南京地区地源热泵系统优化及时间效应研究

范琦, 袁林山, 赵存法, 田蓉. 南京地区地源热泵系统优化及时间效应研究[J]. 水文地质工程地质, 2024, 51(4): 233-242. doi: 10.16030/j.cnki.issn.1000-3665.202311052
引用本文: 范琦, 袁林山, 赵存法, 田蓉. 南京地区地源热泵系统优化及时间效应研究[J]. 水文地质工程地质, 2024, 51(4): 233-242. doi: 10.16030/j.cnki.issn.1000-3665.202311052
FAN Qi, YUAN Linshan, ZHAO Cunfa, TIAN Rong. Study on optimization and time effect of ground-source heat pump system in Nanjing[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 233-242. doi: 10.16030/j.cnki.issn.1000-3665.202311052
Citation: FAN Qi, YUAN Linshan, ZHAO Cunfa, TIAN Rong. Study on optimization and time effect of ground-source heat pump system in Nanjing[J]. Hydrogeology & Engineering Geology, 2024, 51(4): 233-242. doi: 10.16030/j.cnki.issn.1000-3665.202311052

南京地区地源热泵系统优化及时间效应研究

  • 基金项目: 江苏省科技项目基础研究计划项目(自然科学基金BK20161056)
详细信息
    作者简介: 范琦(1981—),女,硕士,高级工程师,研究方向为水文地质、环境地质。E-mail:fq515@163.com
  • 中图分类号: P314;TK523

Study on optimization and time effect of ground-source heat pump system in Nanjing

  • 地埋管换热器孔间距的合理设计是开发侵蚀堆积平原地区浅层地热能时需首先解决的问题。为了获得能供设计参考的地埋管换热器孔间距,确保地源热泵系统长期稳定运行,依托南京市秦淮区石门坎102号地源热泵试验工程,通过温度监测和数值模拟方法,研究了地埋管换热器孔间距和地源热泵系统10 a运行的时间效应,获得了南京侵蚀堆积平原地区地埋管换热器孔合理间距和运行方式。结果显示:(1)夏季工况、夏季后恢复工况、冬季工况、冬季后恢复工况的完整运行周期内,地层温度经历升温、降温、缓慢降温、基本恢复的周期性变化;(2)南京侵蚀堆积平原地区经济合理的地埋管换热器孔间距为4.0 m;(3)采取夏季制冷时间和冬季制热时间相等的运行方式,延长夏季后恢复工况,可确保地源热泵系统长期稳定运行。结果能为南京地区地埋管的设计和浅层地热能工程研究提供科学依据。

  • 加载中
  • 图 1  研究区监测孔位置示意图

    Figure 1. 

    图 2  温度监测系统布设图

    Figure 2. 

    图 3  地源热泵系统Flow-3D热交换模型图

    Figure 3. 

    图 4  夏季工况、夏季后恢复工况B、C、D孔不同深度温度曲线图

    Figure 4. 

    图 5  冬季工况B、C、D孔11.5,20.5,80.0 m深度温度曲线图

    Figure 5. 

    图 6  完整运行周期B孔20.5 m深度各时间点温度平面等值线图

    Figure 6. 

    图 7  深度11.5 m处3,5,10 a运行后不同孔间距温度场

    Figure 7. 

    图 8  深度20.5 m处3,5,10 a运行后不同孔间距温度场

    Figure 8. 

    图 9  深度80.0 m处3,5,10 a运行后不同孔间距温度场

    Figure 9. 

    图 10  夏季工况时不同深度处温度影响范围

    Figure 10. 

