基于分形理论的毛细水上升高度模型及试验验证

蒋函静, 徐宇冉, 陈志明, 李淑娥, 康峰沂, 徐永福. 基于分形理论的毛细水上升高度模型及试验验证[J]. 水文地质工程地质, 2024, 51(3): 102-109. doi: 10.16030/j.cnki.issn.1000-3665.202304055
引用本文: 蒋函静, 徐宇冉, 陈志明, 李淑娥, 康峰沂, 徐永福. 基于分形理论的毛细水上升高度模型及试验验证[J]. 水文地质工程地质, 2024, 51(3): 102-109. doi: 10.16030/j.cnki.issn.1000-3665.202304055
JIANG Hanjing, XU Yuran, CHEN Zhiming, LI Shue, KANG Fengyi, XU Yongfu. A model of capillary water rise based on fractal theory and experimental validation[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 102-109. doi: 10.16030/j.cnki.issn.1000-3665.202304055
Citation: JIANG Hanjing, XU Yuran, CHEN Zhiming, LI Shue, KANG Fengyi, XU Yongfu. A model of capillary water rise based on fractal theory and experimental validation[J]. Hydrogeology & Engineering Geology, 2024, 51(3): 102-109. doi: 10.16030/j.cnki.issn.1000-3665.202304055

基于分形理论的毛细水上升高度模型及试验验证

  • 基金项目: 江苏省交通厅项目(21-1898)
详细信息
    作者简介: 蒋函静(1999—),女,博士研究生,主要从事公路交通方面的科研工作。E-mail:jhj031607@sjtu.edu.cn
    通讯作者: 徐永福(1967—),男,博士,教授、博士生导师,主要从事非饱和土力学方面的科研与教学工作。E-mail:yongfuxu@sjtu.edu.cn
  • 中图分类号: TU43

A model of capillary water rise based on fractal theory and experimental validation

More Information
  • 沿海地区的路基工程中,毛细水上升会产生路基病害,影响道路运营的安全性和耐久性,因此研究毛细水上升高度尤为重要。文章视毛细水上升为一种非饱和土的渗流现象,引入分形维数对非饱和土渗透系数进行修正,进而提出了基于分形理论的毛细水上升高度模型,得到了毛细水上升高度随时间变化的曲线;而后对南通某干线公路路基土样进行竖管法毛细水上升高度试验,改变土样的干密度及初始粒径的分形维数分布做对照组试验。研究结果表明:毛细水上升呈现初期先快速增加,然后缓慢增加,最终趋于稳定的趋势;土样颗粒粒径分布的分形维数越大,得到的毛细水上升高度越大;土样的干密度越小,即孔隙率越大,得到的毛细水上升高度越大。文章提出的毛细水上升高度模型中,毛细水上升高度与试样孔隙率、饱和渗透系数、进气值对应的毛细水上升高度、分形维数等参数相关。在模型理论值计算中认为分形维数变化仅改变进气值对应的毛细水高度,不改变饱和渗透系数,而干密度变化即孔隙率变化仅导致饱和渗透系数变化,不改变进气值对应的毛细水高度,由此得到的模型计算结果与试验结果趋势一致,验证了理论模型的正确性,可以为公路路基毛细水病害防治提供理论指导。

  • 加载中
  • 图 1  毛细水上升高度模型单参数分析结果

    Figure 1. 

    图 2  竖管法测量毛细水上升高度

    Figure 2. 

    图 3  土样级配特征

    Figure 3. 

    图 4  不同分形维数下的毛细水上升高度曲线

    Figure 4. 

    图 5  不同干密度下的毛细水上升高度曲线

    Figure 5. 

    图 6  不同分形维数下的试验、理论对比曲线

    Figure 6. 

    图 7  不同孔隙率下的试验、理论对比曲线

    Figure 7. 

    表 1  试验土样基本物理指标

    Table 1.  Basic physical properties of soil samples

    参数 液限/% 塑限/% 塑性指数 比重
    取值 35.01 18.82 16.21 2.73
    下载: 导出CSV

    表 2  试验方案

    Table 2.  Experimental schemes

    组号 干密度/(g·cm−3 分形维数
    1 1.30 2.7
    2 1.30 2.5
    3 1.30 2.3
    4 1.35 2.7
    5 1.40 2.7
    下载: 导出CSV

    表 3  理论参数取值

    Table 3.  Theoretical parameter values

    组号 孔隙率/% ks/(cm·s−1 D ha/cm
    1 52.3 3.5×10−5 2.7 60
    2 52.3 3.5×10−5 2.5 45
    3 52.3 3.5×10−5 2.3 30
    4 50.5 2.8×10−5 2.7 60
    5 48.6 2.0×10−5 2.7 60
    下载: 导出CSV
  • [1]

