-
摘要:
在“双碳”目标大背景下,盐穴是实现地质储能、碳封存的重要方式之一,但我国盐穴资源数量、质量不明,盐穴调查技术体系不完善,严重制约盐穴资源开发利用。通过分析我国主要盐矿区地质勘探报告、储量核实报告、企业年报及文献报道等,形成了我国盐穴资源数量、可利用性的科学认识和基本判断;在盐穴集中区开展综合探测技术试验并结合前人试验成果,初步构建了盐穴资源调查技术体系。结果表明:(1)我国盐穴资源丰富,储量大、分布广、埋深适宜、具备规模化开发利用条件,其中华东和华中地区已有盐穴资源最为丰富。(2)通过建立盐穴资源可利用性评价体系,将全国盐穴资源分为Ⅰ、Ⅱ、Ⅲ 3 级,Ⅰ级已有盐穴资源占比约29.4%,主要分布在华东、华中地区的江苏、湖北、河南等省份,是开发利用的优选区;Ⅱ级已有盐穴资源占比约65.4%,广泛分布于华中、西北和西南地区,可作为开发利用远景区;Ⅲ级已有盐穴资源占比约5.2%,整体地质条件不适宜开发利用。(3)地面物探可查明盐矿区区域地质、盐层地质、水文地质及盐腔分布情况,指导盐穴建库选址;井中物探精度高,可获取盐矿品味、腔体结构等信息,服务储库建设及运行监测。研究结果可为我国盐穴资源规划及开发提供基础数据和技术支撑。
Abstract:Under the background of the “carbon peaking and carbon neutrality goals”, the salt cavern is an important place for geological storage and carbon sequestration. The limited knowledge of the quantity and quality of the salt cavern and immature investigation technology constrains the development and utilization of salt cavern. After analyzing the geological exploration reports on major salt mines, reserves reports, enterprise annual reports, and research articles, a scientific understanding and basic judgment of the amount and utilizability of salt caverns in China are obtained; a technical system of salt cavern resource survey is established through a test with comprehensive detection technology in the concentrated area of salt cavern. The results show that salt cavern resources in China are characterized by abundant reserves, wide distribution, feasible burial depth, and convenient utilization on large scale. The most abundant salt cavern resources occur in the east and central regions. The national salt cavern resources are divided into levels I, II, and III by using an availability evaluation method system of salt cavern resource. Level I accounting for about 29.4%, is mainly distributed in Jiangsu, Hubei, Henan, and other provinces in east and central China. Salt cavern resources in level I are preferred for development and utilization. Level II accounting for about 65.4%, is widely distributed in southwest, northwest, and centra China, and can be used as a prospective area for development and utilization. Salt cavern resources in level III accounting for about 5.2%, are not suitable for development and utilization. Ground geophysical exploration, which can identify the characteristics of the regional geology, salt layer geology, hydrogeology, and salt cavity distribution of the salt mining area, guides the site selection on the salt cavern construction; geophysical exploration of high precision, which can obtain the information of salt mine levels and cavity structure, benefit the construction and operation detection of storage. This study provides the basic data and technical support for the planning and development of salt cavern resources in China.
-
-
图 1 金坛盆地区域构造示意图[7]
Figure 1.
