聚丙烯酸钠改性红黏土工程特性试验研究

王家全, 刘宏志, 林志南, 唐毅. 聚丙烯酸钠改性红黏土工程特性试验研究[J]. 水文地质工程地质, 2024, 51(3): 110-117. doi: 10.16030/j.cnki.issn.1000-3665.202305036
引用本文: 王家全, 刘宏志, 林志南, 唐毅. 聚丙烯酸钠改性红黏土工程特性试验研究[J]. 水文地质工程地质, 2024, 51(3): 110-117. doi: 10.16030/j.cnki.issn.1000-3665.202305036
WANG Jiaquan, LIU Hongzhi, LIN Zhinan, TANG Yi. Experimental study on engineering properties of red clay modified by sodium polyacrylate[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 110-117. doi: 10.16030/j.cnki.issn.1000-3665.202305036
Citation: WANG Jiaquan, LIU Hongzhi, LIN Zhinan, TANG Yi. Experimental study on engineering properties of red clay modified by sodium polyacrylate[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 110-117. doi: 10.16030/j.cnki.issn.1000-3665.202305036

聚丙烯酸钠改性红黏土工程特性试验研究

  • 基金项目: 广西自然科学基金重点项目(2022GXNSFDA035081);国家自然科学基金项目(41962017);广西高等学校高水平创新团队及卓越学者计划项目(桂教人才[2020]6号);广西科技大学研究生教育创新计划项目(GKYC202328)
详细信息
    作者简介: 王家全(1981—),男,博士,教授,主要从事加筋土结构、地基基础工程、土木工程灾害防治等方面的研究。E-mail:wjquan1999@163.com
    通讯作者: 林志南(1987—),男,博士,副教授,主要从事岩土工程方面的研究。E-mail:zhinan_lin@gxust.edu.cn
  • 中图分类号: TU446

Experimental study on engineering properties of red clay modified by sodium polyacrylate

More Information
  • 为研究聚丙烯酸钠改性红黏土的工程特性,利用聚丙烯酸钠对柳州重塑红黏土进行固化处理,开展变水头渗透试验和三轴剪切试验,分析改性红黏土的渗透特性和力学性能,确定聚丙烯酸钠的最适掺量,并通过对最适改性土开展崩解试验和扫描电镜试验,确定改性红黏土的抗崩解性能,揭示聚丙烯酸钠改性红黏土的微观作用机理。结果表明:随聚丙烯酸钠掺量的增加,改性土的渗透系数呈现逐步下降的趋势,并在达到3%后逐渐趋于稳定,此时渗透系数为8.1379×10−7 cm/s,相对素红黏土降低了90.78%;而改性红黏土的抗剪强度呈现先增大后减小的趋势,并在2%时达到峰值,相对素红黏土提高了394.21%。综上确定聚丙烯酸钠的最适掺量为3%,此掺量下改性土的抗崩解性能提高了42.86%,土颗粒间的孔隙被聚合物链所填充,碎散的颗粒状红黏土变为连续状,排列结构与致密程度均优于素红黏土。经聚丙烯酸钠改性后,红黏土的防渗性能、力学性能与抗崩解性均存在明显提高,可以为实际工程提供理论指导。

  • 加载中
  • 图 1  不同掺量下红黏土渗透系数

    Figure 1. 

    图 2  不同掺量下红黏土抗剪强度

    Figure 2. 

    图 3  不同掺量下红黏土内摩擦角和黏聚力

    Figure 3. 

    图 4  改性前后土体微观结构

    Figure 4. 

    表 1  崩解过程

    Table 1.  Disintegration process

    掺量
    /%
    浸泡时间
    5 s 5 min 20 min 1 h 2 h 3 h 4 h 5 h
    0 吸水 吸水+
    土颗粒剥落
    吸水+土颗粒剥落+
    裂隙形成
    吸水+裂隙数量骤增+
    大量崩解
    吸水+崩解加剧 几乎崩解完毕+
    崩解减缓
    完全崩解 完全崩解
    3 吸水 吸水 吸水速率减缓 吸水+土颗粒剥落 吸水+裂隙形成+稳定崩解 吸水+裂隙发展+稳定崩解 吸水+裂隙发展+崩解减缓 完全崩解
    下载: 导出CSV
  • [1]

    穆锐,黄质宏,姚未来,等. 分级循环荷载下原状红黏土动力特性试验研究[J]. 水文地质工程地质,2022,49(3):94 − 102. [MU Rui,HUANG Zhihong,YAO Weilai,et al. An experimental study of the dynamic characteristics of the undisturbed laterite under graded cyclic loading[J]. Hydrogeology & Engineering Geology,2022,49(3):94 − 102. (in Chinese with English abstract)]