    刘建强,许强,郑光,等. 贵州省鸡场滑坡地下水化学特征反映的水-岩(土)作用[J]. 水文地质工程地质,2023,50(2):132 − 140. [LIU Jianqiang,XU Qiang,ZHENG Guang,et al. Water-rock/soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology,2023,50(2):132 − 140. (in Chinese with English abstract)]

    LIU Jianqiang, XU Qiang, ZHENG Guang, et al. Water-rock/soil interaction reflected by the chemical characteristics of groundwater of Jichang landslide in Guizhou Province[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 132 − 140. (in Chinese with English abstract)

    [2]

    赵明华,刘小平,陈安. 非饱和土路基毛细作用分析[J]. 公路交通科技,2008,25(8):26 − 30. [ZHAO Minghua,LIU Xiaoping,CHEN An. Analysis of capillary effect in unsaturated roadbed[J]. Journal of Highway and Transportation Research and Development,2008,25(8):26 − 30. (in Chinese with English abstract)]

    ZHAO Minghua, LIU Xiaoping, CHEN An. Analysis of capillary effect in unsaturated roadbed[J]. Journal of Highway and Transportation Research and Development, 2008, 25(8): 26 − 30. (in Chinese with English abstract)

    [3]

    黄晓明. 路基路面工程[M]. 北京:中国建筑工业出版社,2014. [HUANG Xiaoming. Subgrade and pavement engineering[M]. Beijing:China Architecture & Building Press,2014. (in Chinese)]

    HUANG Xiaoming. Subgrade and pavement engineering[M]. Beijing: China Architecture & Building Press, 2014. (in Chinese)

    [4]

    汤明高,吴川,吴辉隆,等. 水库滑坡地下水动态响应规律及浸润线计算模型——以石榴树包滑坡为例[J]. 水文地质工程地质,2022,49(2):115 − 125. [TANG Minggao,WU Chuan,WU Huilong,et al. Dynamic response and phreatic line calculation model of groundwater in a reservoir landslide:Exemplified by the Shiliushubao landslide[J]. Hydrogeology & Engineering Geology,2022,49(2):115 − 125. (in Chinese with English abstract)]

    TANG Minggao, WU Chuan, WU Huilong, et al. Dynamic response and phreatic line calculation model of groundwater in a reservoir landslide: Exemplified by the Shiliushubao landslide[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 115 − 125. (in Chinese with English abstract)

    [5]

    李强,李同录,李华,等. 毛细水作用下非饱和土压缩过程的微观非连续变形数值分析[J]. 水文地质工程地质,2022,49(4):135 − 143. [LI Qiang,LI Tonglu,LI Hua,et al. Numerical analysis of evolution of the unsaturated soil micro-structure with capillary action during compression[J]. Hydrogeology & Engineering Geology,2022,49(4):135 − 143. (in Chinese with English abstract)]

    LI Qiang, LI Tonglu, LI Hua, et al. Numerical analysis of evolution of the unsaturated soil micro-structure with capillary action during compression[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 135 − 143. (in Chinese with English abstract)

    [6]

    肖红宇,刘明寿,彭鹏程,等. 基于黏性土分形特征的毛细水上升高度研究[J]. 水文地质工程地质,2016,43(6):48 − 52. [XIAO Hongyu,LIU Mingshou,PENG Pengcheng,et al. A study of the height of capillary water rise based on fractal characteristics of cohesive soil[J]. Hydrogeology & Engineering Geology,2016,43(6):48 − 52. (in Chinese with English abstract)]

    XIAO Hongyu, LIU Mingshou, PENG Pengcheng, et al. A study of the height of capillary water rise based on fractal characteristics of cohesive soil[J]. Hydrogeology & Engineering Geology, 2016, 43(6): 48 − 52. (in Chinese with English abstract)

    [7]

    胡明鉴,张晨阳,崔翔,等. 钙质砂中毛细水高度与影响因素试验研究[J]. 岩土力学,2019,40(11):4157 − 4164. [HU Mingjian,ZHANG Chenyang,CUI Xiang,et al. Experimental study on capillary rise and influencing factors in calcareous sand[J]. Rock and Soil Mechanics,2019,40(11):4157 − 4164. (in Chinese with English abstract)]

    HU Mingjian, ZHANG Chenyang, CUI Xiang, et al. Experimental study on capillary rise and influencing factors in calcareous sand[J]. Rock and Soil Mechanics, 2019, 40(11): 4157 − 4164. (in Chinese with English abstract)

    [8]

