Analysis of the influence of dimensional unity in landslide susceptibility assessment
-
摘要:
以往的区域性滑坡易发性评价研究多以对比不同评价模型结果和改进模型为主,而忽视了所选致灾因子的信息保留以及因子量纲如何统一的问题。为探究致灾因子的相关性和量纲对易发性评价结果的影响,以甘肃省靖远县北部地区作为研究区,选取高程、坡度、坡向和地形起伏度等12个因子,利用主成分分析提取的新因子参与易发性评价,并采用数据标准化、滑坡密度和信息量值替代法统一致灾因子的量纲,最后基于GIS平台绘制研究区滑坡易发性分区图。通过ROC曲线评估各模型的易发性评价结果精度。结果表明:在信息量模型、逻辑回归模型和感知机模型中,经主成分分析处理的因子得到的模型评价结果精度更高,采用信息量值替代法统一因子的量纲能够进一步提升逻辑回归和感知机模型的评价结果精度;同时,3种评价模型中感知机模型的结果精度最高(AUC = 0.936 7),优于信息量模型(AUC = 0.917 3)和逻辑回归模型(AUC = 0.927 2),是该研究区滑坡易发性评价的理想模型,应优先考虑。研究结果可为类似地区的防灾减灾工作提供基础数据和理论参考。
Abstract:Previous studies on the susceptibility assessment of regional landslides mainly focused on comparing and improving the results of different evaluation models, while neglected the preservation of information on selected disaster-causing factors and the issue of how to unify factor dimensions. To explore the correlation and dimensionality of disaster causing-factors and their impact on susceptibility assessment, this study selected 12 factors such as elevation, slope, aspect, and terrain undulation, and used new factors extracted from principal component analysis in susceptibility assessment in the northern Jingyuan County. Data standardization, landslide density, and information quantity substitution methods were used to unify the dimensionality of disaster-causing factors. The landslide susceptibility zoning map was drawn based on the GIS platform in the study area. The accuracy of the susceptibility assessment of each mode was evaluated by the receiver operating characteristic curve. The results show that among the information model, the logistic regression model, and the perceptron model, the accuracy of the model evaluation obtained by the factors processed by principal component analysis is the highest. Using the information value substitution method to unify the dimensions of factors can further improve the accuracy of the evaluation of the logistic regression model and the perceptron model. The perceptron model has the highest accuracy (AUC=0.936 7), which is superior to the information model (AUC=0.917 3) and the logistic regression model (AUC=0.927 2). This is an ideal model for the landslide susceptibility assessment in the study area and should be given priority. The results can provide the basic theoretical information for disaster prevention and mitigation in similar areas.
-
-
表 1 各致灾因子的信息量值
Table 1. Information value of each disaster-causing factor
致灾因子 类别 信息量值 致灾因子 类别 信息量值 高程/m [1 280, 1 560] 1.469 年均降雨量/(mm·a−1) [106, 135] 0.473 (1 560, 1 800] −0.410 (135, 150] 0.213 (1 800, 2 020] −0.396 (150, 165] −0.224 (2 020, 2 330] 0.060 (165, 180] 0.311 (2 330, 3 010] −2.167 (180, 223] −2.520 坡度/(°) [0, 9] −2.063 距河流距离/m 200 2.198 (9, 17] −0.369 400 0.091 (17, 25] 0.897 800 0.757 (25, 33] 1.555 1 600 −0.733 (33, 63] 1.332 3 200 −0.282 坡向 平地 −2.126 土地类型 农田 −0.120 北 −0.601 建筑用地 0.349 东北 0.132 果园 0.054 东 0.869 旱地 −0.688 东南 0.544 草地 0.152 南 −0.371 乔木林地 −0.799 西南 −0.029 水体 −1.658 西 0.195 裸土地 2.142 西北 −0.167 灌木丛 −0.570 地形起伏度 [0, 13.4] −2.043 径流强度指数(SPI) [−13.8, −9.3] −3.545 (13.4, 22.5] 0.182 (−9.3, −5.8] −0.117 (22.5, 31.6] 1.153 (−5.8, −1.8] −2.476 (31.6, 43.5] 1.576 (−1.8, 1.8] 0.569 (43.5, 137.6] 0.913 (1.8, 12.0] −0.071 