Evaluation of water curtain system effectiveness for underground crude oil storage caverns based on hydrogeochemical characteristics
-
摘要:
水幕系统有效性是地下水封油库安全稳定运行的重要基础条件,然而目前评价水幕系统有效性的方法并不高效便捷。以我国首个大型地下水封油库工程为背景,采集油库运行期现场水样和岩样进行水质检测分析和电镜扫描试验,获取库址区地下水水化学类型和岩石的矿物成分组成特征。采用数理统计方法,基于地下水水化学特征获得了不同部位地下水之间的水力联系,开展水幕系统有效性评价。研究表明:油库运行初期库址区地下水主要为HCO3—Na•Ca型水,围岩中的钾长石、钠长石和钙长石发生水化学反应,地下水中的K+、Na+、Ca2+和${\mathrm{HCO}}_3^- $浓度总体呈上升趋势,pH值总体呈下降趋势;Cl−浓度低于造成钢筋腐蚀的浓度,地下水对洞库支护系统无明显腐蚀作用;洞库周边监测孔地下水与水幕供水的水化学特征相似,说明水幕系统与油库围岩之间存在较好的水力联系,形成良好的水封效果。该研究可为判断地下水封油库运行情况提供重要依据,并为评价水幕系统有效性提供了一种科学方法。
Abstract:Water curtain system effectiveness is important for the safe and stable operation of underground crude oil storage caverns; however, current methods on evaluating the water curtain systems effectiveness are not efficient and convenient. Based on the first large water sealing petroleum storage caverns in China, this study analyzed the hydrogeochemical feature and the mineral composition characteristic of rock mass by water quality tests, SEM analysis, and statistical analysis. The groundwater curtaining system effectiveness were then assessed based on the hydraulic connection analysis. The results show that groundwater is dominated by HCO3 – Na•Ca type water in the early stage of oil storage running. With the interaction between groundwater and mineral components in rock, such as potassium feldspar, albite, and anorthite, the concentration of K+, Na+, Ca2+, Mg2+, and ${\mathrm{HCO}}_3^- $ increases, and pH decreases. The concentration of Cl− maintained in the allowable range, indicating no groundwater corrosion on the support system. The similarity of hydrogeochemical characteristics between water in the water curtaining system and background groundwater shows that water from the system has a hydraulic connection with the background groundwater, forming a good containment for the storage. This study provides an important basis for safe and effective operation of oil storage and a scientific method for judging the water curtain system effectiveness.
-
表 1 水质检测结果
Table 1. The water quality of samples
取样点
编号取样
时间pH 质量浓度/(mg·L−1) TDS 全硬度 K+ Na+ Ca2+ Mg2+ Cl− ${\mathrm{SO}}_4^{2-} $ ${\mathrm{HCO}}_3^- $ ${\mathrm{CO}}_3^{2-} $ ${\mathrm{NO}}_3^- $ 水幕
供水2015年7月 8.4 3.0 33.0 52.2 14.2 53.1 49.1 124.9 15.0 5.1 349.6 188.7 2016年1月 7.8 4.0 110.0 62.2 32.3 117.4 167.0 195.6 0 16.4 704.9 288.8 2016年7月 8.3 4.9 44.3 60.0 18.4 44.4 16.7 151.4 0 0.5 340.5 211.5 OF1 2015年7月 8.0 3.7 36.0 42.2 6.7 32.3 18.7 170.6 0 3.5 313.7 133.2 2016年1月 7.5 3.4 34.0 42.2 1.3 31.4 3.0 177.8 0 0.8 293.9 111.1 2016年7月 6.8 4.3 40.0 46.4 13.2 26.2 3.1 196.8 0 0.1 330.0 155.6 OF2 2015年7月 8.0 2.0 18.0 41.1 5.4 24.0 29.5 115.8 0 13.4 249.1 124.9 2016年1月 7.6 2.2 18.8 46.7 6.1 23.1 44.2 130.4 0 13.1 284.6 141.6 2016年7月 6.9 3.6 22.1 49.0 8.3 22.2 7.4 125.2 0 3.0 240.8 147.3 OF3 2015年7月 8.1 3.0 28.2 22.2 6.1 27.1 11.3 106.6 0 1.6 206.1 80.5 2016年1月 7.9 2.8 25.5 22.2 4.7 29.3 3.0 106.7 0 0.2 194.4 75.1 