玄武岩CO2矿化封存监测方法和技术体系研究

廖松林, 马诗佳, 夏菖佑, 高志豪, 刘牧心, 梁希, 戴青, 黄新我, 蒋泽原, 于冰清. 玄武岩CO2矿化封存监测方法和技术体系研究[J]. 水文地质工程地质, 2024, 51(4): 41-52. doi: 10.16030/j.cnki.issn.1000-3665.202308038
引用本文: 廖松林, 马诗佳, 夏菖佑, 高志豪, 刘牧心, 梁希, 戴青, 黄新我, 蒋泽原, 于冰清. 玄武岩CO2矿化封存监测方法和技术体系研究[J]. 水文地质工程地质, 2024, 51(4): 41-52. doi: 10.16030/j.cnki.issn.1000-3665.202308038
LIAO Songlin, MA Shijia, XIA Changyou, GAO Zhihao, LIU Muxin, LIANG Xi, DAI Qing, HUANG Xinwo, JIANG Zeyuan, YU Bingqing. Research on monitoring methods and technical systems of CO2 mineralization in basalt formation[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 41-52. doi: 10.16030/j.cnki.issn.1000-3665.202308038
Citation: LIAO Songlin, MA Shijia, XIA Changyou, GAO Zhihao, LIU Muxin, LIANG Xi, DAI Qing, HUANG Xinwo, JIANG Zeyuan, YU Bingqing. Research on monitoring methods and technical systems of CO2 mineralization in basalt formation[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 41-52. doi: 10.16030/j.cnki.issn.1000-3665.202308038

玄武岩CO2矿化封存监测方法和技术体系研究

详细信息
    作者简介: 廖松林(1994—),男,硕士,主要从事二氧化碳捕集、利用与封存技术,二氧化碳驱油与封存、数值模拟等方面研究工作。E-mail:3203861816@qq.com
    通讯作者: 马诗佳(1989—),女,博士,主要从事二氧化碳驱油与封存等方面研究工作。E-mail:shijia.ma@gdccus.org
  • 中图分类号: X701;X141

Research on monitoring methods and technical systems of CO2 mineralization in basalt formation

More Information
  • 玄武岩CO2矿化封存是近年来逐渐受到关注的新一类CO2地质封存方式,已在冰岛和美国成功开展技术示范。玄武岩CO2矿化封存主要将CO2转化为固体矿物,在CO2注入方式、埋存深度、储盖层物理性质要求等方面与砂岩储层碳封存差异较大,两者监测方案也存在显著差异。文章基于美国Wallula项目和冰岛Carbfix项目的监测经验,结合玄武岩CO2矿化封存特点,梳理不同CO2注入相态(超临界态和溶解态)的玄武岩CO2矿化封存监测方案,横向比较玄武岩CO2矿化封存、咸水层封存和油气藏封存的监测体系。砂岩储层的封存监测体系侧重观测CO2储层的地质构造完整性,以及评价潜在泄漏路径上CO2浓度的变化,监测周期通常要求在50 a以上。相较而言,玄武岩CO2矿化封存监测体系侧重于观测“水-CO2-玄武岩”的矿化反应效果,反映井下流体物质性质的变化,包括各化学组分浓度、示踪剂浓度、pH值等参数,定性定量评价矿化反应程度及碳封存效果。最后,基于咸水层封存和油气藏封存的监测技术经验,结合玄武岩CO2矿化封存监测的技术需求,总结提出由监测范围、监测目的、监测方案和预警体系4大部分组成的玄武岩CO2矿化封存通用性监测体系,形成了“地下-井筒-地表-地上”的三维空间监测体系。文章提出的玄武岩CO2矿化封存监测方法和技术体系具有通用性,可为未来开展玄武岩CO2矿化封存示范项目提供借鉴。

  • 加载中
  • 图 1  碳封存机理作用时间与封存安全性之间的关系(据文献[10 , 26]修改)

    Figure 1. 

    图 2  神华CCS示范工程立体监测技术体系(据文献[16]修改)

    Figure 2. 

    图 3  低-特低渗透油藏 CO2驱油封存监测体系(据文献[18]修改)

    Figure 3. 

    图 4  玄武岩CO2矿化封存监测体系

    Figure 4. 

    表 1  美国Wallula项目监测方案梳理[9, 2729]

    Table 1.  US Wallula project monitoring scheme[9, 2729]