距沟谷距离/m 50 2.476 距公路距离/m 100 2.800 100 3.345 200 2.396 200 3.003 400 0.943 400 1.123 600 −0.601 800 −1.288 800 −0.465 1 600 −1.223 1 000 −1.332 >1 600 −2.007 >1 000 −0.811 地形粗糙度 [1, 1.05] −1.219 $ {{F}}_{{1}} $ [−4.65, −1.50] −2.452 (1.05, 1.10] 0.935 (−1.50, −0.72] −1.451 (1.10, 1.25] 1.458 (−0.72, 0.60] 0.136 (1.25, 1.35] 1.592 (0.60, 2.24] 1.506 (1.35, 2.22] 1.345 (2.24, 12.09] 1.732 地形湿度指数(TWI) [2.6, 4.5] 0.941 $ {{F}}_{{2}} $ [−3.90, −1.00] −0.305 (4.5, 5.7] 0.701 (−1.00, 0.00] 0.200 (5.7, 7.5] −0.327 (0.00, 1.30] −0.135 (7.5, 10.4] −1.370 (1.30, 2.80] 0.579 (10.4, 26.8] −1.693 (2.80, 7.43] −3.332 表 2 致灾因子的皮尔逊相关系数
Table 2. Pearson correlation coefficient of disaster-causing factors
影响因子 坡向 土地类型 距公路距离 距河流距离 距山沟距离 年均降雨量 地形粗糙度 地形起伏度 TWI 高程 坡度 SPI 坡向 1.00 土地类型 0.13 1.00 距公路距离 0.03 0.20 1.00 距河流距离 −0.08 −0.07 0.10 1.00 距沟谷距离 −0.07 −0.13 0.20 0.01 1.00 年均降雨量 −0.02 0.19 0.18 0.19 −0.02 1.00 地形粗糙度 0.16 0.24 0.11 −0.09 −0.02 0.03 1.00 地形起伏度 0.26 0.35 0.15 −0.08 −0.07 0.04 0.91 1.00 TWI −0.33 −0.32 −0.13 0.04 0.05 −0.01 −0.49 −0.65 1.00 高程 0.01 0.22 0.20 0.46 0.07 0.73 0.21 0.24 −0.17 1.00 坡度 0.26 0.35 0.15 −0.08 −0.07 0.05 0.91 0.98 −0.68 0.24 1.00 SPI 0.10 0.02 −0.02 −0.01 −0.06 0.03 0.19 0.21 0.23 0.03 0.22 1.00 表 3 特征值及方差
Table 3. Characteristic values and variances
主成分 初始特征值 提取载荷平方和 总计 方差百分比 累积/% 总计 方差百分比 累积/% F1 3.787 63.117 63.117 3.787 63.117 63.117 F2 1.490 24.836 87.953 1.490 24.836 87.953 F3 0.428 7.130 95.083 F4 0.226 3.763 98.846 F5 0.059 0.982 99.828 F6 0.010 0.172 100.000 表 4 成分系数
Table 4. Composition coefficient values
标准化因子 主成分 $ {F}_{1} $ $ {F}_{2} $ $ {Z}_{1} $ 0.911 0.167 $ {Z}_{2} $ 0.964 0.214 $ {Z}_{3} $ −0.792 −0.270 $ {Z}_{4} $ 0.964 0.219 $ {Z}_{5} $ −0.473 0.812 $ {Z}_{6} $ −0.500 0.797 表 5 各逻辑回归模型的AUC值
Table 5. AUC values for each logistic regression model
消除因子相关方法 标准化数据 滑坡密度 信息量值 剔除相关因子 0.898 2 0.920 1 0.926 2 PCA降维 0.898 2 0.925 3 0.927 2 表 6 各感知机模型的AUC值
Table 6. AUC values for each perceptron model
消除因子相关方法 标准化数据 滑坡密度 信息量值 剔除相关因子 0.920 8 0.505 1 0.933 0 PCA降维 0.930 8 0.820 3 0.936 7 表 7 各模型的滑坡易发性分区的统计结果
Table 7. Statistical results of landslide susceptibility zoning for each model
模型 易发性分区 滑坡面积/m2 分区面积/m2 滑坡面积密度/10−5 分区百分比/% 分区滑坡百分比/% 信息量值 信息量模型 非易发区 2 571 547 969 365 0.47 21.41 0.28 −6.26 低易发区 39 502 815 045 498 4.85 31.85 4.30 −2.89 中易发区 147 158 959 176 506 15.34 37.48 16.02 −1.23 高易发区 729 606 236 878 631 308.01 9.26 79.40 3.10 逻辑回归模型 非易发区 24 537 1 462 113 826 1.68 57.13 2.67 −4.42 低易发区 72 297 636 718 143 11.35 24.88 7.87 −1.66 中易发区 115 994 237 569 020 48.83 9.28 12.62 0.44 高易发区 706 009 222 669 011 17.07 8.71 76.84 3.14 感知机模型 非易发区 18 888 1 766 670 263 1.07 69.04 2.06 −5.07 低易发区 57 285 366 837 348 15.62 14.33 6.23 −1.20 中易发区 86 797 183 517 408 47.30 7.17 9.45 0.40 高易发区 755 867 242 044 981 312.28 9.46 82.26 3.12 -
[1] 孙长明,马润勇,尚合欣,等. 基于滑坡分类的西宁市滑坡易发性评价[J]. 水文地质工程地质,2020,47(3):173 − 181. [SUN Changming,MA Runyong,SHANG Hexin,et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology,2020,47(3):173 − 181. (in Chinese with English abstract)] doi: 10.16030/j.cnki.issn.1000-3665.201906074
SUN Changming, MA Runyong, SHANG Hexin, et al. Landslide susceptibility assessment in Xining based on landslide classification[J]. Hydrogeology & Engineering Geology, 2020, 47(3): 173 − 181. (in Chinese with English abstract) doi: 10.16030/j.cnki.issn.1000-3665.201906074