2016年7月 7.9 4.3 27.3 24.8 8.5 26.8 40.5 115.6 0 0.6 248.3 101.3 OF4 2015年7月 7.7 4.2 47.0 31.1 6.7 32.5 41.7 163.0 0 0.6 326.8 105.1 2016年1月 7.7 4.1 47.0 35.6 5.4 29.3 29.5 183.7 0 0.5 335.1 110.6 2016年7月 7.3 4.3 50.5 42.7 9.8 33.0 2.6 191.3 0 0.1 334.3 128.8 OF5 2015年7月 7.7 1.1 19.8 15.6 1.4 17.7 11.3 45.7 0 6.6 119.2 44.4 2016年1月 7.4 2.7 18.0 42.2 6.7 14.7 24.6 165.9 0 0.4 275.2 133.1 2016年7月 7.7 4.4 22.9 47.3 12.4 14.2 11.9 180.3 0 0.1 293.5 150.1 SF3 2015年7月 7.9 19.8 72.0 10.0 2.0 43.8 86.0 60.9 0 1.1 295.5 32.3 2016年1月 7.4 19.5 71.0 13.3 2.7 47.2 98.2 68.2 0 0 320.1 44.5 2016年7月 7.8 27.8 97.1 38.0 8.2 39.2 71.4 177.5 0 0.5 459.7 111.6 SF6 2015年7月 8.4 16.8 63.0 4.4 0.7 32.5 66.3 38.5 8.7 17.0 247.9 14.0 2016年1月 7.7 27.0 115.0 13.3 1.3 74.4 113.0 109.6 0 3.7 457.3 39.0 2016年7月 8.1 13.4 90.9 46.6 8.8 87.0 28.6 172.0 0 0.1 447.4 157.4 SF7 2015年7月 7.9 20.8 72.0 15.6 2.7 50.3 81.0 71.1 0 9.5 323.0 50.0 2016年1月 7.3 20.0 86.0 24.4 1.3 69.2 103.1 88.9 0 3.5 396.4 66.6 2016年7月 8.2 31.4 84.5 39.2 8.1 78.4 95.2 172 0 0.3 467.8 136.6 ZK009 2016年1月 8.4 1.0 16.5 15.6 0.0 14.7 14.7 50.4 2.9 2.5 118.3 39.0 2016年7月 6.8 1.4 17.3 13.2 2.8 17.4 21.4 55.0 0 1.8 130.4 50.3 ZK013 2016年1月 7.9 4.6 27.5 40.0 4.0 37.7 58.9 91.9 0 1.1 265.7 116.6 2016年7月 7.1 6.4 31.9 40.0 8.5 37.8 50.0 89.4 0 0.7 264.7 121.1 VT1 2016年1月 9.1 19.5 71.0 8.9 5.4 39.8 71.2 5.9 35.0 19.4 276.1 44.0 2016年7月 6.4 29.6 67.8 8.0 3.2 40.8 5.0 26.1 27.1 4.2 244.2 36.9 VT2 2016年1月 8.9 20.5 75.0 11.1 0.0 39.8 61.4 47.4 17.9 23.4 296.1 27.5 2016年7月 6.6 35.3 76.5 10.5 4.5 43.8 17.1 55.0 13.3 5.3 130.4 40.4 VT3 2016年1月 8.5 17.5 56.8 11.1 0.0 29.3 34.4 83.0 2.9 21.3 256.3 27.5 2016年7月 7.5 28.6 62.3 10.2 4.6 29.4 7.9 96.3 0 4.9 264.7 41.4 表 2 各岩石试样薄片的化学元素组成
Table 2. Chemical element composition of rock slices
元素 样品1 样品2 样品3 样品4 样品5 百分含量平均值/% 方差 百分含量平均值/% 方差 百分含量平均值/% 方差 百分含量平均值/% 方差 百分含量平均值/% 方差 C 2.48 1.02 3.17 1.88 0.70 0.54 0.47 0.57 1.13 0.90 O 69.07 4.73 66.62 4.22 62.36 4.54 66.06 3.57 66.92 2.56 Na 0.99 1.98 2.50 2.89 0.18 0.35 2.35 2.95 0.15 0.30 Mg 0.31 0.61 0 0 0 0 0 0 0.30 0.60 Al 8.19 2.25 8.97 1.93 4.86 6.05 6.88 0.97 2.31 2.99 Si 14.42 4.06 16.25 3.75 27.23 6.79 19.97 1.77 24.37 6.07 K 0.63 0.45 0.59 0.50 3.12 3.68 3.62 2.42 1.30 2.61 Fe 2.75 2.29 0.70 1.14 0.40 0.80 0 0 2.12 4.24 Ti 0.16 0.32 0.19 0.38 0 0 0 0 0.31 0.62 Zr 1.02 0.18 0.84 0.57 0.58 0.75 0.46 0.58 1.11 0.48 Pt 0 0 0.18 0.35 0.59 0.69 0.20 0.39 0 0 表 3 聚类分析分组表
Table 3. Group system of the cluster analysis
组号 取样点编号 第1组 TW、OF1、OF2、OF3、OF4、OF5、ZK013 第2组 SF3、SF6、SF7 第3组 VT1 第4组 VT2、VT3 第5组 ZK009 表 4 统计分析分类结果
Table 4. The classification of water samples
组号 取样点编号 第1组 TW、OF1、OF2、OF3、OF4、OF5、ZK013 第2组 SF3、SF6、SF7 第3组 VT1、VT2、VT3 第4组 ZK009 -
[1] 刘忠,张业金,张立德. 地下岩洞油库水封性高效调控策略[J]. 油气储运,2022,41(9):1036 − 1043. [LIU Zhong,ZHANG Yejin,ZHANG Lide. Efficient regulation strategy for water sealing of underground oil storage in rock caverns[J]. Oil & Gas Storage and Transportation,2022,41(9):1036 − 1043. (in Chinese with English abstract)]