表 1 盐穴资源可利用性地质评价指标等级表
Table 1. Geological evaluation indexes and levels of salt cavern utilizability
目标 因素(分值范围) 因子 权重 等级标准 等级分值 盐穴资源
可利用性
地质评价区域地质特征A
(0~20)区域沉积特征A1 5 海相盐丘、陆相少夹层 3~5 陆相多夹层 0~2 断层发育特征A2 5 不发育 3~5 较发育 0~2 区域盖层特性A3 5 稳定分布 3~5 不稳定分布 0~2 区域地震特征A4 5 地震活动不活跃 3~5 地震活动活跃 0~2 盐层地质特征B
(0~60)盐岩分布范围B1 10 ≥50 km2 6~10 <50 km2 0~5 盐层埋深范围B2 10 500~3000 m 6~10 <500 m或>3000 m 0~5 盐层累计厚度B3 10 ≥100 m 6~10 <100 m 0~5 含矿率B4 10 ≥70% 6~10 <70% 0~5 NaCl平均品位B5 10 ≥70% 6~10 <70% 0~5 夹层岩性B6 10 非致密岩性 6~10 致密岩性 0~5 水文地质特征C
(0~20)地下水系分布C1 10 盐层与地下水系隔离 6~10 盐层与地下水系连通 0~5 地表水源分布C2 10 淡水资源充足,且离矿区距离适中 6~10 淡水资源不足,或水源离矿区距离较远 0~5 表 2 盐穴资源可利用性等级划分表
Table 2. Levels of salt cavern utilizability
可利用性分级 开发适宜性 地质情况 Ⅰ级 优选区 构造简单,断层不发育,地震活动弱,盖层稳定,盐层分布范围广、埋深适中、
盐层厚度大、品质高,夹层岩性易溶,淡水资源丰富、水文地质条件简单Ⅱ级 远景区 盐层分布范围中等,盐层顶板埋深偏浅或偏深、累计厚度中等、品位不高,但整体地质条件良好,存在适宜开发的岩盐层段 Ⅲ级 不适宜区 盐层分布范围小,埋深过浅或过深,累计厚度小,含矿率低,多次出现采卤区地面冒卤、变形、塌陷等问题 表 3 我国主要盐矿床地质特征及可利用性等级
Table 3. Geological features and utilizability level of major salt deposit in China
序号 地区 盐矿/
成盐区区域沉积
特征断层发育
特征区域盖层
特性区域地震
特征盐岩分布
范围/km2盐岩埋深
范围/m盐层累计
厚度/m含矿率
/%NaCl品位/% 夹层岩性 地下水系
分布地表水源分布 综合评分 可利用等级 A1 A2 A3 A4 B1 B2 B3 B4 B5 B6 C1 C2 1 华北 辛集—宁晋盐矿 陆相层状 新生界地层中未发现断层,构造简单 横向分布稳定,裂隙不发育,岩性致密 地震活动较弱 1000 1000~
3600120~220 80 93 灰质泥岩、含泥石膏岩等 盐层与地下
水系隔离有淡水
资源80 Ⅱ级 2 华东 金坛盐矿 陆相层状 区内断层少,主体部位未见断层 分布稳定,
岩性坚硬地震活动较弱 61 888~
1236160 84~95 80~85 含膏泥岩、白云质泥岩、含硝泥岩等 盐层与地下
水系隔离水资源
丰富90 Ⅰ级 3 淮安盐矿 陆相层状 断层不发育,构造简单 横向分布稳定,裂隙不发育,岩性致密坚硬 地震活动较弱 82 1000~
250040~170 55~87 75~90 泥岩 盐层与地下
水系隔离水资源
丰富85 Ⅰ级 4 丰县盐矿 陆相层状 构造简单,沉积稳定 横向分布稳定,裂隙不发育,岩性致密 地震活动较弱 116 800~
135520~460 69 70 泥岩、硬石膏岩和钙芒硝岩 盐层与地下
水系隔离有河流
依托85 Ⅰ级 5 东兴盐矿 陆相层状 构造简单,断层不发育 横向分布稳定,力学性质一般 地震活动较弱 61 218~594 14~198 90 20~95 泥岩、含膏泥岩、粉砂质泥岩、含钙芒硝泥岩等 隔离效果差,矿区多次出现地面冒卤、变形、塌陷等地质灾害 水资源
丰富59 Ⅲ级 6 大汶口盐矿 陆相多薄层盐岩矿床 断裂较发育,但断裂在盐矿范围内不发育 横向分布稳定,岩性致密 地震活动较弱 36 840~
164030~150 20~56 87 硬石膏岩
为主盐层与地下
水系隔离水资源
丰富76 Ⅱ级 7 东营盐矿 陆相层状 构造简单,断层不发育 横向分布稳定,岩性致密 地震活动较弱 200 2935~
440071 12 94~99 泥岩、含盐泥岩 盐层与地下
水系隔离水资源
丰富73 Ⅲ级 8 清江盐矿 陆相层状 构造简单,褶皱平缓、规模小,断裂少 横向分布
稳定,力学
性质差历史无地震记录 134 593~
110735~
13470~75 60~75 含盐、芒硝、石膏
泥岩老采区因过度开发导致溶腔通过顶板溶蚀裂隙与地下
水层串通水资源
丰富75 Ⅱ级 9 周田盐矿 陆相层状 部分区域断层构造发育 横向分布
稳定,力学
性质差地震活动较弱 7 800~
120075~204 75 54~64 泥岩 老采区因过度开发导致矿区地面变形塌陷,部分盐层与地下水连通 水资源