[2] 范善智,李国玉,穆彦虎,等. 中俄原油管道漠河至大庆线典型区域热融灾害评价研究[J]. 防灾减灾工程学报,2017,37(3):456 − 461. [FAN Shanzhi,LI Guoyu,MU Yanhu,et al. Study on thermal hazards assessment at a typical site along the Mohe—Daqing section of china-russia crude oil pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering,2017,37(3):456 − 461. (in Chinese with English abstract)] doi: 10.13409/j.cnki.jdpme.2017.03.018
FAN Shanzhi, LI Guoyu, MU Yanhu, et al. Study on thermal hazards assessment at a typical site along the Mohe—Daqing section of china-russia crude oil pipeline[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37(3): 456 − 461. (in Chinese with English abstract) doi: 10.13409/j.cnki.jdpme.2017.03.018
[3] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304 − 2316. [TIAN Naiman,LAN Hengxing,WU Yuming,et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science,2020,22(12):2304 − 2316. (in Chinese with English abstract)] doi: 10.12082/dqxxkx.2020.190766
TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-Information Science, 2020, 22(12): 2304 − 2316. (in Chinese with English abstract) doi: 10.12082/dqxxkx.2020.190766
[4] 杨灿, 刘磊磊, 张遗立, 等. 基于贝叶斯优化机器学习超参数的滑坡易发性评价[J]. 地质科技通报,2022,41(2):228 − 238. [YANG Can, LIU Leilei, ZHANG Yili, et al. Machine learning based on landslide susceptibility assessment with Bayesian optimized the hyperparameters[J]. Bulletin of Geological Science and Technology,2022,41(2):228 − 238.(in Chinese with English abstract)]
YANG Can, LIU Leilei, ZHANG Yili, et al. Machine learning based on landslide susceptibility assessment with Bayesian optimized the hyperparameters[J]. Bulletin of Geological Science and Technology, 2022, 41(2): 228 − 238.(in Chinese with English abstract)
[5] YOUSSEF A M,POURGHASEMI H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin,Asir Region,Saudi Arabia[J]. Geoscience Frontiers,2021,12(2):639 − 655. doi: 10.1016/j.gsf.2020.05.010
[6] FALASCHI F,GIACOMELLI F,FEDERICI P R,et al. Logistic regression versus artificial neural networks:landslide susceptibility evaluation in a sample area of the Serchio River valley,Italy[J]. Natural Hazards,2009,50(3):551 − 569. doi: 10.1007/s11069-009-9356-5
[7] CAO Juan,ZHANG Zhao,WANG Chenzhi,et al. Susceptibility assessment of landslides triggered by earthquakes in the Western Sichuan Plateau[J]. Catena,2019,175:63 − 76. doi: 10.1016/j.catena.2018.12.013
[8] 连志鹏,徐勇,付圣,等. 采用多模型融合方法评价滑坡灾害易发性:以湖北省五峰县为例[J]. 地质科技通报,2020,39(3):178 − 186. [LIAN Zhipeng,XU Yong,FU Sheng,et al. Landslide susceptibility assessment based on multi-model fusion method:a case study in Wufeng County,Hubei Province[J]. Bulletin of Geological Science and Technology,2020,39(3):178 − 186. (in Chinese with English abstract)]
LIAN Zhipeng, XU Yong, FU Sheng, et al. Landslide susceptibility assessment based on multi-model fusion method: a case study in Wufeng County, Hubei Province[J]. Bulletin of Geological Science and Technology, 2020, 39(3): 178 − 186. (in Chinese with English abstract)
[9] AYALEW L,YAMAGISHI H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains,Central Japan[J]. Geomorphology,2005,65(1/2):15 − 31.