LIU Zhong, ZHANG Yejin, ZHANG Lide. Efficient regulation strategy for water sealing of underground oil storage in rock caverns[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1036 − 1043. (in Chinese with English abstract)
[2] GOODALL D C,ÅBERG B,BREKKE T L. Fundamentals of gas containment in unlined rock caverns[J]. Rock Mechanics and Rock Engineering,1988,21(4):235 − 258. doi: 10.1007/BF01020278
[3] 李印,陈雪见,任文明,等. 大型水封洞库水幕系统的连通性评价[J]. 油气储运,2015,34(2):167 − 170. [LI Yin,CHEN Xuejian,REN Wenming,et al. Connectivity evaluation of water curtain system of large-scale water-sealed storage cavern[J]. Oil & Gas Storage and Transportation,2015,34(2):167 − 170. (in Chinese with English abstract)]
LI Yin, CHEN Xuejian, REN Wenming, et al. Connectivity evaluation of water curtain system of large-scale water-sealed storage cavern[J]. Oil & Gas Storage and Transportation, 2015, 34(2): 167 − 170. (in Chinese with English abstract)
[4] 郭得福,陈刚,党娜. 多相流地下水封液化石油洞库水幕系统的性能评价[J]. 油气储运,2020,39(9):1002 − 1011. [GUO Defu,CHEN Gang,DANG Na. Performance assessment on water curtain system for multiphase flow water-sealed underground liquefied petroleum storage Caverns[J]. Oil & Gas Storage and Transportation,2020,39(9):1002 − 1011. (in Chinese with English abstract)]
GUO Defu, CHEN Gang, DANG Na. Performance assessment on water curtain system for multiphase flow water-sealed underground liquefied petroleum storage Caverns[J]. Oil & Gas Storage and Transportation, 2020, 39(9): 1002 − 1011. (in Chinese with English abstract)
[5] 荆少东,许国辉,吴尚彬,等. 基于三维精细化数值模型的地下油库水封安全评价[J]. 地质科技通报,2023,42(6):1 − 11. [JING Shaodong,XU Guohui,WU Shangbin,et al. Assessment of the water-sealed safety of underground crude oil storage based on a three-dimensional refined numerical model[J]. Bulletin of Geological Science and Technology,2023,42(6):1 − 11. (in Chinese with English abstract)]
JING Shaodong, XU Guohui, WU Shangbin, et al. Assessment of the water-sealed safety of underground crude oil storage based on a three-dimensional refined numerical model[J]. Bulletin of Geological Science and Technology, 2023, 42(6): 1 − 11. (in Chinese with English abstract)
[6] 杨荣,胡成,陈刚,等. 水幕系统对地下水封洞库藏品安全的影响分析[J]. 水文地质工程地质,2018,45(1):30 − 37. [YANG Rong,HU Cheng,CHEN Gang,et al. An analysis of the impact of the water curtain system on the safety of an underground water-sealed cavern[J]. Hydrogeology & Engineering Geology,2018,45(1):30 − 37. (in Chinese with English abstract)]
YANG Rong, HU Cheng, CHEN Gang, et al. An analysis of the impact of the water curtain system on the safety of an underground water-sealed cavern[J]. Hydrogeology & Engineering Geology, 2018, 45(1): 30 − 37. (in Chinese with English abstract)
[7] 王者超,李术才,乔丽苹,等. 地下石油洞库水封性评价方法体系及应用[J]. 岩土工程学报,2016,38(11):2033 − 2042. [WANG Zhechao,LI Shucai,QIAO Liping,et al. Assessment methods for containment properties of underground crude oil storage caverns and their applications[J]. Chinese Journal of Geotechnical Engineering,2016,38(11):2033 − 2042. (in Chinese with English abstract)] doi: 10.11779/CJGE201611013