丰富62 Ⅲ级 10 华中 叶舞盐矿 陆相层状 构造简单,部分区域断层构造发育,但可避开 分布稳定,厚度大,岩性致密 地震活动较弱 400 1117~
2600293~662 75 75~90 含硬石膏粉砂岩、粉砂岩等 盐层与地下
水系隔离水资源
丰富89 Ⅰ级 11 濮阳盐矿 陆相盐丘 存在隐伏构造 分布稳定,厚度大,岩性致密 地震活动较弱 500 2100~
2700800~
100060 75~95 薄层泥岩和砂岩 盐层与地下
水系隔离水资源
丰富84 Ⅱ级 12 云应盐矿 陆相层状 构造简单,褶皱、断裂和裂隙均不发育 分布稳定,厚度大,岩性致密 地震活动较弱 260 300~850 30~180 75 70~80 硬石膏岩、钙芒硝岩 盐层与地下
水系隔离水资源
丰富79 Ⅱ级 13 潜江盐矿 陆相层状 构造简单,断层、裂隙不发育 分布稳定,
厚度大地震活动较弱 1600 700~
2145300~400 90 70~98 无水芒硝矿石和钙芒硝泥岩 盐层与地下
水系隔离水资源
丰富92 Ⅰ级 14 小板盐矿 陆相层状 构造简单,断层不发育 分布稳定,
厚度大地震活动较弱 330 400~
1300100~480 72 80~90 泥质钙芒硝岩、灰质泥岩、硬石膏质泥岩、粉砂质泥岩 盐层与地下
水系隔离水资源
丰富88 Ⅰ级 15 建南盐矿 海相层状 构造较发育,节理裂隙发育 分布稳定,
力学性质好地震活动较弱 15 1871~
23014~8 70 80 泥岩 盐层与地下
水系隔离水资源
丰富58 Ⅲ级 16 王城盐矿 湖相层状 构造简单,断层不发育 分布稳定,
厚度大地震活动较弱 10 237~324 11 75 10~54 泥岩 盐层与地下
水系隔离水资源
较丰富54 Ⅲ级 17 衡阳盐矿 陆相薄层状 构造简单,断层不发育 分布稳定,
力学性质好地震活动较弱 57 212~
113250~360 56 10~96 泥岩、含硬石膏泥岩、含钙芒硝硬石膏泥岩 盐层与地下
水系隔离水资源
丰富79 Ⅱ级 18 澧县盐矿 陆相层状 局部有小褶皱和断层,节理、裂隙比较发育 分布稳定,
力学性质差地震活动较弱 8 220~500 11 40 81 泥岩、含硬石膏白云岩、泥质钙芒硝、无水芒硝 盐层与地下
水系隔离水资源
丰富56 Ⅲ级 19 华南 龙归盐矿 陆相层状 构造简单,断层不发育 分布稳定,
力学性质差地震活动较弱 3 480~640 8~56 71 55~76 泥岩 盐层与地下
水系连通水资源
丰富56 Ⅲ级 20 三水盐矿 陆相层状 构造简单,断层不发育 分布稳定,
力学性质差地震活动较弱 0.9 1244~
127876~115 40 49~70 泥岩 盐层与地下
水系隔离水资源
丰富68 Ⅲ级 21 东腾盐矿 陆相层状 构造简单,断层不发育 分布稳定,
密封性较好,
力学性质一般地震活动较弱 0.6 794~860 30 40 50 泥岩 盐层与地下
水系隔离水资源
丰富65 Ⅲ级 22 西北 陕北盐矿 海相层状 构造简单,断层不发育 分布稳定,
岩性致密,
力学性质好地震活动较弱 43000 2200~
2850100~150 90 95~97 泥质白云岩、硬石膏岩,岩性致密 盐层与地下
水系隔离水资源
丰富84 Ⅱ级 23 固原硝口—上店子盐矿 陆相层状 断裂构造十分发育 分布稳定,
岩性致密,
力学性质好历史和现代地震活动活跃 31 85~800 34~287 90 31~99 含盐泥岩,含盐量10%~29% 盐层与地下
水系隔离淡水资
源匮乏68 Ⅲ级 24 漳县盐矿 陆相层状 产状变化大,断层多,矿床开采比较复杂 分布稳定,
结构致密地震活动较弱 315 70~400 62 13~92 55~95 泥岩 盐层与地下
水系隔离水资源
量较差57 Ⅲ级 25 西南 四川盆地 海相碳酸盐型 东部及东南部边缘大断裂对矿体有破坏 分布稳定,
厚度大历史和现代地震活动活跃 180000 1000~
500010~700 50 70 泥岩 盐层与地下
水系隔离水资源
丰富77 Ⅱ级 26 滇中成盐区 陆相层状 构造不发育,无节理裂隙 分布稳定,
岩性坚硬地震活动较弱 >60 300~900 136~449 80 70 泥质岩、碳酸盐泥质岩,主要组分易溶 盐层与地下
水系隔离水资源
丰富78 Ⅱ级 27 滇西成盐区 陆相层状 构造较复杂 分布稳定 地震活动较活跃 75 10~400 10~100 80 50~60 泥岩 盐层与地下
水系隔离水资源
丰富68 Ⅲ级 28 滇南成盐区 陆相层状 构造简单,呈褶皱状或单斜状产出 分布稳定 地震活动较活跃 400 10~400 10~100 80 50~90 泥岩 盐层与地下
水系隔离水资源
丰富74 Ⅲ级 地层 厚度/m 界 系 统 组 段 新生界 第四系 全新/更新统 东台组 0~79 古近系 渐新/始新统 三垛组 上段 58~257 中段 0~496 下段 戴南组 上段 75~319 下段 63~340 始新/古新统 阜宁组 四段 54~315 三段 33~255 二段 51~236 一段 41~445 表 5 盐穴资源调查技术体系