    监测阶段 监测方式 监测目的 备注
    注气前 ①抽水试验 评估注入层位的渗透性 在钻井过程中,进行抽水试验
    ②岩屑取样分析 分析储层岩性 在钻井过程中,提取目的层附近岩屑
    ③地球物理测井分析 明确储层物理性质(孔隙度、渗透率等) 分析测井资料(包括脉冲中子测井、密度测井、电测井、中子测井、成像测井等)
    ④地下流体取样分析 确定样品中组分浓度(溶解性总固体(TDS)、
    碱度、Ca2+和Mg2+等)参数的基准值
    使用特定的井下流体采样器定期提取井下流体
    ⑤土壤环境CO2浓度监测 确定浅层土壤中CO2浓度基准值 采集注入井周围的浅层土壤气体样本
    注气中 ①储层温度及压力测试 确定井下CO2流体的分布情况 监测储层温压条件变化,发现注入区顶部的温度升高约8°C,表明CO2发生了流动
    ②地下流体取样分析及同位素监测 确定样品中相关组分浓度及同位素浓度
    试验值的变化情况
    在注入样品中添加同位素18O和13C
    ③示踪剂监测 监测CO2羽流扩展情况 在开始注入CO2流体的 48 h内,注入全氟化碳示踪剂(PFT)
    ④土壤环境CO2浓度监测 确定注入过程浅层土壤CO2浓度的变化情况 采集注入井周围的浅层土壤气体样本[9]
    注气后 ①流体温度及压力测试和残余饱和度测试(RST) 监测CO2注入后地层变化,以及是否
    存在CO2泄漏
    注入层的大部分CO2都分布于 2 个玄武岩互流带的最上层,同时也证实在注入层上方的开放层段没有明显的CO2存在
    ②地下流体取样分析及同位素监测 监测CO2与玄武岩的反应和地下水中相关
    组分浓度变化
    注入CO2后,地下水中相关组分浓度比注入前提高了1.5~3个数量级;18O和13C同位素浓度显著低于原位地层水,表明注入的CO2与周围的玄武岩已发生活跃的地球化学反应
    ③土壤环境CO2浓度监测 判断是否存在CO2浅层泄漏 确定注入后浅层土壤中CO2浓度的变化情况
    闭场
    环境评估
    ①电缆地球物理测井分析 评估周围储层和上覆岩层中CO2的存在,以及评估注入井周围地层岩性特征变化的可能性 由于浮力,游离态CO2存在于上部两层玄武岩(注入区)
    ②抽水测试 评估潜在的小到中尺度渗透性变化 CO2注入后与注入前地层结构没有明显的变化
    ③侧壁岩心取样分析 评估CO2与玄武岩反应生成的矿化物的情况 采集注入层约 50 块井壁岩心,通过X射线显微断层扫描(XMT)成像技术和纳米二次离子质谱(NanoSIMS)同位素分析法进行对比检查,发现有较多的碳酸盐矿化分布,并有新生成的结核,其成分主要为铁白云石[28]
      注:在注入977 t 超临界CO2到玄武岩地层 2 a 后,项目于2015年6月进行了 1 次全面的封存监测环境评估,确定玄武岩CO2矿化封存情况,评估结束后关井,封存项目结束。
    下载: 导出CSV

    表 2  冰岛Carbfix项目监测方案[3439]

    Table 2.  The Iceland Carbfix project monitoring scheme[3439]

    监测阶段 监测方式 监测目的 备注
    注气前 ①抽水试验 评估注入层位的渗透性 在钻井过程中,进行抽水试验
    ②岩石样品分析 分析封存地点的岩石矿物成分及化学成分 钻井过程中,对岩石进行取样
    ③土壤CO2通量测定分析 确定浅层土壤中CO2浓度基准值 采集注入井周围的浅层土壤气体样本
    ④流体取样分析 确定流体相关参数及示踪剂的基准值 研究地下水补给径流条件及各含水层水力联系情况[19]
    ⑤地层温度及压力测量 确定本底值 对初始地层温度及压力进行多次测量
    项目运行时 ①示踪剂监测(非反应型示踪剂、反应型示踪剂、同位素示踪剂等) 确定样品中相关离子浓度及同位素浓度试验值的变化情况;监测CO2羽流扩展情况 在注入井中注入非反应型示踪剂,对选定的监测井进行流体取样分析,其中非反应型示踪剂是通过注气管道注入,反应型示踪剂是通过注水管道注入
    ②流体取样分析 监测CO2与玄武岩的反应和地下水中各组分浓度变化 分析温度、pH、溶解无机碳(DIC)、主要元素(Si、Ca、Mg、Fe等)浓度。注气时,从2012年1月至2012年9月,关键监测井采样频率为每周采样 2 次,之后再到2013年7月(停止注入后1 a ),期间指定监测井 1 周取样 1 次[30]
    ③反应运移模型预测分析 预测CO2羽的运移情况、矿化程度以及CO2的注入对储层岩石物理性质及地下水水质的影响 流动运移模型、反应模型及其耦合模型分析。根据前期的物探数据、岩样、水样的分析结果以及不断更新的监测数据对模型的参数进行调整,通常包括地层的渗透率、孔隙度等物理性质参数,矿物的反应动力学参数及反应比表面积等。在此基础上增加模型的模拟时间
    ④土壤CO2通量测定分析 判断是否存在CO2浅层泄漏 注入井及监测井周围以25 m×25 m网格设置CO2气体探测器,注入井地下水下游设置 4 组监测线
    项目关闭后(计划) ①流体取样分析 持续监测地下水相关离子浓度变化 每隔 1 a 对选定的监测井进行取样分析
    ②反应运移模型预测分析 持续更新、完善模型 每隔 1 a 更新 1 次模型
    ③大气CO2监测 持续监测场地周围CO2浓度变化 每隔 1 a对场地周围选定地点的大气中的CO2进行测量
      注:关闭后的监测应不少于10 a ,若监测数据表明95%以上CO2已矿化,可提前终止监测。
    下载: 导出CSV