WANG Zhechao, LI Shucai, QIAO Liping, et al. Assessment methods for containment properties of underground crude oil storage caverns and their applications[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2033 − 2042. (in Chinese with English abstract) doi: 10.11779/CJGE201611013
[8] 王小倩. 地下水封洞库海水入侵机理与控制方法研究[D]. 沈阳:东北大学,2021. [WANG Xiaoqian. Mechanism and control method of seawater intrusion in underground water-sealed Caverns[D]. Shenyang:Northeastern University,2021. (in Chinese with English abstract)]
WANG Xiaoqian. Mechanism and control method of seawater intrusion in underground water-sealed Caverns[D]. Shenyang: Northeastern University, 2021. (in Chinese with English abstract)
[9] BENARDOS A G,KALIAMPAKOS D C. Hydrocarbon storage in unlined rock Caverns in Greek limestone[J]. Tunnelling and Underground Space Technology,2005,20(2):175 − 182. doi: 10.1016/j.tust.2004.08.005
[10] KIYOYAMA S. The present state of underground crude oil storage technology in Japan[J]. Tunnelling and Underground Space Technology,1990,5(4):343 − 349. doi: 10.1016/0886-7798(90)90129-8
[11] LEE C I,SONG J J. Rock engineering in underground energy storage in Korea[J]. Tunnelling and Underground Space Technology,2003,18(5):467 − 483. doi: 10.1016/S0886-7798(03)00046-4
[12] LEE Y N,YUN S P,KIM D Y,et al. Design and construction aspects of unlined oil storage caverns in rock[J]. Tunnelling and Underground Space Technology,1996,11(1):33 − 37. doi: 10.1016/0886-7798(96)00051-X
[13] WANG Zhechao,LI Shucai,QIAO Liping,et al. Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation[J]. International Journal of Rock Mechanics and Mining Sciences,2015,73:70 − 81. doi: 10.1016/j.ijrmms.2014.09.018
[14] 刘琦, 卢耀如, 张凤娥. 地下水封储油库库址的水文地质工程地质问题[J]. 水文地质工程地质,2008,35(4):1 − 5. [LIU Qi, LU Yaoru, ZHANG Feng’e. Hydrogeological and engineering geological problems of the site of underground oil storage caverns with water curtain[J]. Hydrogeology & Engineering Geology,2008,35(4):1 − 5. (in Chinese with English abstract)]
LIU Qi, LU Yaoru, ZHANG Feng’e. Hydrogeological and engineering geological problems of the site of underground oil storage caverns with water curtain[J]. Hydrogeology & Engineering Geology, 2008, 35(4): 1 − 5. (in Chinese with English abstract)
[15] 杨明举,关宝树. 地下水封裸洞储存LPG耦合问题的变分原理及应用[J]. 岩石力学与工程学报,2003,22(4):515 − 520. [YANG Mingju,GUAN Baoshu. Coupling model of underground gas-storage caverns and its application in engineering[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(4):515 − 520. (in Chinese with English abstract)] doi: 10.3321/j.issn:1000-6915.2003.04.001
YANG Mingju, GUAN Baoshu. Coupling model of underground gas-storage caverns and its application in engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(4): 515 − 520. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2003.04.001
