Enhancing mechanical characteristics of soft rock tunnel surrounding rock through radial yield pressure system
-
摘要:
为处理深部软岩隧道存在的大变形问题,一般采取强支护或支护后进行修复,但收效甚微。在三维地质力学模型的基础上,提出以径向让压为核心的主动支护,先释放围岩应力,后抵抗围岩变形,改善挤压型大变形隧道的力学特性,有效地控制隧道开挖过程中的位移变形。文章以公路隧道典型大变形段为研究对象,建立三维地质力学模型,分析径向让压支护对围岩变形和支护承载能力的控制效果。结果表明:径向让压支护段相对正常支护段能有效控制围岩相对变形,从锚杆变形看出,最大拉应变减小了75.8%,最大压应变减小了67.6%;从围岩与初支接触压力看,将拱底、拱脚压力降低80%,验证了径向让压支护对于围岩塑性区发展和应力释放的有效控制。研究成果可为同类深部软岩隧道围岩控制技术提供数据参考。
Abstract:This study investigated the efficacy of radial yield support as an active measure to mitigate stress and deformation in deep soft rock tunnels experiencing large deformation. Traditional support methods have shown limited success in addressing this challenge. Leveraging a three-dimensional geomechanical model, this study proposes an active support system centered around radial yield pressure. This system releases stress in the surrounding rock before resisting deformation, thereby improving the mechanical properties of the tunnel and effectively controlling displacement and deformation during excavation. Through analysis using the three-dimensional geomechanical model, this study evaluated the control effect of radial yield support on surrounding rock deformation and support bearing capacity, focusing on a typical large deformation section of a highway tunnel. The results demonstrate a significant reduction in relative deformation of the surrounding rock compared to conventional support methods, with a reduction of 75.8% in tensile strain and 67.6% in compressive strain as evidenced by bolt deformation. Additionally, the contact pressure between the surrounding rock and primary support is reduced by 80%, indicating the effective control of radial yield support on plastic zone development and stress release in the surrounding rock. These findings offer valuable insights for the application of similar technologies in controlling surrounding rock in deep soft rock tunnels.
-
-
表 1 相似关系
Table 1. Similarities
名称介绍 相似关系 相似比 相似尺度 ${C_i} = {\delta _{\text{P}}}/{\delta _{\text{M}}} = {L_{\text{P}}}/{L_{\text{M}}}$ 50 相似位移 $ C_{\delta}=C_L\cdot C_{\varepsilon} $ 50 相似应力 $ C_{\sigma}=C_E\cdot C_{\varepsilon} $ 50 相似应变 $ C_{\varepsilon}=C_{\theta}=C_{\mu} $ 1 表 2 围岩相似材料的物理力学参数
Table 2. Measured physical and mechanical parameters of analogue materials of surrounding rock
Ⅴ级围岩 峰值强度/kPa 内聚力/kPa 摩擦角/(°) 弹性模量/MPa 原型 8 400 1 760.00 36.40 1 200.00 相似材料 167 35.36 36.43 23.48 表 3 相似材料力学参数
Table 3. Mechanical parameters of similar material
相似材料
类别弹性模量
/MPa抗拉强度
/MPa单向抗压
强度/MPa极限应变
/%锚杆 716.87 17.34 — 6.50 钢拱架 70000.00 126.00 — — 钢筋网 2400.00 — — 13.38 衬砌 28.10 — 0.951 — 注:—表示该参数未进行测量。 表 4 径向让压层相似材料和原型的力学参数
Table 4. Mechanical parameters of similar material and prototype of radial yielding layer
径向让压层 弹性模量/MPa 可压缩量/mm 相似材料 4 2 原型 200 100 -
[1] 董英,张茂省,李宁,等. 城市地下空间开发利用的地质安全评价内容与方法[J]. 水文地质工程地质,2020,47(5):161 − 168. [DONG Ying,ZHANG Maosheng,LI Ning,et al. Methods and contents of geological safety evaluation for urban underground space development and utilization[J]. Hydrogeology & Engineering Geology,2020,47(5):161 − 168. (in Chinese with English abstract)]
DONG Ying, ZHANG Maosheng, LI Ning, et al. Methods and contents of geological safety evaluation for urban underground space development and utilization[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 161 − 168. (in Chinese with English abstract)
[2] 张永双,郭长宝,李向全,等. 川藏铁路廊道关键水工环地质问题:现状与发展方向[J]. 水文地质工程地质,2021,48(5):1 − 12. [ZHANG Yongshuang,GUO Changbao,LI Xiangquan,et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor:Current status and development direction[J]. Hydrogeology & Engineering Geology,2021,48(5):1 − 12. (in Chinese with English abstract)]