Table 5. Technical system of salt cavern survey
地质问题 调查方法组合 盐盆
尺度区域地质构造 地质路线调查、遥感、二维地震、大地电磁、重力 地表水 地质路线调查、遥感 地下水 瞬变电磁、测井 盐层分布 二维地震、测井 盐穴
库址
尺度微断裂调查 二/三维地震、高精度重力 含/隔水层评价 瞬变电磁、测井 盖层评价 二/三维地震、测井 建库盐层选择 二/三维地震、测井 顶底板性质评价 二/三维地震、测井 盐腔
尺度腔体识别 三维地震 腔体溶蚀范围确定 三维地震、井中充电法 腔体形态精细刻画 井中声呐扫描 -
[1] 常小娜. 中国地下盐矿特征及盐穴建库地质评价[D]. 北京:中国地质大学(北京),2014. [CHANG Xiaona. Study on subsurface characteristics for salt deposits in china and geological eevaluation on salt cavern storage[D]. Beijing:China University of Geosciences,2014. (in Chinese with English abstract)]
CHANG Xiaona. Study on subsurface characteristics for salt deposits in china and geological eevaluation on salt cavern storage[D]. Beijing: China University of Geosciences, 2014. (in Chinese with English abstract)
[2] 李娜娜,赵晏强,王同涛,等. 趋势观察:国际盐穴储能战略与科技发展态势分析[J]. 资讯与观察,2021,36(10):1248 − 1252. [LI Nana,ZHAO Yanqiang,WANG Tongtao,et al. Trends observation:Strategy and development of international salt cavern energy storage research,2021,36(10):1248 − 1252. (in Chinese)]
LI Nana, ZHAO Yanqiang, WANG Tongtao, et al. Trends observation: Strategy and development of international salt cavern energy storage research, 2021, 36(10): 1248 − 1252. (in Chinese)
[3] 杨春和,王同涛. 我国深地储能机遇、挑战与发展建议[J]. 科学通报,2023,68(36):4887 − 4894. [YANG Chunhe,WANG Tongtao. Opportunities,challenges,and development suggestions for deep underground energy storage in China[J]. Chinese Science Bulletin,2023,68(36):4887 − 4894. (in Chinese with English abstract)] doi: 10.1360/TB-2023-0841
YANG Chunhe, WANG Tongtao. Opportunities, challenges, and development suggestions for deep underground energy storage in China[J]. Chinese Science Bulletin, 2023, 68(36): 4887 − 4894. (in Chinese with English abstract) doi: 10.1360/TB-2023-0841
[4] 张博,吕柏霖,吴宇航,等. 国内外盐穴储气库发展概况及趋势[J]. 中国井矿盐,2021,52(1):21 − 24. [ZHANG Bo,LV Bolin,WU Yuhang,et al. Development and trend of salt-cavern gas storage in domestic and abroad[J]. China Well and Rock Salt,2021,52(1):21 − 24. (in Chinese with English abstract)]
ZHANG Bo, LV Bolin, WU Yuhang, et al. Development and trend of salt-cavern gas storage in domestic and abroad[J]. China Well and Rock Salt, 2021, 52(1): 21 − 24. (in Chinese with English abstract)