    MU Rui, HUANG Zhihong, YAO Weilai, et al. An experimental study of the dynamic characteristics of the undisturbed laterite under graded cyclic loading[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 94 − 102. (in Chinese with English abstract)

    [2]

    陈佳雨,刘之葵,陈永国,等. 纤维红黏土强度的正交试验及多元非线性回归分析[J]. 水文地质工程地质,2020,47(1):117 − 124. [CHEN Jiayu,LIU Zhikui,CHEN Yongguo,et al. Orthogonal test and multivariate nonlinear regression analyses of strength of the fiber red clay[J]. Hydrogeology & Engineering Geology,2020,47(1):117 − 124. (in Chinese with English abstract)]

    CHEN Jiayu, LIU Zhikui, CHEN Yongguo, et al. Orthogonal test and multivariate nonlinear regression analyses of strength of the fiber red clay[J]. Hydrogeology & Engineering Geology, 2020, 47(1): 117 − 124. (in Chinese with English abstract)

    [3]

    蒋文宇. 广西红黏土土质特征及土性改良研究[D]. 南宁:广西大学,2015. [JIANG Wenyu. Study on soil characteristics and filling performance of Guangxi red clay[D]. Nanning:Guangxi University,2015. (in Chinese with English abstract)]

    JIANG Wenyu. Study on soil characteristics and filling performance of Guangxi red clay[D]. Nanning: Guangxi University, 2015. (in Chinese with English abstract)

    [4]

    王泽成,李栋伟,张潮潮,等. 考虑含水率对人工冻结红黏土力学特性的影响[J]. 地质科技通报,2022,41(6):287 − 293. [WANG Zecheng,LI Dongwei,ZHANG Chaochao,et al. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology,2022,41(6):287 − 293.(in Chinese with English abstract)]

    WANG Zecheng, LI Dongwei, ZHANG Chaochao, et al. Effect of water content on the mechanical properties of artificially frozen red clay[J]. Bulletin of Geological Science and Technology, 2022, 41(6): 287 − 293.(in Chinese with English abstract)

    [5]

    侯正伟,李建宏,李财生,等. 椰纤维生物炭及其硝酸改性对稻田土壤中Pb钝化的影响[J]. 环境科学,2023,44(8):4497 − 4506. [HOU Zhengwei,LI Jianhong,LI Caisheng,et al. Effect of coconut fiber biochar and its nitrate modification on Pb passivation in paddy soils[J]. Environmental Science,2023,44(8):4497 − 4506. (in Chinese with English abstract)]

    HOU Zhengwei, LI Jianhong, LI Caisheng, et al. Effect of coconut fiber biochar and its nitrate modification on Pb passivation in paddy soils[J]. Environmental Science, 2023, 44(8): 4497 − 4506. (in Chinese with English abstract)

    [6]

    TAMASSOKI S,DAUD N N N,JAKARNI F M,et al. Compressive and shear strengths of coir fibre reinforced activated carbon stabilised lateritic soil[J]. Sustainability,2022,14(15):9100. doi: 10.3390/su14159100

    [7]

    ALMAJED A,LATEEF M A,ALI BAIG MOGHAL A,et al. State-of-the-art review of the applicability and challenges of microbial-induced calcite precipitation (MICP) and enzyme-induced calcite precipitation (EICP) techniques for geotechnical and geoenvironmental applications[J]. Crystals,2021,11(4):370. doi: 10.3390/cryst11040370

    [8]

    AHENKORAH I,RAHMAN M M,KARIM M R,et al. Enzyme induced calcium carbonate precipitation and its engineering application:A systematic review and meta-analysis[J]. Construction and Building Materials,2021,308:125000. doi: 10.1016/j.conbuildmat.2021.125000

    [9]

    余梦,张家铭,周杨,等. MICP技术改性膨胀土试验研究[J]. 长江科学院院报,2021,38(5):103 − 108. [YU Meng,ZHANG Jiaming,ZHOU Yang,et al. Experimental study on modifying expansive soil by MICP technology[J]. Journal of Yangtze River Scientific Research Institute,2021,38(5):103 − 108. (in Chinese with English abstract)]

    YU Meng, ZHANG Jiaming, ZHOU Yang, et al. Experimental study on modifying expansive soil by MICP technology[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(5): 103 − 108. (in Chinese with English abstract)

    [10]

    张茜,叶为民,刘樟荣,等. 基于生物诱导碳酸钙沉淀的土体固化研究进展[J]. 岩土力学,2022,43(2):345 − 357. [ZHANG Qian,YE Weimin,LIU Zhangrong,et al. Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics,2022,43(2):345 − 357. (in Chinese with English abstract)]