ZHANG Yongshuang, GUO Changbao, LI Xiangquan, et al. Key problems on hydro-engineering-environmental geology along the Sichuan-Tibet Railway corridor: Current status and development direction[J]. Hydrogeology & Engineering Geology, 2021, 48(5): 1 − 12. (in Chinese with English abstract)
[3] 何箫,侯圣山,孟宪森,等. 川西康定—新都桥段菠茨沟组板岩蠕变特性及损伤模型[J]. 水文地质工程地质,2023,50(5):107 − 116. [HE Xiao,HOU Shengshan,MENG Xiansen,et al. Creep characteristics and nonlinear creep damage model of Bocigou Formation slate in Kangding-Xinduqiao section of West Sichuan[J]. Hydrogeology & Engineering Geology,2023,50(5):107 − 116. (in Chinese with English abstract)]
HE Xiao, HOU Shengshan, MENG Xiansen, et al. Creep characteristics and nonlinear creep damage model of Bocigou Formation slate in Kangding-Xinduqiao section of West Sichuan[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 107 − 116. (in Chinese with English abstract)
[4] YANG Shengqi,CHEN Miao,FANG Gang,et al. Physical experiment and numerical modelling of tunnel excavation in slanted upper-soft and lower-hard strata[J]. Tunnelling and Underground Space Technology,2018,82:248 − 264. doi: 10.1016/j.tust.2018.08.049
[5] CHEN Ziquan,HE Chuan,XU Guowen,et al. A case study on the asymmetric deformation characteristics and mechanical behavior of deep-buried tunnel in Phyllite[J]. Rock Mechanics and Rock Engineering,2019,52:4527 − 4545. doi: 10.1007/s00603-019-01836-2
[6] CLEJA-ŢIGOIU S,ŢIGOIU V. Rheological model for rock-type materials under large deformations[J]. Mechanics Research Communications,2021,114:103559.
[7] DAI Feng,LI Biao,XU Nuwen,et al. Microseismic early warning of surrounding rock mass deformation in the underground powerhouse of the Houziyan hydropower station,China[J]. Tunnelling and Underground Space Technology,2017,62:64 − 74. doi: 10.1016/j.tust.2016.11.009
[8] LI Guang,MA Fengshan,GUO Jie,et al. Study on deformation failure mechanism and support technology of deep soft rock roadway[J]. Engineering Geology,2020,264:105262. doi: 10.1016/j.enggeo.2019.105262
[9] 徐前卫,程盼盼,朱合华,等. 深埋隧道软弱围岩渐进性破坏及其锚固效应试验与模拟[J]. 岩土工程学报,2017,39(4):617 − 625. [XU Qianwei,CHENG Panpan,ZHU Hehua,et al. Experimental and numerical studies on progressive failure characteristics of weak surrounding rock mass of tunnel and its anchoring effect[J]. Chinese Journal of Geotechnical Engineering,2017,39(4):617 − 625. (in Chinese with English abstract)] doi: 10.11779/CJGE201704005
XU Qianwei, CHENG Panpan, ZHU Hehua, et al. Experimental and numerical studies on progressive failure characteristics of weak surrounding rock mass of tunnel and its anchoring effect[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 617 − 625. (in Chinese with English abstract) doi: 10.11779/CJGE201704005
[10] LI Yuanhai,TANG Xiaojie,YANG Shuo,et al. Evolution of the broken rock zone in the mixed ground tunnel based on the DSCM[J]. Tunnelling and Underground Space Technology,2019,84:248 − 258. doi: 10.1016/j.tust.2018.11.017
[11] ZHANG Qiangyong,ZHANG Yue,DUAN Kang,et al. Large-scale geo-mechanical model tests for the stability assessment of deep underground complex under true-triaxial stress[J]. Tunnelling and Underground Space Technology,2019,83:577 − 591. doi: 10.1016/j.tust.2018.10.011
[12] GUO Zhibiao,YANG Xiaojie,BAI Yunpeng ,et al. A study of support strategies in deep soft rock:The horsehead crossing roadway in Daqiang Coal Mine[J]. International Journal of Mining Science and Technology,2012,22(5):665-667.