[5] 马华兴. 国内盐穴储气库发展现状初探[J]. 中国井矿盐,2021,52(6):12 − 15. [MA Huaxing. A preliminary study on the development current situation of salt cavern gas storage in domestic[J]. China Well and Rock Salt,2021,52(6):12 − 15. (in Chinese with English abstract)]
MA Huaxing. A preliminary study on the development current situation of salt cavern gas storage in domestic[J]. China Well and Rock Salt, 2021, 52(6): 12 − 15. (in Chinese with English abstract)
[6] 巴金红,康延鹏,姜海涛,等. 国内盐穴储气库老腔利用现状及展望[J]. 石油化工应用,2020,39(7):1 − 5. [BA Jinhong,KANG Yanpeng,JIANG Haitao,et al. Present situation and prospect of the utilization of old cavity in domestic salt cavern gas storage[J]. Petrochemical Industry Application,2020,39(7):1 − 5. (in Chinese with English abstract)]
BA Jinhong, KANG Yanpeng, JIANG Haitao, et al. Present situation and prospect of the utilization of old cavity in domestic salt cavern gas storage[J]. Petrochemical Industry Application, 2020, 39(7): 1 − 5. (in Chinese with English abstract)
[7] 完颜祺琪. 中国盐穴地下储气库建库地质条件评价及其对策研究[D]. 成都:西南石油大学,2015. [WANYAN Qiqi. Geological evaluation and countermeasure of the salt cavern of underground gas storage in china[D]. Chengdu:Southwest Petroleum University,2015. (in Chinese with English abstract)]
WANYAN Qiqi. Geological evaluation and countermeasure of the salt cavern of underground gas storage in china[D]. Chengdu: Southwest Petroleum University, 2015. (in Chinese with English abstract)
[8] 杨春和,王同涛. 深地储能研究进展[J]. 岩石力学与工程学报,2022,41(9):1729 − 1759. [YANG Chunhe,WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1729 − 1759. (in Chinese with English abstract)]
YANG Chunhe, WANG Tongtao. Advance in deep underground energy storage[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1729 − 1759. (in Chinese with English abstract)
[9] 完颜祺琪,冉莉娜,韩冰洁,等. 盐穴地下储气库库址地质评价与建库区优选[J]. 西南石油大学学报(自然科学版),2015,37(1):57 − 64. [WANYAN Qiqi,RAN Lina,HAN Bingjie,et al. Study on site selection and evaluation of underground gas storage in salt cavern[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2015,37(1):57 − 64. (in Chinese with English abstract)]