    表 3  不同类型地质封存案例监测方案对比

    Table 3.  Comparison of different monitoring schemes

    封存类型 咸水层封存 油气藏封存 玄武岩CO2矿化封存
    应用案例 神华CCS示范工程 低-特低渗透油藏CO2驱油封存项目 美国Wallula项目和冰岛Carbfix项目
    监测体系 “大气-地表-地下”CO2地质封存立体监测技术 低-特低渗透油藏CO2驱油封存监测体系
    监测方案 从空间位置上进行了地下、地表、地上 3 个层次的全方位监测,从监测内容上主要着重监测CO2运移、泄漏情况及目标储层的安全性 空间维度上,分为地层监测、地下水监测、浅层土壤监测、地表环境监测、井场监测和大气监测;
    从时间维度上分为驱油封存前监测、驱油封存过程中监测、场地封闭过程监测和闭场监测
    美国Wallula项目的监测方案分为4个阶段:注入前、注入时、注入后和闭场的环境评估;冰岛Carbfix项目监测方案分为注入前、项目运行时、项目关闭后
    监测技术 ①地下监测技术:VSP监测、地下温度及压力监测和地质构造监测技术;②地表监测技术:浅层地下水取样分析和土壤环境监测评价技术;③大气监测技术:近地表大气CO2浓度监测和涡度相关系统监测技术 ①地质监测:4D地震技术和时移VSP 技术等;②井场监测:超声波成像测井、井筒完整性监测技术;③CO2的运移及泄漏监测:CO2气体分析仪、便携式水样分析仪等 美国Wallula项目主要有流体取样分析、同位素监测以及岩心取样分析等;冰岛Carbfix项目主要包括地球化学监测和同位素示踪剂监测等
    监测目的 对CO2在地下空间的扩散运移状态及其环境影响进行监测与评价 保障CO2驱油和封存的安全性,监测CO2是否泄漏 定量分析矿化反应程度,评价玄武岩CO2矿化封存效果
    下载: 导出CSV

    表 4  玄武岩CO2矿化封存监测方案及建议

    Table 4.  Monitoring scheme for CO2 storage in basalt

    监测位置 监测方式 监测指标 建议监测频率
    地上空间监测 传感器监测 距离地表 2 m 处CO2浓度分布及通量变化 确定不同监测点,注气前 3 d,采用传感器连续监测
    地表环境监测 CO2浓度及通量传感器监测 不同位置土壤中CO2浓度及通量 注气前 1 个月开始监测,每月记录 2 次
    取样监测 地表植被的生长及健康状况、浅层地下水中CO2浓度 每 2 个月监测 1 次
    井内监测 生产套管壁缺陷(腐蚀和磨损)监测 套管柱各部件的位置、管柱剖面上管柱内径的变化、管壁缺陷 固井完成后检测,每 1 a 监测 1 次
    固井质量测井监测(声波测井、磁脉冲探伤等) 声波水泥测井曲线 固井完成后检测,每 1 a 监测 1 次
    压力传感器监测 注入井环空压力 每天监测环空压力变化 1 次
    地下空间监测 监测井流体取样监测 CO2、示踪剂、Ca2+、Mg2+、Fe2+浓度,电导率,TDS,DIC,pH值 ①项目开始注入前1个月从监测井和注入井取样监测*;②CO2注入过程中,
    每周监测 2 次;③注入结束后,监测井每周监测 1 次,直至项目宣布结束
    压力温度传感器监测 注入层位压力、温度 注气开始前 3 d 进行实时监测,记录井底压力、温度数据,长期记录更新数据
    电磁方法监测 注入井不同层位电阻率和电荷率 注气前 3 d 开始,每 30 min 监测 1 次
    项目结束评定标准:取样分析CO2矿化率达到95%以上、井筒完整无泄漏、地表和地上CO2无泄漏,之后继续监测 2 a
      *注:项目注入开始前 1 个月进行流体取样监测,不同于Carbfix项目提前 2 a 开始取样检测[42],因地层环境的稳定性和项目工程准备的时效性进行优化而给出的建议监测频率。
    下载: 导出CSV
  • [1]

    赵震宇,姚舜,杨朔鹏,等. “双碳”目标下:中国CCUS发展现状、存在问题及建议[J]. 环境科学,2023,44(2):1128 − 1138. [ZHAO Zhenyu,YAO Shun,YANG Shuopeng,et al. Under goals of carbon peaking and carbon neutrality:Status,problems,and suggestions of CCUS in China[J]. Environmental Science,2023,44(2):1128 − 1138. (in Chinese with English abstract)]

    ZHAO Zhenyu, YAO Shun, YANG Shuopeng, et al. Under goals of carbon peaking and carbon neutrality: Status, problems, and suggestions of CCUS in China[J]. Environmental Science, 2023, 44(2): 1128 − 1138. (in Chinese with English abstract)

    [2]

    张贤,杨晓亮,鲁玺,等. 中国二氧化碳捕集利用与封存 (CCUS) 年度报告 (2023)[R]. 中国21世纪议程管理中心,全球碳捕集与封存研究院,清华大学,2023. [ZHANG Xian,YANG Xiaoliang,LU Xi,et al. China CO2 capture,utilization and storage (CCUS) annual report (2023)[R]. China Agenda 21 Management Center,Global Institute of Carbon Capture and Storage,Tsinghua University,2023. (in Chinese)]