    ZHANG Qian, YE Weimin, LIU Zhangrong, et al. Advances in soil cementation by biologically induced calcium carbonate precipitation[J]. Rock and Soil Mechanics, 2022, 43(2): 345 − 357. (in Chinese with English abstract)

    [11]

    POONI J,GIUSTOZZI F,ROBERT D,et al. Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation[J]. Transportation Geotechnics,2019,21:100255. doi: 10.1016/j.trgeo.2019.100255

    [12]

    裴向军,杨晴雯,许强,等. 改性钠羧甲基纤维素胶结固化土质边坡机制与抗冲蚀特性研究[J]. 岩石力学与工程学报,2016,35(11):2316 − 2327. [PEI Xiangjun,YANG Qingwen,XU Qiang,et al. Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(11):2316 − 2327. (in Chinese with English abstract)]

    PEI Xiangjun, YANG Qingwen, XU Qiang, et al. Research on glue reinforcement mechanism and scouring resistant properties of soil slopes by modified carboxymethyl cellulose[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2316 − 2327. (in Chinese with English abstract)

    [13]

    SOLDO A,MILETIĆ M. Study on shear strength of xanthan gum-amended soil[J]. Sustainability,2019,11(21):6142. doi: 10.3390/su11216142

    [14]

    KARIMI S,LASHKAR-ARA B,NAJAFI L. Influence of sugarcane molasses addition on the shear strength properties of slightly plastic loamy soils[J]. Arabian Journal of Geosciences,2022,15(9):903. doi: 10.1007/s12517-021-09395-z

    [15]

    杨万里,石玉玲,穆鹏雪,等. 瓜尔豆胶固化黄土的工程特性及抗冲蚀试验研究[J]. 水文地质工程地质,2022,49(4):117 − 124. [YANG Wanli,SHI Yuling,MU Pengxue,et al. An experimental study of the engineering properties and erosion resistance of guar gum-reinforced loess[J]. Hydrogeology & Engineering Geology,2022,49(4):117 − 124. (in Chinese with English abstract)]

    YANG Wanli, SHI Yuling, MU Pengxue, et al. An experimental study of the engineering properties and erosion resistance of guar gum-reinforced loess[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 117 − 124. (in Chinese with English abstract)

    [16]

    王章琼,高云,沈雷,等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报,2018,26(2):416 − 421. [WANG Zhangqiong,GAO Yun,SHEN Lei,et al. Engineering properties of lime-modifiedred sandstone residual soil[J]. Journal of Engineering Geology,2018,26(2):416 − 421. (in Chinese with English abstract)]

    WANG Zhangqiong, GAO Yun, SHEN Lei, et al. Engineering properties of lime-modifiedred sandstone residual soil[J]. Journal of Engineering Geology, 2018, 26(2): 416 − 421. (in Chinese with English abstract)

    [17]

    YANG Wenrui,ZHOU Feng,ZHU Rui,et al. Strength performance of mucky silty clay modified using early-age fly ash-based curing agent[J]. Case Studies in Construction Materials,2022,17:e01595. doi: 10.1016/j.cscm.2022.e01595

    [18]

    易富,管茂成,李军,等. 稻壳灰-地聚物固化土力学特性及机理分析[J]. 水文地质工程地质,2022,49(2):94 − 101. [YI Fu,GUAN Maocheng,LI Jun,et al. Mechanical properties and mechanism analyses of rice husk ash geopolymer solidified soil[J]. Hydrogeology & Engineering Geology,2022,49(2):94 − 101. (in Chinese with English abstract)]

    YI Fu, GUAN Maocheng, LI Jun, et al. Mechanical properties and mechanism analyses of rice husk ash geopolymer solidified soil[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 94 − 101. (in Chinese with English abstract)

    [19]

    吴雪婷,项伟,王臻华,等. 离子土固化剂固化淤泥的微观机理研究[J]. 工程地质学报,2018,26(5):1285 − 1291. [WU Xueting,XIANG Wei,WANG Zhenhua,et al. Microscopic mechanism of solidified silt with ionic soil stabilizer[J]. Journal of Engineering Geology,2018,26(5):1285 − 1291. (in Chinese with English abstract)]

    WU Xueting, XIANG Wei, WANG Zhenhua, et al. Microscopic mechanism of solidified silt with ionic soil stabilizer[J]. Journal of Engineering Geology, 2018, 26(5): 1285 − 1291. (in Chinese with English abstract)

    [20]

    游庆龙,邱欣,杨青,等. 离子土壤固化剂固化红黏土强度特性[J]. 中国公路学报,2019,32(5):64 − 71. [YOU Qinglong,QIU Xin,YANG Qing,et al. Strength properties of ionic soil stabilizer treated red soil[J]. China Journal of Highway and Transport,2019,32(5):64 − 71. (in Chinese with English abstract)]