[10] 殷坤龙,朱良峰. 滑坡灾害空间区划及GIS应用研究[J]. 地学前缘,2001,8(2):279 − 284. [YIN Kunlong,ZHU Liangfeng. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers,2001,8(2):279 − 284. (in Chinese with English abstract)]
YIN Kunlong, ZHU Liangfeng. Landslide hazard zonation and application of GIS[J]. Earth Science Frontiers, 2001, 8(2): 279 − 284. (in Chinese with English abstract)
[11] 马思远,许冲,田颖颖,等. 基于逻辑回归模型的九寨沟地震滑坡危险性评估[J]. 地震地质,2019,41(1):162 − 177. [MA Siyuan,XU Chong,TIAN Yingying,et al. Application of logistic regression model for hazard assessment of earthquake-triggered landslides:a case study of 2017 Jiuzhaigou(China) Ms7.0 event[J]. Seismology and Geology,2019,41(1):162 − 177. (in Chinese with English abstract)] doi: 10.3969/j.issn.0253-4967.2019.01.011
MA Siyuan, XU Chong, TIAN Yingying, et al. Application of logistic regression model for hazard assessment of earthquake-triggered landslides: a case study of 2017 Jiuzhaigou(China) Ms7.0 event[J]. Seismology and Geology, 2019, 41(1): 162 − 177. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2019.01.011
[12] 黄立鑫,郝君明,李旺平,等. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价——以甘肃岷县为例[J]. 中国地质灾害与防治学报,2021,32(6):116 − 126. [HUANG Lixin,HAO Junming,LI Wangping,et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value:A case study in Min Xian,Gansu Province[J]. The Chinese Journal of Geological Hazard and Control,2021,32(6):116 − 126. (in Chinese with English abstract)]
HUANG Lixin, HAO Junming, LI Wangping, et al. Landslide susceptibility assessment by the coupling method of RBF neural network and information value: A case study in Min Xian, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6): 116 − 126. (in Chinese with English abstract)
[13] 郭飞,王秀娟,陈玺,等. 基于不同模型的赣南地区小型削方滑坡易发性评价对比分析[J]. 中国地质灾害与防治学报,2022,33(6):125 − 133. [GUO Fei,WANG Xiujuan,CHEN Xi,et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control,2022,33(6):125 − 133. (in Chinese with English abstract)]
GUO Fei, WANG Xiujuan, CHEN Xi, et al. Comparative analyses on susceptibility of cutting slope landslides in southern Jiangxi using different models[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(6): 125 − 133. (in Chinese with English abstract)
[14] 方然可,刘艳辉,苏永超,等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke,LIU Yanhui,SU Yongchao,et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)]
FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County, Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology, 2021, 48(1): 181 − 187. (in Chinese with English abstract)
[15] RAMANI S E,PITCHAIMANI K,GNANAMANICKAM V R. GIS based landslide susceptibility mapping of Tevankarai Ar sub-watershed,Kodaikkanal,India using binary logistic regression analysis[J]. Journal of Mountain Science,2011,8(4):505 − 517. doi: 10.1007/s11629-011-2157-9
[16] 陈飞,蔡超,李小双,等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报,2020,39(增刊1):2859 − 2870. [CHEN Fei,CAI Chao,LI Xiaoshuang,et al. Evaluation of landslide susceptibility based on information quantity and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(Sup 1):2859 − 2870. (in Chinese with English abstract)]
CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information quantity and neural network model[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Sup 1): 2859 − 2870. (in Chinese with English abstract)