[13] 董标,杨进京,殷洪波,等. 隧道钢拱节点让压性能分析[J]. 隧道建设(中英文),2021,41(9):1524 − 1529. [DONG Biao,YANG Jinjing,YIN Hongbo,et al. Yielding performance of tunnel steel arch joints[J]. Tunnel Construction,2021,41(9):1524 − 1529. (in Chinese with English abstract)]
DONG Biao, YANG Jinjing, YIN Hongbo, et al. Yielding performance of tunnel steel arch joints[J]. Tunnel Construction, 2021, 41(9): 1524 − 1529. (in Chinese with English abstract)
[14] 杨栋,王全成,姜昭群. 高强大变形屈服锚索承载特性室内试验研究[J]. 水文地质工程地质,2022,49(3):79 − 86. [YANG Dong,WANG Quancheng,JIANG Zhaoqun. Laboratory test on the mechanical behavior of high-strength and large-deformation yield anchor cable[J]. Hydrogeology & Engineering Geology,2022,49(3):79 − 86. (in Chinese with English abstract)]
YANG Dong, WANG Quancheng, JIANG Zhaoqun. Laboratory test on the mechanical behavior of high-strength and large-deformation yield anchor cable[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 79 − 86. (in Chinese with English abstract)
[15] 董建华,徐斌,吴晓磊. 高地应力软岩隧道分级让压支护结构的力学特性分析[J]. 中国公路学报,2024,37(3):342 − 355. [DONG Jianhua,XU Bin,WU Xiaolei. Analysis of mechanical properties of graded yielding support structure for high ground stress soft rock tunnel[J]. Chinese Journal of Highway,2024,37(3):342 − 355. (in Chinese with English abstract)]
DONG Jianhua, XU Bin, WU Xiaolei. Analysis of mechanical properties of graded yielding support structure for high ground stress soft rock tunnel[J]. Chinese Journal of Highway, 2024, 37(3): 342 − 355. (in Chinese with English abstract)
[16] 刘星辰. 挤压大变形隧道泡沫混凝土让压支护结构研究[D]. 重庆:重庆交通大学,2021. [LIU Xingchen. Study on the stress yielding support structure with foamed concrete in extrusion large deformation tunnel[D]. Chongqing:Chongqing Jiaotong University,2021. (in Chinese with English abstract)]
LIU Xingchen. Study on the stress yielding support structure with foamed concrete in extrusion large deformation tunnel[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese with English abstract)
[17] 刘旭斌,申翔宇,闵新皓. 基于超前地质预报的大型岩溶隧道处理技术[J]. 现代隧道技术,2022,59(增刊1):881 − 891. [LIU Xubin,SHEN Xiangyu,MIN Xinhao. Large-scale karst tunnel treatment technology based on advance geological prediction[J]. Modern Tunnelling Technology,2022,59(Sup 1):881 − 891. (in Chinese with English abstract)]
LIU Xubin, SHEN Xiangyu, MIN Xinhao. Large-scale karst tunnel treatment technology based on advance geological prediction[J]. Modern Tunnelling Technology, 2022, 59(Sup 1): 881 − 891. (in Chinese with English abstract)
[18] CHEN Xuguang,ZHANG Qiangyong,LI Shucai,et al. Geo-mechanical model testing for stability of underground gas storage in halite during the operational period[J]. Rock Mechanics and Rock Engineering,2016,49(7):2795 − 2809. doi: 10.1007/s00603-016-0940-1
[19] LI Yuanhai,ZHANG Qi,LIN Zhibin,et al. Spatiotemporal evolution rule of rocks fracture surrounding gob-side roadway with model experiments[J]. International Journal of Mining Science and Technology. 26(5),895 – 902.