WANYAN Qiqi, RAN Lina, HAN Bingjie, et al. Study on site selection and evaluation of underground gas storage in salt cavern[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(1): 57 − 64. (in Chinese with English abstract)
[10] 井文君,杨春和,李银平,等. 基于层次分析法的盐穴储气库选址评价方法研究[J]. 岩土力学,2012,33(9):2683 − 2690. [JING Wenjun,YANG Chunhe,LI Yinping,et al. Research on site selection evaluation method of salt cavern gas storage with analytic hierarchy process[J]. Rock and Soil Mechanics,2012,33(9):2683 − 2690. (in Chinese with English abstract)]
JING Wenjun, YANG Chunhe, LI Yinping, et al. Research on site selection evaluation method of salt cavern gas storage with analytic hierarchy process[J]. Rock and Soil Mechanics, 2012, 33(9): 2683 − 2690. (in Chinese with English abstract)
[11] 郑雅丽,邱小松,赖欣,等. 盐穴储气库地质体完整性管理体系[J]. 油气储运,2022,41(9):1021 − 1028. [ZHENG Yali,QIU Xiaosong,LAI Xin,et al. Integrity management system for geological body of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation,2022,41(9):1021 − 1028. (in Chinese with English abstract)]
ZHENG Yali, QIU Xiaosong, LAI Xin, et al. Integrity management system for geological body of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1021 − 1028. (in Chinese with English abstract)
[12] 刘红樱,姜月华,杨国强,等. 长江经济带岩盐矿特征与盐穴储库适宜性评价[J]. 中国地质调查,2019,6(5):89 − 98. [LIU Hongying,JIANG Yuehua,YANG Guoqiang,et al. Characteristics of rock salt mines and suitability evaluation of salt cave storages in Yangtze River Economic Zone[J]. Geological Survey of China,2019,6(5):89 − 98. (in Chinese with English abstract)]
LIU Hongying, JIANG Yuehua, YANG Guoqiang, et al. Characteristics of rock salt mines and suitability evaluation of salt cave storages in Yangtze River Economic Zone[J]. Geological Survey of China, 2019, 6(5): 89 − 98. (in Chinese with English abstract)
[13] COSKUN S,STEWART R R,BAYSAL E,et al. Optimum designs for 2-D and 3-D seismic surveys via modeling and reverse-time migration:Pierce Junction Salt Dome,Texas[J]. Surveys in Geophysics,2021,42(5):1171 − 1196. doi: 10.1007/s10712-021-09659-z
[14] BEUTEL T,BLACK S. Salt deposits and gas cavern storage in the UK with a case study of salt exploration from Cheshire[J]. Erdoel Erdgas Kohle,2005,121(3):31 − 35.