[16] 王者超,李术才,梁建毅,等. 地下水封石油洞库渗水量预测与统计[J]. 岩土工程学报,2014,36(8):1490 − 1497. [WANG Zhechao,LI Shucai,LIANG Jianyi,et al. Prediction and measurement of groundwater flow rate of underground crude oil storage caverns[J]. Chinese Journal of Geotechnical Engineering,2014,36(8):1490 − 1497. (in Chinese with English abstract)]
WANG Zhechao, LI Shucai, LIANG Jianyi, et al. Prediction and measurement of groundwater flow rate of underground crude oil storage caverns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1490 − 1497. (in Chinese with English abstract)
[17] 王者超,李术才,乔丽苹,等. 大型地下石油洞库自然水封性应力-渗流耦合分析[J]. 岩土工程学报,2013,35(8):1535 − 1543. [WANG Zhechao,LI Shucai,QIAO Liping,et al. Assessment of natural containment properties of an underground crude oil storage cavern using fluid flow-stress coupling method[J]. Chinese Journal of Geotechnical Engineering,2013,35(8):1535 − 1543. (in Chinese with English abstract)]
WANG Zhechao, LI Shucai, QIAO Liping, et al. Assessment of natural containment properties of an underground crude oil storage cavern using fluid flow-stress coupling method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1535 − 1543. (in Chinese with English abstract)
[18] 时洪斌. 黄岛地下水封洞库水封条件和围岩稳定性分析与评价[D]. 北京:北京交通大学,2010. [SHI Hongbin. Analysis and evaluation of water seal condition and surrounding rock stability for Huangdao water sealed underground petroleum storage Caverns in rock[D]. Beijing:Beijing Jiaotong University,2010. (in Chinese with English abstract)]
SHI Hongbin. Analysis and evaluation of water seal condition and surrounding rock stability for Huangdao water sealed underground petroleum storage Caverns in rock[D]. Beijing: Beijing Jiaotong University, 2010. (in Chinese with English abstract)
[19] 李术才,平洋,王者超,等. 基于离散介质流固耦合理论的地下石油洞库水封性和稳定性评价[J]. 岩石力学与工程学报,2012,31(11):2161 − 2170. [LI Shucai,PING Yang,WANG Zhechao,et al. Assessments of containment and stability of underground crude oil storage caverns based on fluid-solid coupling theory for discrete medium[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(11):2161 − 2170. (in Chinese with English abstract)]
LI Shucai, PING Yang, WANG Zhechao, et al. Assessments of containment and stability of underground crude oil storage caverns based on fluid-solid coupling theory for discrete medium[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2161 − 2170. (in Chinese with English abstract)
[20] QIAO Liping,WANG Zhechao,LI Shucai,et al. Assessing containment properties of underground oil storage caverns:Methods and a case study[J]. Geosciences Journal,2017,21(4):579 − 593. doi: 10.1007/s12303-016-0063-4
[21] SHI Lei,ZHANG Bin,WANG Lei,et al. Functional efficiency assessment of the water curtain system in an underground water-sealed oil storage cavern based on time-series monitoring data[J]. Engineering Geology,2018,239:79 − 95. doi: 10.1016/j.enggeo.2018.03.015
[22] LIN F,LUAN H B,MA G W,et al. TEM improves groundwater inflow estimates in underground storage[J]. Oil Gas Journal,2015,113(11):78 − 87.