    邓改革,何建国,康宁波. 基于多物理场耦合的毛细水高度研究[J]. 水土保持研究,2021,28(4):136 − 141. [DENG Gaige,HE Jianguo,KANG Ningbo. Research on capillary water height based on multi-physical field coupling[J]. Research of Soil and Water Conservation,2021,28(4):136 − 141. (in Chinese with English abstract)]

    DENG Gaige, HE Jianguo, KANG Ningbo. Research on capillary water height based on multi-physical field coupling[J]. Research of Soil and Water Conservation, 2021, 28(4): 136 − 141. (in Chinese with English abstract)

    [9]

    吕秋丽,杨海华. 不同土质孔隙结构特点及其毛细水上升规律分析[J]. 能源与环保,2019,41(5):102 − 106. [LÜ Qiuli,YANG Haihua. Pore structure characteristics of different soils and analysis of capillary water rising law[J]. China Energy and Environmental Protection,2019,41(5):102 − 106. (in Chinese with English abstract)]

    LÜ Qiuli, YANG Haihua. Pore structure characteristics of different soils and analysis of capillary water rising law[J]. China Energy and Environmental Protection, 2019, 41(5): 102 − 106. (in Chinese with English abstract)

    [10]

    杨海华,吕秋丽,杨武,等. 利用柱状换土毛细作用提升地下水实现胡杨自我恢复的探索研究[J]. 节水灌溉,2020(12):51 − 56. [YANG Haihua,LÜ Qiuli,YANG Wu,et al. Study on self recovery of populus euphratica using capillary action of column soil exchange to enhance groundwater[J]. Water Saving Irrigation,2020(12):51 − 56. (in Chinese with English abstract)]

    YANG Haihua, LÜ Qiuli, YANG Wu, et al. Study on self recovery of populus euphratica using capillary action of column soil exchange to enhance groundwater[J]. Water Saving Irrigation, 2020(12): 51 − 56. (in Chinese with English abstract)

    [11]

    刘杰,姚海林,卢正,等. 非饱和土路基毛细作用的数值与解析方法研究[J]. 岩土力学,2013,34(增刊2):421 − 427. [LIU Jie,YAO Hailin,LU Zheng,et al. Study of analytic and numerical methods for capillary action of unsaturated soil subgrade[J]. Rock and Soil Mechanics,2013,34(Sup 2):421 − 427. (in Chinese with English abstract)]

    LIU Jie, YAO Hailin, LU Zheng, et al. Study of analytic and numerical methods for capillary action of unsaturated soil subgrade[J]. Rock and Soil Mechanics, 2013, 34(Sup 2): 421 − 427. (in Chinese with English abstract)

    [12]

    朱志铎,彭宇一,张文超,等. 高等级公路粉土路基毛细水处治的试验研究[J]. 岩土工程学报,2011,33(增刊1):52 − 55. [ZHU Zhiduo,PENG Yuyi,ZHANG Wenchao,et al. Experimental study on capillary water in silty subgrade of highway[J]. Chinese Journal of Geotechnical Engineering,2011,33(Sup 1):52 − 55. (in Chinese with English abstract)]

    ZHU Zhiduo, PENG Yuyi, ZHANG Wenchao, et al. Experimental study on capillary water in silty subgrade of highway[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Sup 1): 52 − 55. (in Chinese with English abstract)

    [13]

    HIRD R,BOLTON M D. Clarification of capillary rise in dry sand[J]. Engineering Geology,2017,230:77 − 83. doi: 10.1016/j.enggeo.2017.09.023

    [14]

    高大钊,袁聚云. 土质学与土力学[M]. 3版. 北京:人民交通出版社,2001. [GAO Dazhao,YUAN Juyun. Soil science and soil mechanics[M]. 3rd ed. Beijing:China Communications Press,2001. (in Chinese)]

    GAO Dazhao, YUAN Juyun. Soil science and soil mechanics[M]. 3rd ed. Beijing: China Communications Press, 2001. (in Chinese)

    [15]

    董斌,张喜发,李欣,等. 毛细水上升高度综合试验研究[J]. 岩土工程学报,2008,30(10):1569 − 1574. [DONG Bin,ZHANG Xifa,LI Xin,et al. Comprehensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering,2008,30(10):1569 − 1574. (in Chinese with English abstract)]

    DONG Bin, ZHANG Xifa, LI Xin, et al. Comprehensive tests on rising height of capillary water[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1569 − 1574. (in Chinese with English abstract)

    [16]

    杜红普,刘波,王华军,等. 基于土水特征曲线预测多孔介质毛细上升过程[J]. 工程地质学报,2013,21(3):345 − 350. [DU Hongpu,LIU Bo,WANG Huajun,et al. Prediction of capillary rise in porous media based on soil water characteristic curve[J]. Journal of Engineering Geology,2013,21(3):345 − 350. (in Chinese with English abstract)] doi: 10.3969/j.issn.1004-9665.2013.03.002

    DU Hongpu, LIU Bo, WANG Huajun, et al. Prediction of capillary rise in porous media based on soil water characteristic curve[J]. Journal of Engineering Geology, 2013, 21(3): 345 − 350. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2013.03.002

    [17]

    LU Ning,LIKOS W J. Rate of capillary rise in soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2004,130(6):646 − 650. doi: 10.1061/(ASCE)1090-0241(2004)130:6(646)

    [18]

    MANDELBROT,BENOIT B. The fractal geometry of nature[J]. American Journal of Physics,1984,91(9):594 − 598.