[15] EZERSKY M,LEGCHENKO A,EPPELBAUM L,et al. Overview of the geophysical studies in the Dead Sea coastal area related to evaporite Karst and recent sinkhole development[J]. International Journal of Speleology,2017,46(2):277 − 302. doi: 10.5038/1827-806X.46.2.2087
[16] 耿春明. 三维地震勘探在盐岩溶腔探测中的建模及应用[J]. 煤炭技术,2020,39(7):62 − 64. [GENG Chunming. Modeling and application of three-dimensional seismic exploration in exploration of salt-Karst cavities[J]. Coal Technology,2020,39(7):62 − 64. (in Chinese with English abstract)]
GENG Chunming. Modeling and application of three-dimensional seismic exploration in exploration of salt-Karst cavities[J]. Coal Technology, 2020, 39(7): 62 − 64. (in Chinese with English abstract)
[17] 王琴,徐峰,杨海军,等. 地震勘探技术在金坛地区盐穴建库中的应用[J]. 西部探矿工程,2009,21(4):132 − 134. [WANG Qin,XU Feng,YANG Haijun,et al. Application of seismic prospecting technology in constructing salt cavern gas storages in Jintan[J]. West-China Exploration Engineering,2009,21(4):132 − 134. (in Chinese with English abstract)]
WANG Qin, XU Feng, YANG Haijun, et al. Application of seismic prospecting technology in constructing salt cavern gas storages in Jintan[J]. West-China Exploration Engineering, 2009, 21(4): 132 − 134. (in Chinese with English abstract)
[18] 王瑞贞,陈敬国,张朝华,等. 基于地下盐穴储气库的高精度三维地震采集关键技术[J]. 非常规油气,2018,5(6):8 − 15. [WANG Ruizhen,CHEN Jingguo,ZHANG Chaohua,et al. Key technologies of high precision 3D seismic acquisition for underground salt cavern gas storage[J]. Unconventional Oil & Gas,2018,5(6):8 − 15. (in Chinese with English abstract)]
WANG Ruizhen, CHEN Jingguo, ZHANG Chaohua, et al. Key technologies of high precision 3D seismic acquisition for underground salt cavern gas storage[J]. Unconventional Oil & Gas, 2018, 5(6): 8 − 15. (in Chinese with English abstract)
[19] 李霖林,上官拴通,付检刚,等. VSP资料在盐穴储气库构造特征描述中的应用[J]. 石油地球物理勘探,2023,58(2):422 − 430. [LI Linlin,SHANGGUAN Shuantong,FU Jiangang,et al. Application of VSP data in describing structural characteristics of salt cavern gas storage[J]. Oil Geophysical Prospecting,2023,58(2):422 − 430. (in Chinese with English abstract)]
LI Linlin, SHANGGUAN Shuantong, FU Jiangang, et al. Application of VSP data in describing structural characteristics of salt cavern gas storage[J]. Oil Geophysical Prospecting, 2023, 58(2): 422 − 430. (in Chinese with English abstract)
[20] 王志荣,王泉更,张利民. CSAMT与CYT联合探测法在深部盐穴储气库建设中的应用[J]. 工程地质学报,2016,24(1):142 − 149. [WANG Zhirong,WANG Quangeng,ZHANG Limin. Application of both csamt and cyt electromagnetic method to detection of deep salt caves[J]. Journal of Engineering Geology,2016,24(1):142 − 149. (in Chinese with English abstract)]
WANG Zhirong, WANG Quangeng, ZHANG Limin. Application of both csamt and cyt electromagnetic method to detection of deep salt caves[J]. Journal of Engineering Geology, 2016, 24(1): 142 − 149. (in Chinese with English abstract)
[21] 徐小连,刘金涛. 瞬变电磁法在地下溶腔探测中的应用——以湖北应城盐矿为例[J]. 人民长江,2017,48(5):56 − 60. [XU Xiaolian,LIU Jintao. Application of transient electromagnetic method in underground dissolved cavity detection:Case of salt mine in Yingcheng,Hubei Province[J]. Yangtze River,2017,48(5):56 − 60. (in Chinese with English abstract)]
XU Xiaolian, LIU Jintao. Application of transient electromagnetic method in underground dissolved cavity detection: Case of salt mine in Yingcheng, Hubei Province[J]. Yangtze River, 2017, 48(5): 56 − 60. (in Chinese with English abstract)