    ZHANG Xian, YANG Xiaoliang, LU Xi, et al. China CO2 capture, utilization and storage (CCUS) annual report (2023)[R]. China Agenda 21 Management Center, Global Institute of Carbon Capture and Storage, Tsinghua University, 2023. (in Chinese)

    [3]

    宋新民,王峰,马德胜,等. 中国石油二氧化碳捕集,驱油与埋存技术进展及展望[J]. 石油勘探与开发,2023,50(1):206 − 218. [SONG Xinmin,WANG Feng,MA Desheng,et al. Progress and prospect of carbon dioxide capture,utilization and storage in CNPC oilfields[J]. Petroleum Exploration & Development,2023,50(1):206 − 218. (in Chinese with English abstract)] doi: 10.11698/PED.20220366

    SONG Xinmin, WANG Feng, MA Desheng, et al. Progress and prospect of carbon dioxide capture, utilization and storage in CNPC oilfields[J]. Petroleum Exploration & Development, 2023, 50(1): 206 − 218. (in Chinese with English abstract) doi: 10.11698/PED.20220366

    [4]

    王昊,林千果,郭军红,等. 黄土塬地区CO2驱油封存泄漏地下水监测体系研究[J]. 环境工程,2021,39(8):217 − 226. [WANG Hao,LIN Qianguo,GUO Junhong,et al. Development of a groundwater monitoring system for CO2 leakage of CO2-EOR storage in Loess Tableland Region[J]. Environmental Engineering,2021,39(8):217 − 226. (in Chinese with English abstract)]

    WANG Hao, LIN Qianguo, GUO Junhong, et al. Development of a groundwater monitoring system for CO2 leakage of CO2-EOR storage in Loess Tableland Region[J]. Environmental Engineering, 2021, 39(8): 217 − 226. (in Chinese with English abstract)

    [5]

    李琦,刘桂臻,李小春,等. 多维度视角下CO2捕集利用与封存技术的代际演变与预设[J]. 工程科学与技术,2022,54(1):157 − 166. [LI Qi,LIU Guizhen,LI Xiaochun,et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences,2022,54(1):157 − 166. (in Chinese with English abstract)]

    LI Qi, LIU Guizhen, LI Xiaochun, et al. Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective[J]. Advanced Engineering Sciences, 2022, 54(1): 157 − 166. (in Chinese with English abstract)

    [6]

    张成龙,郝文杰,胡丽莎,等. 泄漏情景下碳封存项目的环境影响监测技术方法[J]. 中国地质调查,2021,8(4):92 − 100. [ZHANG Chenglong,HAO Wenjie,HU Lisha,et al. Environmental impact monitoring technology for carbon storage projects under leakage scenarios[J]. Geological Survey of China,2021,8(4):92 − 100. (in Chinese with English abstract)]

    ZHANG Chenglong, HAO Wenjie, HU Lisha, et al. Environmental impact monitoring technology for carbon storage projects under leakage scenarios[J]. Geological Survey of China, 2021, 8(4): 92 − 100. (in Chinese with English abstract)

    [7]

    KELEMEN P B,MCQUEEN N,WILCOX J,et al. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air:Review and new insights[J]. Chemical Geology,2020,550:119628.

    [8]

    邱添,曾令森,申婷婷. 基性-超基性岩碳酸盐化固碳效应研究进展[J]. 中国地质调查,2021,8(4):20 − 32. [QIU Tian,ZENG Lingsen,SHEN Tingting. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks[J]. Geological Survey of China,2021,8(4):20 − 32. (in Chinese with English abstract)]

    QIU Tian, ZENG Lingsen, SHEN Tingting. Progresses on carbon sequestration through carbonation of mafic-ultramafic rocks[J]. Geological Survey of China, 2021, 8(4): 20 − 32. (in Chinese with English abstract)

    [9]

    MCGRAIL B P,SPANE F A,AMONETTE J E,et al. Injection and monitoring at the Wallula basalt pilot project[J]. Energy Procedia,2014,63:2939 − 2948. doi: 10.1016/j.egypro.2014.11.316

    [10]

    高志豪,夏菖佑,廖松林,等. 玄武岩CO2矿化封存潜力评估方法研究现状及展望[J]. 高校地质学报,2023,29(1):66 − 75. [GAO Zhihao,XIA Changyou,LIAO Songlin,et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities,2023,29(1):66 − 75. (in Chinese with English abstract)]

    GAO Zhihao, XIA Changyou, LIAO Songlin, et al. Progress of methods for assessing CO2 mineralization storage potential in basalt[J]. Geological Journal of China Universities, 2023, 29(1): 66 − 75. (in Chinese with English abstract)

    [11]

    李万伦,陈晶,贾凌霄,等. 玄武岩CO2 地质封存研究进展[J]. 地质论评,2022,68(2):648 − 657. [LI Wanlun,CHEN Jing,JIA Lingxiao,et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review,2022,68(2):648 − 657. (in Chinese with English abstract)]