[17] 刘艺梁,殷坤龙,刘斌. 逻辑回归和人工神经网络模型在滑坡灾害空间预测中的应用[J]. 水文地质工程地质,2010,37(5):92 − 96. [LIU Yiliang,YIN Kunlong,LIU Bin. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards[J]. Hydrogeology & Engineering Geology,2010,37(5):92 − 96. (in Chinese with English abstract)]
LIU Yiliang, YIN Kunlong, LIU Bin. Application of logistic regression and artificial neural networks in spatial assessment of landslide hazards[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 92 − 96. (in Chinese with English abstract)
[18] 李利峰,杨华,张娟,等. 基于人工神经网络的区域滑坡预测研究[J]. 气象与环境科学,2020,43(3):65 − 70. [LI Lifeng,YANG Hua,ZHANG Juan,et al. Research on regional landslide prediction based on artificial neural network[J]. Meteorological and Environmental Sciences,2020,43(3):65 − 70. (in Chinese with English abstract)]
LI Lifeng, YANG Hua, ZHANG Juan, et al. Research on regional landslide prediction based on artificial neural network[J]. Meteorological and Environmental Sciences, 2020, 43(3): 65 − 70. (in Chinese with English abstract)
[19] 黄武彪,丁明涛,王栋,等. 基于层数自适应加权卷积神经网络的川藏交通廊道沿线滑坡易发性评价[J]. 地球科学,2022,47(6):2015 − 2030. [HUANG Wubiao,DING Mingtao,WANG Dong,et al. Evaluation of landslide susceptibility based on layer adaptive weighted convolutional neural network model along Sichuan-Tibet traffic corridor[J]. Earth Science,2022,47(6):2015 − 2030. (in Chinese with English abstract)]
HUANG Wubiao, DING Mingtao, WANG Dong, et al. Evaluation of landslide susceptibility based on layer adaptive weighted convolutional neural network model along Sichuan-Tibet traffic corridor[J]. Earth Science, 2022, 47(6): 2015 − 2030. (in Chinese with English abstract)
[20] 李晓钟,王欢. 互联网对我国经济发展影响的区域差异比较研究[J]. 中国软科学,2020(12):22 − 32. [LI Xiaozhong,WANG Huan. A comparative study on the regional differences of the effect of Internet on China’s economic development[J]. China Soft Science,2020(12):22 − 32. (in Chinese with English abstract)] doi: 10.3969/j.issn.1002-9753.2020.12.003
LI Xiaozhong, WANG Huan. A comparative study on the regional differences of the effect of Internet on China’s economic development[J]. China Soft Science, 2020(12): 22 − 32. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-9753.2020.12.003
[21] 王锐. 基于GIS和Logistic回归模型的降雨型滑坡易发性研究[D]. 杭州:浙江大学,2018. [WANG Rui. Study on the susceptibility of rainfall landslide based on GIS and Logistic regression model[D]. Hangzhou:Zhejiang University,2018. (in Chinese with English abstract)]
WANG Rui. Study on the susceptibility of rainfall landslide based on GIS and Logistic regression model[D]. Hangzhou: Zhejiang University, 2018. (in Chinese with English abstract)
[22] 张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595 − 1610. [ZHANG Qikai,LING Sixiang,LI Xiaoning,et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County,Sichuan Province,China[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(8):1595 − 1610. (in Chinese with English abstract)] doi: 10.13722/j.cnki.jrme.2020.0029
ZHANG Qikai, LING Sixiang, LI Xiaoning, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou County, Sichuan Province, China[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8): 1595 − 1610. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2020.0029