    YOU Qinglong, QIU Xin, YANG Qing, et al. Strength properties of ionic soil stabilizer treated red soil[J]. China Journal of Highway and Transport, 2019, 32(5): 64 − 71. (in Chinese with English abstract)

    [21]

    牛鹏尧,庄建琦,贾珂程,等. 聚丙烯酸钠混合剂固化黄土特性研究[J]. 工程地质学报,2022,30(4):1028 − 1035. [NIU Pengyao,ZHUANG Jianqi,JIA Kecheng,et al. Study on properties of loess solidified by polyacrylate sodium[J]. Journal of Engineering Geology,2022,30(4):1028 − 1035. (in Chinese with English abstract)]

    NIU Pengyao, ZHUANG Jianqi, JIA Kecheng, et al. Study on properties of loess solidified by polyacrylate sodium[J]. Journal of Engineering Geology, 2022, 30(4): 1028 − 1035. (in Chinese with English abstract)

    [22]

    BIAN Xia,ZENG Lingling,LI Xiaozhao,et al. Fabric changes induced by super-absorbent polymer on cement–lime stabilized excavated clayey soil[J]. Journal of Rock Mechanics and Geotechnical Engineering,2021,13(5):1124 − 1135.

    [23]

    BIAN Xia,DING Guoquan,WANG Zhifeng,et al. Compression and strength behavior of cement–lime–polymer-solidified dredged material at high water content[J]. Marine Georesources & Geotechnology,2017,35(6):840 − 846.

    [24]

    BIAN Xia,WANG Zhifeng,DING Guoquan,et al. Compressibility of cemented dredged clay at high water content with super-absorbent polymer[J]. Engineering Geology,2016,208:198 − 205. doi: 10.1016/j.enggeo.2016.04.036

    [25]

    BIAN Xia,ZENG Lingling,DENG Yongfeng,et al. The role of superabsorbent polymer on strength and microstructure development in cemented dredged clay with high water content[J]. Polymers,2018,10(10):1069. doi: 10.3390/polym10101069

    [26]

    康祺祯,李静静,李育超,等. PAA-Na改性膨润土在酸碱盐溶液中的渗透性[J]. 浙江大学学报(工学版),2021,55(10):1877 − 1884. [KANG Qizhen,LI Jingjing,LI Yuchao,et al. Permeability of sodium polyacrylate modified calcium bentonite in acid-base salt solution[J]. Journal of Zhejiang University (Engineering Science),2021,55(10):1877 − 1884. (in Chinese with English abstract)]

    KANG Qizhen, LI Jingjing, LI Yuchao, et al. Permeability of sodium polyacrylate modified calcium bentonite in acid-base salt solution[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(10): 1877 − 1884. (in Chinese with English abstract)

    [27]

    王玲玲,隋雪,谢宇航,等. 聚丙烯酸钠对透水混凝土物理力学性能影响研究[J]. 混凝土,2020(2):57 − 60. [WANG Lingling,SUI Xue,XIE Yuhang,et al. Effects of sodium polyacrylate on physical properties and mechanical behaviors of pervious concrete[J]. Concrete,2020(2):57 − 60. (in Chinese with English abstract)]

    WANG Lingling, SUI Xue, XIE Yuhang, et al. Effects of sodium polyacrylate on physical properties and mechanical behaviors of pervious concrete[J]. Concrete, 2020(2): 57 − 60. (in Chinese with English abstract)

    [28]

    AZARIJAFARI H,KAZEMIAN A,RAHIMI M,et al. Effects of pre-soaked super absorbent polymers on fresh and hardened properties of self-consolidating lightweight concrete[J]. Construction and Building Materials,2016,113:215 − 220. doi: 10.1016/j.conbuildmat.2016.03.010

    [29]

    中华人民共和国住房和城乡建设部. 土工试验方法标准:GB/T 50123—2019[S]. 北京:中国计划出版社,2019. [Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for soil test methods:GB/T 50123—2019[S]. Beijing:China Planning Press,2019. (in Chinese)]

    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Standard for soil test methods: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)

    [30]

    TIAN Kuo,LIKOS W J,BENSON C H. Pore-scale imaging of polymer-modified bentonite in saline solutions[C]//Geo-Chicago 2016. Chicago,Illinois. Reston,VA:American Society of Civil Engineers,2016:468 − 477.

    [31]

    GEORGEES R N,HASSAN R A,EVANS R P,et al. Effect of the use of a polymeric stabilizing additive on unconfined compressive strength of soils[J]. Transportation Research Record:Journal of the Transportation Research Board,2015,2473(1):200 − 208. doi: 10.3141/2473-23

  • 加载中

(4)

(1)

计量
  • 文章访问数:  411
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2023-05-18
修回日期:  2023-07-07
刊出日期:  2024-05-15

目录