    LI Wanlun, CHEN Jing, JIA Lingxiao, et al. Research progress of CO2 geological sequestration in basalts[J]. Geological Review, 2022, 68(2): 648 − 657. (in Chinese with English abstract)

    [12]

    VIALLE S,DRUHAN J L,MAHER K. Multi-phase flow simulation of CO2 leakage through a fractured caprock in response to mitigation strategies[J]. International Journal of Greenhouse Gas Control,2016,44:11 − 25. doi: 10.1016/j.ijggc.2015.10.007

    [13]

    张森琦,刁玉杰,程旭学,等. 二氧化碳地质储存逃逸通道及环境监测研究[J]. 冰川冻土,2010,32(6):1251 − 1261. [ZHANG Senqi,DIAO Yujie,CHENG Xue,et al. CO2 geological storage leakage routes and environment monitoring[J]. Journal of Glaciology and Geocryology,2010,32(6):1251 − 1261. (in Chinese with English abstract)]

    ZHANG Senqi, DIAO Yujie, CHENG Xue, et al. CO2 geological storage leakage routes and environment monitoring[J]. Journal of Glaciology and Geocryology, 2010, 32(6): 1251 − 1261. (in Chinese with English abstract)

    [14]

    任韶然,李德祥,张亮,等. 地质封存过程中CO2泄漏途径及风险分析[J]. 石油学报,2014,35(3):591 − 601. [REN Shaoran,LI Dexiang,ZHANG Liang,et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica,2014,35(3):591 − 601. (in Chinese with English abstract)] doi: 10.7623/syxb201403024

    REN Shaoran, LI Dexiang, ZHANG Liang, et al. Leakage pathways and risk analysis of carbon dioxide in geological storage[J]. Acta Petrolei Sinica, 2014, 35(3): 591 − 601. (in Chinese with English abstract) doi: 10.7623/syxb201403024

    [15]

    吴江莉,马俊杰. 浅议CO2地质封存的潜在风险[J]. 环境科学导刊,2012,31(6):89 − 93. [WU Jiangli,MA Junjie. A discussion about potential risks of geological storage of CO2[J]. Environmental Science Survey,2012,31(6):89 − 93. (in Chinese with English abstract)] doi: 10.3969/j.issn.1673-9655.2012.06.025

    WU Jiangli, MA Junjie. A discussion about potential risks of geological storage of CO2[J]. Environmental Science Survey, 2012, 31(6): 89 − 93. (in Chinese with English abstract) doi: 10.3969/j.issn.1673-9655.2012.06.025

    [16]

    中国二氧化碳地质封存环境风险研究组. 中国二氧化碳地质封存环境风险评估[M]. 北京:化学工业出版社,2018. [Environmental risk assessment of geological storage of carbon dioxide in China[M]. Beijing:Chemical Industry Press,2018. (in Chinese)]

    Environmental risk assessment of geological storage of carbon dioxide in China[M]. Beijing: Chemical Industry Press, 2018. (in Chinese)

    [17]

    王晓桥,马登龙,夏锋社,等. 封储二氧化碳泄漏监测技术的研究进展[J]. 安全与环境工程,2020,27(2):23 − 34. [WANG Xiaoqiao,MA Denglong,XIA Fengshe,et al. Research progress on leakage monitoring technology for CO2 storage[J]. Safety and Environmental Engineering,2020,27(2):23 − 34. (in Chinese with English abstract)]

    WANG Xiaoqiao, MA Denglong, XIA Fengshe, et al. Research progress on leakage monitoring technology for CO2 storage[J]. Safety and Environmental Engineering, 2020, 27(2): 23 − 34. (in Chinese with English abstract)

    [18]

    林千果,张少君,王香增,等. 低渗透和特低渗透油藏CO2驱油封存监测体系的建立[J]. 安全与环境学报,2019,19(2):693 − 703. [LIN Qianguo,ZHANG Shaojun,WANG Xiangzeng,et al. Integrated monitoring system for CO2-EOR and storage in low and extra-low permeability reservoir[J]. Journal of Safety and Environment,2019,19(2):693 − 703. (in Chinese with English abstract)]

    LIN Qianguo, ZHANG Shaojun, WANG Xiangzeng, et al. Integrated monitoring system for CO2-EOR and storage in low and extra-low permeability reservoir[J]. Journal of Safety and Environment, 2019, 19(2): 693 − 703. (in Chinese with English abstract)

    [19]

    LI Q,LIU G. Risk assessment of the geological storage of CO2:A review[M]//Geologic Carbon Sequestration. Cham: Springer International Publishing, 2016: 249−284.