[23] 黄安达. 花岗岩裂隙反应性溶质运移规律研究[D]. 济南:山东大学,2018. [HUANG Anda. Reactive solute transport in single granitic fractures[D]. Jinan:Shandong University,2018. (in Chinese with English abstract)]
HUANG Anda. Reactive solute transport in single granitic fractures[D]. Jinan: Shandong University, 2018. (in Chinese with English abstract)
[24] WANG Zhechao,GLAIS Y,QIAO Liping,et al. Hydro-geochemical analysis of the interplay between the groundwater,host rock and water curtain system for an underground oil storage facility[J]. Tunnelling and Underground Space Technology,2018,71:466 − 477. doi: 10.1016/j.tust.2017.10.001
[25] QIAO Liping,HUANG Anda,WANG Zhechao,et al. Alteration of minerals and temporal evolution of solution in reactive flow through granitic rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences,2019,123:104105. doi: 10.1016/j.ijrmms.2019.104105
[26] JEZERSKÝ Z. Hydrogeochemistry of a deep gas-storage cavern,Czech Republic[J]. Hydrogeology Journal,2007,15(3):599 − 614. doi: 10.1007/s10040-007-0162-4
[27] KO K S,LEE J,LEE Kangkun,et al. Multivariate statistical analysis for groundwater mixing ratios around underground storage caverns in Korea[J]. Carbonates and Evaporites,2010,25(1):35 − 42. doi: 10.1007/s13146-009-0004-7
[28] KIM Y T,HYUN S G,CHEONG J Y,et al. Hydrogeochemistry in the coastal area during construction of geological repository[J]. Journal of Hydrology,2018,562:40 − 49. doi: 10.1016/j.jhydrol.2018.04.071
[29] 国家质量监督检验检疫总局,中国国家标准化管理委员会. 地下水质量标准:GB/T 14848—2017[S]. 北京:中国标准出版社,2017. [General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. Standard for groundwater quality:GB/T 14848—2017[S]. Beijing:Standards Press of China,2017. (in Chinese)]
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Standard for groundwater quality: GB/T 14848—2017[S]. Beijing: Standards Press of China, 2017. (in Chinese)
[30] 中华人民共和国建设部. 岩土工程勘察规范:GB 50021—2001[S]. 北京:中国建筑工业出版社,2004. [Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering:GB 50021—2001[S]. Beijing:China Architecture & Building Press,2004. (in Chinese)]
Ministry of Construction of the People’s Republic of China. Code for investigation of geotechnical engineering: GB 50021—2001[S]. Beijing: China Architecture & Building Press, 2004. (in Chinese)
[31] 王者超,孙华阳,乔丽苹,等. 一种地下水封油库水幕系统有效性分析与调控方法:CN108427657B[P]. 2021-05-25. [WANG Zhechao,SUN Huayang,QIAO Liping,HUANG Aada,et al. Effectiveness analysis method and regulation method of water curtain system of underground water-sealed oil depot:CN108427657B[P]. 2021-05-25. (in Chinese)]
WANG Zhechao, SUN Huayang, QIAO Liping, HUANG Aada, et al. Effectiveness analysis method and regulation method of water curtain system of underground water-sealed oil depot: CN108427657B[P]. 2021-05-25. (in Chinese)
[32] 胡立堂, 郭建丽, 张寿全, 等. 永定河生态补水的地下水位动态响应[J]. 水文地质工程地质,2020,47(5):5 − 11. [HU Litang, GUO Jianli, ZHANG Shouquan, et al. Response of groundwater regime to ecological water replenishment of the Yongding River[J]. Hydrogeology & Engineering Geology,2020,47(5):5 − 11. (in Chinese with English abstract)]
HU Litang, GUO Jianli, ZHANG Shouquan, et al. Response of groundwater regime to ecological water replenishment of the Yongding River[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 5 − 11. (in Chinese with English abstract)
[33] 乔丽苹,刘建,冯夏庭. 砂岩水物理化学损伤机制研究[J]. 岩石力学与工程学报,2007,26(10):2117 − 2124. [QIAO Liping,LIU Jian,FENG Xiating. Study on damage mechanism of sandstone under hydro-physico-chemical effects[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2117 − 2124. (in Chinese with English abstract)]
QIAO Liping, LIU Jian, FENG Xiating. Study on damage mechanism of sandstone under hydro-physico-chemical effects[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2117 − 2124. (in Chinese with English abstract)