[23] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284 − 296. [ZHANG Jun,YIN Kunlong,WANG Jiajia,et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(2):284 − 296. (in Chinese with English abstract)] doi: 10.13722/j.cnki.jrme.2015.0318
ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 284 − 296. (in Chinese with English abstract) doi: 10.13722/j.cnki.jrme.2015.0318
[24] 黄发明,曹昱,范宣梅,等. 不同滑坡边界及其空间形状对滑坡易发性预测不确定性的影响规律[J]. 岩石力学与工程学报,2021,40(增刊2):3227 − 3240. [HUANG Faming,CAO Yu,FAN Xuanmei,et al. Influence of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction[J]. Chinese Journal of Rock Mechanics and Engineering,2021,40(Sup 2):3227 − 3240. (in Chinese)]
HUANG Faming, CAO Yu, FAN Xuanmei, et al. Influence of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(Sup 2): 3227 − 3240. (in Chinese)
[25] 武雪玲,杨经宇,牛瑞卿. 一种结合SMOTE和卷积神经网络的滑坡易发性评价方法[J]. 武汉大学学报(信息科学版),2020,45(8):1223 − 1232. [WU Xueling,YANG Jingyu,NIU Ruiqing. A landslide susceptibility assessment method using SMOTE and convolutional neural network[J]. Geomatics and Information Science of Wuhan University,2020,45(8):1223 − 1232. (in Chinese with English abstract)]
WU Xueling, YANG Jingyu, NIU Ruiqing. A landslide susceptibility assessment method using SMOTE and convolutional neural network[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1223 − 1232. (in Chinese with English abstract)
[26] 周超,殷坤龙,曹颖,等. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价[J]. 地球科学,2020,45(6):1865 − 1876. [ZHOU Chao,YIN Kunlong,CAO Ying,et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost:A case study from the Three Gorges Reservoir area[J]. Earth Science,2020,45(6):1865 − 1876. (in Chinese with English abstract)]
ZHOU Chao, YIN Kunlong, CAO Ying, et al. Landslide susceptibility assessment by applying the coupling method of radial basis neural network and adaboost: A case study from the Three Gorges Reservoir area[J]. Earth Science, 2020, 45(6): 1865 − 1876. (in Chinese with English abstract)
[27] 扈秀宇. 基于GIS与堆栈融合模型的长春市地质灾害易发性和危险性评价研究[D]. 长春:吉林大学,2020. [HU Xiuyu. Study on vulnerability and risk assessment of geological disasters in Changchun city based on GIS and stack fusion model[D]. Changchun:Jilin University,2020. (in Chinese with English abstract)]
HU Xiuyu. Study on vulnerability and risk assessment of geological disasters in Changchun city based on GIS and stack fusion model[D]. Changchun: Jilin University, 2020. (in Chinese with English abstract)
[28] 熊小辉,汪长林,白永健,等. 基于不同耦合模型的县域滑坡易发性评价对比分析——以四川普格县为例[J]. 中国地质灾害与防治学报,2022,33(4):114 − 124. [XIONG Xiaohui,WANG Changlin,BAI Yongjian,et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level:A case study for Puge County,Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(4):114 − 124. (in Chinese with English abstract)] doi: 10.16031/j.cnki.issn.1003-8035.202202052
XIONG Xiaohui, WANG Changlin, BAI Yongjian, et al. Comparison of landslide susceptibility assessment based on multiple hybrid models at county level: A case study for Puge County, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 114 − 124. (in Chinese with English abstract) doi: 10.16031/j.cnki.issn.1003-8035.202202052
-