    [20]

    GUNNARSSON I,ARADÓTTIR E S,OELKERS E H,et al. The rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur at the CarbFix2 site[J]. International Journal of Greenhouse Gas Control,2018,79:117 − 126. doi: 10.1016/j.ijggc.2018.08.014

    [21]

    SNÆBJÖRNSDÓTTIR S Ó,SIGFÚSSON B,MARIENI C,et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment,2020,1(2):90 − 102. doi: 10.1038/s43017-019-0011-8

    [22]

    MATTER J M,KELEMEN P B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation[J]. Nature Geoscience,2009,2(12):837 − 841. doi: 10.1038/ngeo683

    [23]

    KELEMEN P B,MATTER J. In situ carbonation of peridotite for CO2 storage[J]. Proc Natl Acad Sci USA,2008,105(45):17295 − 17300. doi: 10.1073/pnas.0805794105

    [24]

    张亮,温荣华,耿松鹤,等. CO2在玄武岩中矿物封存研究进展及关键问题[J]. 高校化学工程学报,2022,36(4):473 − 480. [ZHANG Liang,WEN Ronghua,GENG Songhe,et al. Mineral trapping of CO2 in basalt rock:Progress and key issues[J]. Journal of Chemical Engineering of Chinese Universities,2022,36(4):473 − 480. (in Chinese with English abstract] doi: 10.3969/j.issn.1003-9015.2022.04.002

    ZHANG Liang, WEN Ronghua, GENG Songhe, et al. Mineral trapping of CO2 in basalt rock: Progress and key issues[J]. Journal of Chemical Engineering of Chinese Universities, 2022, 36(4): 473 − 480. (in Chinese with English abstract doi: 10.3969/j.issn.1003-9015.2022.04.002

    [25]

    何民宇,刘维燥,刘清才,等. CO2矿物封存技术研究进展[J]. 化工进展,2022,41(4):1825 − 1833. [HE Minyu,LIU Weizao,LIU Qingcai,et al. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress,2022,41(4):1825 − 1833. (in Chinese with English abstract)]

    HE Minyu, LIU Weizao, LIU Qingcai, et al. Research progress in CO2 mineral sequestration technology[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1825 − 1833. (in Chinese with English abstract)

    [26]

    RAZA A,GLATZ G,GHOLAMI R,et al. Carbon mineralization and geological storage of CO2 in basalt:Mechanisms and technical challenges[J]. Earth-Science Reviews,2022,229:104036. doi: 10.1016/j.earscirev.2022.104036

    [27]

    SULLIVAN E C,HARDAGE B A,MCGRAIL B P,et al. Breakthroughs in seismic and borehole characterization of basalt sequestration targets[J]. Energy Procedia,2011,4:5615 − 5622. doi: 10.1016/j.egypro.2011.02.551

    [28]

    MCGRAIL B P,SCHAEF H T,SPANE F A,et al. Wallula basalt pilot demonstration project:Post-injection results and conclusions[J]. Energy Procedia,2017,114:5783 − 5790. doi: 10.1016/j.egypro.2017.03.1716

    [29]

    WHITE S K,SPANE F A,SCHAEF H T,et al. Quantification of CO2 mineralization at the Wallula Basalt Pilot project[J]. Environmental Science Technology,2020,54(22):14609 − 14616. doi: 10.1021/acs.est.0c05142

    [30]

    SNÆBJÖRNSDÓTTIR S Ó,OELKERS E H,MESFIN K,et al. The chemistry and saturation states of subsurface fluids during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland[J]. International Journal of Greenhouse Gas Control,2017,58:87 − 102. doi: 10.1016/j.ijggc.2017.01.007

    [31]

    MATTER J M,STUTE M,SNÆBJÖRNSDOTTIR S Ó,et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions[J]. Science,2016,352(6291):1312 − 1314. doi: 10.1126/science.aad8132

    [32]

    SNÆBJÖRNSDOTTIR S Ó,GISLASON S R,GALECZKA I M,et al. Reaction path modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi,SW-Iceland[J]. Geochimica et Cosmochimica Acta,2018,220:348 − 366. doi: 10.1016/j.gca.2017.09.053

    [33]

    李万伦,徐佳佳,贾凌霄,等. 玄武岩封存CO2技术方法及其进展[J]. 水文地质工程地质,2022,(3):164−173. [LI Wanlun,XU Jiajia,JIA Lingxiao,et al. Research progress on key technologies of CO2 storage in basalts[J]. Hydrogeology & Engineering Geology,2022,49(3):164−173. (in Chinese with English abstract)]

    LI Wanlun, XU Jiajia, JIA Lingxiao, et al. Research progress on key technologies of CO2 storage in basalts[J]. Hydrogeology & Engineering Geology, 2022, 49(3): 164−173. (in Chinese with English abstract)

    [34]

    MATTER J M,BROECKER W S,GISLASON S R,et al. The CarbFix Pilot Project–storing carbon dioxide in basalt[J]. Energy Procedia,2011,4:5579 − 5585. doi: 10.1016/j.egypro.2011.02.546

    [35]

    GíSLASON S R,SIGURDARDÓTTIR H,ARADÓTTIR E S,et al. A brief history of CarbFix:Challenges and victories of the project's pilot phase[J]. Energy Procedia,2018,146:103 − 114. doi: 10.1016/j.egypro.2018.07.014

    [36]

    CLARK D E,GUNNARSSON I,ARADÓTTIR E S,et al. The chemistry and potential reactivity of the CO2-H2S charged injected waters at the basaltic CarbFix2 site,Iceland[J]. Energy Procedia,2018,146:121 − 128. doi: 10.1016/j.egypro.2018.07.016

    [37]

    CLARK D E,OELKERS E H,GUNNARSSON I,et al. CarbFix2:CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250°C[J]. Geochimica et Cosmochimica Acta,2020,279:45 − 66. doi: 10.1016/j.gca.2020.03.039

