuan,GUO Wangbo,et al. Database assessment of design methods for axial bearing capacity of driven piles in sand[J]. Journal of Taiyuan University of Technology,2022,53(4):766 − 771. (in Chinese with English abstract)]

    YANG Zhongxuan, HUANG Zhongyuan, GUO Wangbo, et al. Database assessment of design methods for axial bearing capacity of driven piles in sand[J]. Journal of Taiyuan University of Technology, 2022, 53(4): 766 − 771. (in Chinese with English abstract)

    [21]

    叶观宝,秦粮凯,张振,等. 循环荷载下水泥土桩复合体动力参数试验研究[J]. 水文地质工程地质,2022,49(1):48 − 56. [YE Guanbao,QIN Liangkai,ZHANG Zhen,et al. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology,2022,49(1):48 − 56. (in Chinese with English abstract)]

    YE Guanbao, QIN Liangkai, ZHANG Zhen, et al. An experimental study of dynamic parameters of unit cell of deep mixed column-reinforced soft clay under dynamic loading[J]. Hydrogeology & Engineering Geology, 2022, 49(1): 48 − 56. (in Chinese with English abstract)

    [22]

    张玲,陈金海,欧强. 基于能量法的轴横向荷载作用下单桩受力变形分析[J]. 水文地质工程地质,2020,47(5):81 − 91. [ZHANG Ling,CHEN Jinhai,OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology,2020,47(5):81 − 91. (in Chinese with English abstract)]

    ZHANG Ling, CHEN Jinhai, OU Qiang. Deformation analysis of pile under combined axial and lateral loads by using the energy method[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 81 − 91. (in Chinese with English abstract)

    [23]

    中华人民共和国住房和城乡建设部. 《建筑基桩检测技术规范》:JGJ 106—2014[S]. 北京:中国建筑工业出版社2014. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for testing of building foundation piles:JGJ 106—2014[S]. Beijing:China Construction Industry Press,2014. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for testing of building foundation piles: JGJ 106—2014[S]. Beijing: China Construction Industry Press, 2014. (in Chinese)

    [24]

    中华人民共和国住房和城乡建设部. 《建筑桩基技术规范》:JGJ 94—2008[S]. 北京:中国建筑工业出版社2008. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for building pile foundations:JGJ 94—2008 [S]. Beijing:China Construction Industry Press,2014. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical specification for building pile foundations: JGJ 94—2008 [S]. Beijing: China Construction Industry Press, 2014. (in Chinese)

  • 加载中

(13)

(5)

计量
  • 文章访问数:  377
  • PDF下载数:  26
  • 施引文献:  0
出版历程
收稿日期:  2023-03-16
修回日期:  2023-07-13
刊出日期:  2024-05-15

目录