[20] ZHU Guoqiang,FENG Xiating,ZHOU Yangyi,et al. Physical model experimental study on spalling failure around a tunnel in synthetic marble[J]. Rock Mechanics and Rock Engineering,2020,53(2):909 − 926.
[21] LI Zhongkui,LIU Hui,DAI Rong,et al. Application of numerical analysis principles and key technology for high fidelity simulation to 3-D physical model tests for underground Caverns[J]. Tunnelling and Underground Space Technology,2005,20(4):390 − 399. doi: 10.1016/j.tust.2005.01.004
[22] ZHU Weishen,LI Yong,LI Shucai,et al. Quasi-three-dimensional physical model tests on a cavern complex under high in situ stresses[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(2):199 − 209. doi: 10.1016/j.ijrmms.2010.11.008
[23] LI Shucai,WANG Qi,WANG Hongtao,et al. Model test study on surrounding rock deformation and failure mechanisms of deep roadways with thick top coal[J]. Tunnelling and Underground Space Technology,2015,47:52 − 63. doi: 10.1016/j.tust.2014.12.013
[24] JIANG Bei,XIN Zhongxin,ZHANG Xiufeng,et al. Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels[J]. International Journal of Mining Science and Technology,2023,33(7):829 − 841. doi: 10.1016/j.ijmst.2023.03.008
[25] LEI Mingfeng,PENG Limin,SHI Chenghua. Model test to investigate the failure mechanisms and lining stress characteristics of shallow buried tunnels under unsymmetrical loading[J]. Tunnelling and Underground Space Technology,2015,46:64 − 75. doi: 10.1016/j.tust.2014.11.003
[26] ZHANG Chaoxuan,TAN Xianjun,TIAN Hongming,et al. Lateral compression and energy absorption of foamed concrete-filled polyethylene circular pipe as yielding layer for high geo-stress soft rock tunnels[J]. International Journal of Mining Science and Technology,2022,32(5):1087 − 1096. doi: 10.1016/j.ijmst.2022.08.011
[27] XIN C L,WANG Z Z,YU J. The evaluation on shock absorption performance of buffer layer around the cross section of tunnel lining[J]. Soil Dynamics and Earthquake Engineering,2020,131:106032. doi: 10.1016/j.soildyn.2020.106032
[28] GUAN Leilei,CHEN Yonggui,YE Weimin,et al. Foamed concrete utilizing excavated soil and fly ash for urban underground space backfilling:Physical properties,mechanical properties,and microstructure[J]. Tunnelling and Underground Space Technology,2023,134:104995. doi: 10.1016/j.tust.2023.104995
[29] HUANG Feng,WU Chuangzhou,JANG Boan,et al. Instability mechanism of shallow tunnel in soft rock subjected to surcharge loads[J]. Tunnelling and Underground Space Technology,2020,99:103350. doi: 10.1016/j.tust.2020.103350
[30] ZHANG Qiangyong,LIU Chuancheng,DUAN Kang,et al. True three-dimensional geomechanical model tests for stability analysis of surrounding rock during the excavation of a deep underground laboratory[J]. Rock Mechanics and Rock Engineering,2020,53(2):517 − 537. doi: 10.1007/s00603-019-01927-0
[31] CHEON D S,JEON S,PARK C,et al. Characterization of brittle failure using physical model experiments under polyaxial stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences,2011,48(1):152 − 160. doi: 10.1016/j.ijrmms.2010.10.001
[32] YANG Shengqi,CHEN Miao,JING Hongwen,et al. A case study on large deformation failure mechanism of deep soft rock roadway in Xin’an coal mine,China[J]. Engineering Geology,2017,217:89 − 101. doi: 10.1016/j.enggeo.2016.12.012
-