    [38]

    RATOUIS T M P,SNÆBJÖRNSDÓTTIR S Ó,VOIGT M J,et al. Carbfix 2:A transport model of long-term CO2 and H2S injection into basaltic rocks at Hellisheidi,SW-Iceland[J]. International Journal of Greenhouse Gas Control,2022,114:103586. doi: 10.1016/j.ijggc.2022.103586

    [39]

    MATTER J M,STUTE M,HALL J,et al. Monitoring permanent CO2 storage by in situ mineral carbonation using a reactive tracer technique[J]. Energy Procedia,2014,63:4180 − 4185. doi: 10.1016/j.egypro.2014.11.450

    [40]

    魏宁,刘胜男,李小春,等. CO2地质利用与封存的关键技术清单[J]. 洁净煤技术,2022,28(6):14 − 25. [WEI Ning,LIU Shengnan,LI Xiaochun,et al. Key technologies inventory of CO2 geological utilization and storage[J]. Clean Coal Technology,2022,28(6):14 − 25. (in Chinese with English abstract)]

    WEI Ning, LIU Shengnan, LI Xiaochun, et al. Key technologies inventory of CO2 geological utilization and storage[J]. Clean Coal Technology, 2022, 28(6): 14 − 25. (in Chinese with English abstract)

    [41]

    王容,杨宇尧,段希宇,等. CO2封存地下监测评价技术[J]. 油气藏评价与开发,2011,1(4):44 − 46. [WANG Rong,YANG Yuyao,DUAN Xiyu,et al. Subsurface monitoring and evaluation technique for CO2 storage[J]. Reservoir Evaluation and Development,2011,1(4):44 − 46. (in Chinese with English abstract)] doi: 10.3969/j.issn.2095-1426.2011.04.009

    WANG Rong, YANG Yuyao, DUAN Xiyu, et al. Subsurface monitoring and evaluation technique for CO2 storage[J]. Reservoir Evaluation and Development, 2011, 1(4): 44 − 46. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1426.2011.04.009

    [42]

    胥蕊娜,姜培学. CO2地质封存与利用技术研究进展[J]. 中国基础科学,2018,20(4):44 − 48. [XU Ruina,JIANG Peixue. Research progress of CO2 geological storage and utilization technology[J]. China Basic Science,2018,20(4):44 − 48. (in Chinese with English abstract)] doi: 10.3969/j.issn.1009-2412.2018.04.008

    XU Ruina, JIANG Peixue. Research progress of CO2 geological storage and utilization technology[J]. China Basic Science, 2018, 20(4): 44 − 48. (in Chinese with English abstract) doi: 10.3969/j.issn.1009-2412.2018.04.008

    [43]

    马永法, 周学军, 董俊领, 等. 黑龙江林甸地区深部咸水层CO2地质储存条件与潜力评估[J]. 水文地质工程地质,2022,49(6):179 − 189. [MA Yongfa, ZHOU Xuejun, DONG Junling, et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology,2022,49(6):179 − 189. (in Chinese with English abstract)]

    MA Yongfa, ZHOU Xuejun, DONG Junling, et al. Geological storage conditions and potential assessment of CO2 in deep saline aquifers in Lindian of Heilongjiang Province[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 179 − 189. (in Chinese with English abstract)

    [44]

    马鑫, 李旭峰, 文冬光, 等. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质,2021,48(6):196 − 205. [MA Xin, LI Xufeng, WEN Dongguang, et al. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar Area of Xinjiang[J]. Hydrogeology & Engineering Geology,2021,48(6):196 − 205. (in Chinese with English abstract)]

    MA Xin, LI Xufeng, WEN Dongguang, et al. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the eastern Junggar Area of Xinjiang[J]. Hydrogeology & Engineering Geology, 2021, 48(6): 196 − 205. (in Chinese with English abstract)

    [45]

    李琦,蔡博峰,陈帆,等. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程,2019,37(2):13 − 21. [LI Qi,CAI Bofeng,CHEN Fan,et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering,2019,37(2):13 − 21. (in Chinese with English abstract)]

    LI Qi, CAI Bofeng, CHEN Fan, et al. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 2019, 37(2): 13 − 21. (in Chinese with English abstract)

    [46]

    王保登,赵兴雷,崔倩,等. 中国神华煤制油深部咸水层CO2地质封存示范项目监测技术分析[J]. 环境工程,2018,36(2):33 − 36. [WANG Baodeng,ZHAO Xinglei,CUI Qian,et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project[J]. Environmental Engineering,2018,36(2):33 − 36. (in Chinese with English abstract)]

    WANG Baodeng, ZHAO Xinglei, CUI Qian, et al. Environmental monitoring analysis of injected CO2 in saline layer for Shenhua CO2 storage project[J]. Environmental Engineering, 2018, 36(2): 33 − 36. (in Chinese with English abstract)

    [47]

    赵兴雷,崔倩,王保登,等. CO2地质封存项目环境监测评估体系初步研究[J]. 环境工程,2018,36(2):15 − 20. [ZHAO Xinglei,CUI Qian,WANG Baodeng,et al. Preliminary study of environmental monitoring assessment system for CO2 storage projects[J]. Environmental Engineering,2018,36(2):15 − 20. (in Chinese with English abstract)]