    [19]

    刘松玉,方磊,陈浩东. 论我国特殊土粒度分布的分形结构[J]. 岩土工程学报,1993,15(1):23 − 30. [LIU Songyu,FANG Lei,CHEN Haodong. Fractal structure of granularity distribution of regional soils in China[J]. Chinese Journal of Geotechnical Engineering,1993,15(1):23 − 30. (in Chinese with English abstract)]

    LIU Songyu, FANG Lei, CHEN Haodong. Fractal structure of granularity distribution of regional soils in China[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1): 23 − 30. (in Chinese with English abstract)

    [20]

    TERZAGHI K. Theoretical soil mechanics[M]. New York:Wiley,1943.

    [21]

    徐永福,叶翠明,赵书权,等. 压应力对非饱和土渗透系数的影响[J]. 上海交通大学学报,2004,38(6):982 − 986. [XU Yongfu,YE Cuiming,ZHAO Shuquan,et al. Effect of compressive stress on hydraulic conductivity of unsaturated soils[J]. Journal of Shanghai Jiao Tong University,2004,38(6):982 − 986. (in Chinese with English abstract)]

    XU Yongfu, YE Cuiming, ZHAO Shuquan, et al. Effect of compressive stress on hydraulic conductivity of unsaturated soils[J]. Journal of Shanghai Jiao Tong University, 2004, 38(6): 982 − 986. (in Chinese with English abstract)

    [22]

    中华人民共和国建设部. 岩土工程勘察规范:GB 50021—2001[S]. 北京:中国建筑工业出版社,2004. [Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering:GB 50021—2001[S]. Beijing:China Architecture & Building Press,2004. (in Chinese)]

    Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)

    [23]

    交通运输部公路科学研究院. 公路土工试验规程:JTG 3430—2020[S]. 北京:人民交通出版社,2020. [Research Institute of Highway Ministry of Transport. Test methods of soils for highway engineering:JTG 3430—2020[S]. Beijing:China Communication Press,2020. (in Chinese)]

    Research Institute of Highway Ministry of Transport. Test methods of soils for highway engineering: JTG 3430—2020[S]. Beijing: China Communication Press, 2020. (in Chinese)

    [24]

    徐永福,董 平. 非饱和土的水分特征曲线的分形模型[J]. 岩土力学,2002,23(4):400 − 405. [XU Yongfu,DONG Ping. Fractal models for the soil-water characteristics of unsaturated soils[J]. Rock and Soil Mechanics,2002,23(4):400 − 405. (in Chinese with English abstract)]

    XU Yongfu, DONG Ping. Fractal models for the soil-water characteristics of unsaturated soils[J]. Rock and Soil Mechanics, 2002, 23(4): 400 − 405. (in Chinese with English abstract)

    [25]

    陶高梁. 岩土多孔介质孔隙结构的分形研究及其应用[D]. 武汉:武汉理工大学,2010. [TAO Gaoliang. Fractal approach on pore structure of rock and soil porous media and its applications[D]. Wuhan:Wuhan University of Technology,2010. (in Chinese with English abstract)]

    TAO Gaoliang. Fractal approach on pore structure of rock and soil porous media and its applications[D]. Wuhan: Wuhan University of Technology, 2010. (in Chinese with English abstract)

    [26]

    ZHOU Annan,FAN Yang,CHENG W C,et al. A fractal model to interpret porosity-dependent hydraulic properties for unsaturated soils[J]. Advances in Civil Engineering,2019,2019:3965803.

    [27]

    LEROUEIL S,BOUCLIN G,TAVENAS F,et al. Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal,1990,27(5):568 − 579. doi: 10.1139/t90-072

    [28]

    TAVENAS F,JEAN P,LEBLOND P,et al. The permeability of natural soft clays. Part II:Permeability characteristics[J]. Canadian Geotechnical Journal,1983,20(4):645 − 660. doi: 10.1139/t83-073

  • 加载中

(7)

(3)

计量
  • 文章访问数:  296
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2023-04-28
修回日期:  2023-07-20
刊出日期:  2024-05-15

目录