[22] 李松洲. 多种勘察技术在龙归硝盐矿采空区的应用研究[J]. 中国新技术新产品,2020(5):128 − 129. [LI Songzhou. Study on application of various exploration techniques in mined-out area of longgui nitrate mine[J]. New Technology & New Products of China,2020(5):128 − 129. (in Chinese)]
LI Songzhou. Study on application of various exploration techniques in mined-out area of longgui nitrate mine[J]. New Technology & New Products of China, 2020(5): 128 − 129. (in Chinese)
[23] 鲁辉,王琼. 盐穴地下储气库钻井地球物理测井参数选择及应用[J]. 中国井矿盐,2017,48(6):7 − 11. [LU Hui,WANG Qiong. Parameter selection and application of geophysical well logging of well drilling of underground salt cavern gas storage[J]. China Well and Rock Salt,2017,48(6):7 − 11. (in Chinese with English abstract)]
LU Hui, WANG Qiong. Parameter selection and application of geophysical well logging of well drilling of underground salt cavern gas storage[J]. China Well and Rock Salt, 2017, 48(6): 7 − 11. (in Chinese with English abstract)
[24] 完颜祺琪,丁国生,赵岩,等. 盐穴型地下储气库建库评价关键技术及其应用[J]. 天然气工业,2018,38(5):111 − 117. [WANYAN Qiqi,DING Guosheng,ZHAO Yan,et al. Key technologies for salt-cavern underground gas storage construction and evaluation and their application[J]. Natural Gas Industry,2018,38(5):111 − 117. (in Chinese with English abstract)]
WANYAN Qiqi, DING Guosheng, ZHAO Yan, et al. Key technologies for salt-cavern underground gas storage construction and evaluation and their application[J]. Natural Gas Industry, 2018, 38(5): 111 − 117. (in Chinese with English abstract)
[25] 李锐敏,姜海涛,齐磊,等. 盐岩地层精细测井解释方法研究[J]. 石油化工应用,2022,41(1):100 − 103. [LI Ruimin,JIANG Haitao,QI Lei,et al. Research of salt formation logging interpretation method[J]. Petrochemical Industry Application,2022,41(1):100 − 103. (in Chinese with English abstract)]
LI Ruimin, JIANG Haitao, QI Lei, et al. Research of salt formation logging interpretation method[J]. Petrochemical Industry Application, 2022, 41(1): 100 − 103. (in Chinese with English abstract)
[26] 齐得山,李淑平,王元刚. 金坛盐穴储气库腔体偏溶特征分析[J]. 西南石油大学学报(自然科学版),2019,41(2):75 − 83. [QI Deshan,LI Shuping,WANG Yuangang. Characteristics of cavity differential dissolution of Jintan salt cave gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2019,41(2):75 − 83. (in Chinese with English abstract)]
QI Deshan, LI Shuping, WANG Yuangang. Characteristics of cavity differential dissolution of Jintan salt cave gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2019, 41(2): 75 − 83. (in Chinese with English abstract)
[27] 周冬林,焦雨佳,杜玉洁,等. 水平对接采卤井腔体溶蚀形态分析[J]. 西南石油大学学报(自然科学版),2021,43(1):142 − 148. [ZHOU Donglin,JIAO Yujia,DU Yujie,et al. Morphological analysis of cavern leaching of horizontally butted wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2021,43(1):142 − 148. (in Chinese with English abstract)]
ZHOU Donglin, JIAO Yujia, DU Yujie, et al. Morphological analysis of cavern leaching of horizontally butted wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(1): 142 − 148. (in Chinese with English abstract)
[28] 宫丹妮,李景翠,万继方,等. 多场作用下盐穴储气库腔体稳定性的数值模拟研究[J]. 石油科学通报,2023,8(6):787 − 796. [GONG Danni,LI Jingcui,WAN Jifang,et al. The numerical simulation of the stability of salt cavern gas storage considering multiple fields[J]. Petroleum Science Bulletin,2023,8(6):787 − 796. (in Chinese with English abstract)]
GONG Danni, LI Jingcui, WAN Jifang, et al. The numerical simulation of the stability of salt cavern gas storage considering multiple fields[J]. Petroleum Science Bulletin, 2023, 8(6): 787 − 796. (in Chinese with English abstract)
-