    ZHAO Xinglei, CUI Qian, WANG Baodeng, et al. Preliminary study of environmental monitoring assessment system for CO2 storage projects[J]. Environmental Engineering, 2018, 36(2): 15 − 20. (in Chinese with English abstract)

    [48]

    赵兴雷,马瑞,李国涛,等. 神华咸水层CO2封存监测安全评价体系的研究[J]. 化工进展,2016,35(增刊2):389 − 395. [ZHAO Xinglei,MA Rui,LI Guotao,et al. Studies on multi-factor safety system in the monitoring process for Shenhua CO2 saline layers storage project[J]. Chemical Industry and Engineering Progress,2016,35(Sup2):389 − 395. (in Chinese with English abstract)]

    ZHAO Xinglei, MA Rui, LI Guotao, et al. Studies on multi-factor safety system in the monitoring process for Shenhua CO2 saline layers storage project[J]. Chemical Industry and Engineering Progress, 2016, 35(Sup2): 389 − 395. (in Chinese with English abstract)

    [49]

    汤沭成,林千果,王昊,等. 黄土塬地区CO2驱油封存泄漏土壤监测体系研究[J]. 安全与环境工程,2020,27(6):112 − 118. [TANG Shucheng,LIN Qianguo,WANG Hao,et al. Study on soil monitoring system for CO2 leakage of CO2-EOR and storage in Loess Tableland Region[J]. Safety and Environmental Engineering,2020,27(6):112 − 118. (in Chinese with English abstract)]

    TANG Shucheng, LIN Qianguo, WANG Hao, et al. Study on soil monitoring system for CO2 leakage of CO2-EOR and storage in Loess Tableland Region[J]. Safety and Environmental Engineering, 2020, 27(6): 112 − 118. (in Chinese with English abstract)

    [50]

    庞凌云,蔡博峰,陈潇君,等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》环境风险评价流程研究[J]. 环境工程,2019,37(2):45 − 50. [PANG Lingyun,CAI Bofeng,CHEN Xiaojun,et al. Research on process of technical guideline on environmental risk assessment for carbon dioxide capture,utilization,and storage (on trial)[J]. Environmental Engineering,2019,37(2):45 − 50. (in Chinese with English abstract)]

    PANG Lingyun, CAI Bofeng, CHEN Xiaojun, et al. Research on process of technical guideline on environmental risk assessment for carbon dioxide capture, utilization, and storage (on trial)[J]. Environmental Engineering, 2019, 37(2): 45 − 50. (in Chinese with English abstract)

    [51]

    马劲风,杨杨,蔡博峰,等. 不同类型二氧化碳地质封存项目的环境监测问题与监测范围[J]. 环境工程,2018,36(2):10 − 14. [MA Jinfeng,YANG Yang,CAI Bofeng,et al. Environmental monitoring range for different types of CO2 geologic sequestration projects and its related issues[J]. Environmental Engineering,2018,36(2):10 − 14. (in Chinese with English abstract)]

    MA Jinfeng, YANG Yang, CAI Bofeng, et al. Environmental monitoring range for different types of CO2 geologic sequestration projects and its related issues[J]. Environmental Engineering, 2018, 36(2): 10 − 14. (in Chinese with English abstract)

    [52]

    朱佩誉. CO2在咸水层的地质封存及应用进展[J]. 洁净煤技术,2021,27(增刊2):33 − 38. [ZHU Peiyu. Geological storage and application progress of CO2 in saline aquifer[J]. Clean Coal Technology,2021,27(Sup2):33 − 38. (in Chiense with English abstract]

    ZHU Peiyu. Geological storage and application progress of CO2 in saline aquifer[J]. Clean Coal Technology, 2021, 27(Sup2): 33 − 38. (in Chiense with English abstract

    [53]

    李琦,刘桂臻,蔡博峰,等. 二氧化碳地质封存环境风险评估的空间范围确定方法研究[J]. 环境工程,2018,36(2):27 − 32. [LI Qi,LIU Guizhen,CAI Bofeng,et al. Principle and methodology of determining the spactial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering,2018,36(2):27 − 32. (in Chinese with English abstract)]

    LI Qi, LIU Guizhen, CAI Bofeng, et al. Principle and methodology of determining the spactial range of environmental risk assessment of carbon dioxide geological storage[J]. Environmental Engineering, 2018, 36(2): 27 − 32. (in Chinese with English abstract)

    [54]

    中国环境科学学会. 二氧化碳地质利用与封存项目泄漏风险评价规范:T/CSES 71—2022[S]. [Chinese Society for Environmental Sciences. The specification on risk assessment of the leakage:T/CSES 71—2022[S]. (in Chinese)]

    Chinese Society for Environmental Sciences. The specification on risk assessment of the leakage: T/CSES 71—2022[S]. (in Chinese)

  • 加载中

(4)

(4)

计量
  • 文章访问数:  683
  • PDF下载数:  32
  • 施引文献:  0
出版历程
收稿日期:  2023-08-17
修回日期:  2023-10-13
刊出日期:  2024-07-15

目录