    表 1  岩土综合热物性参数测试结果

    Table 1.  Parameters of the rock-soil thermal properties

    编号 深度/m 名称 含水率/% 密度/(g·cm−3 孔隙率/% 导热系数/
    (W·m−1·K−1
    比热/
    (J·g−1·K−1
    热扩散率
    /(10−5 m2·s−1
    1 1.1~1.3 杂填土 27.6 1.850 0.465 0.53 1.59 2.30
    3 3.1~3.3 素填土 25.8 1.977 0.420 1.12 1.53 4.79
    4 4.1~4.3 粉质黏土 25.9 1.957 0.426 1.39 1.56 5.94
    8 8.1~8.3 粉质黏土 25.8 1.978 0.420 1.00 1.47 4.46
    11 12.3~12.5 粉质黏土 22.3 1.995 0.398 1.10 1.47 4.86
    14 17.1~17.3 粉质黏土 22.3 2.001 0.396 1.52 1.57 6.30
    Y13 23.1~23.3 强风化泥
    质粉砂岩
    24.2 2.044 0.393 1.15 1.56 4.64
    岩1 30.1~30.2 中风化泥
    质粉砂岩
    3.6 2.433 0.133 1.77 1.01 9.36
    岩2 40.3~40.5 中风化泥
    质粉砂岩
    2.9 2.488 0.108 1.64 1.04 8.21
    岩3 50.3~50.5 中风化
    粉砂岩
    4.0 2.435 0.136 1.87 1.02 9.79
    岩4 60.3~60.5 中风化
    粉砂岩
    6.3 2.538 0.119 1.56 1.07 7.45
    岩5 70.3~70.5 中风化
    粉砂岩
    4.2 2.549 0.097 1.71 0.99 8.78
    岩6 80.3~80.5 中风化
    粉砂岩
    5.6 2.578 0.099 1.93 0.92 10.51
    下载: 导出CSV

    表 2  模拟工况测试结果

    Table 2.  Results of the rock-soil thermal response test

    参数类型 参数值
    埋管内流体流量/(m3·h−1 1.2
    埋管内流体流速/(m·s−1 0.628
    钻孔岩土初始平均温度/°C 18.0
    埋管进水温度/°C 37.0
    埋管出水温度/°C 32.4
    进出水温差/°C 4.6
    进出口平均水温/°C 34.7
    总散热量/kW 6.2
    单位管长散热量/(W·m−1 62.0
    地层平均换热系数/(W·m−2·K−1 3.76
    冬季进出水平均温度/°C 7.5
    冬季平均取热量/(W·m−1 38.0
    下载: 导出CSV
  • [1]

    韩再生,冉伟彦,佟红兵,等. 浅层地热能勘查评价[J]. 中国地质,2007,34(6):1115 − 1121. [HAN Zaisheng,RAN Weiyan,TONG Hongbing,et al. Exploration and evaluation of shallow geothermal energy[J]. Geolohy in China,2007,34(6):1115 − 1121. (in Chinese with English abstract)]

    HAN Zaisheng, RAN Weiyan, TONG Hongbing, et al. Exploration and evaluation of shallow geothermal energy[J]. Geolohy in China, 2007, 34(6): 1115 − 1121. (in Chinese with English abstract)

    [2]

    卫万顺,李翔. 未来10~15年中国浅层地热能发展方向战略分析[J]. 城市地质,2021,16(1):1 − 8. [WEI Wanshun,LI Xiang. Analysis on the development strategy of shallow geothermal energy in China in the next 10~15 years[J]. Urban Geology,2021,16(1):1 − 8. (in Chinese with English abstract)]

    WEI Wanshun, LI Xiang. Analysis on the development strategy of shallow geothermal energy in China in the next 10~15 years[J]. Urban Geology, 2021, 16(1): 1 − 8. (in Chinese with English abstract)

    [3]

    YU Yiqiang. Study on ground source heat pump system zoning and methods in the Northwest of Shandong Province[J]. Journal of Groundwater Science and Engineering,2018,6(3):171 − 177.

    [4]

    ZHAO Fanghua. Research on single hole heat transfer power of ground source heat pump system[J]. Journal of Groundwater Science and Engineering,2018,6(1):65 − 70.

    [5]

    WANG Guiling, WANG Wanli, ZHANG Wei, et al. The status quo and prospect of geothermal resources exploration and development in Beijing-Tianjin-Hebei region in China[J]. China Geology,2020,3(1):173 − 181.

    [6]

    朱巍,张静,唐雯,等,城市浅层地热能开发地质环境问题研究[J]. 地质与勘探,2024,60(1):113-120. [ZHU Wei,ZHANG Jing,TANG Wen,et al. Geological environment problems of urban shallow geothermal energy development[J]. Geology and Exploration,2024,60(1):113-120. (in Chinese with English abstract)]

    ZHU Wei, ZHANG Jing, TANG Wen, et al. Geological environment problems of urban shallow geothermal energy development[J]. Geology and Exploration, 2024, 60(1): 113-120. (in Chinese with English abstract)

    [7]

    蔺文静,吴庆华,王贵玲. 我国浅层地温能潜力评价及其环境效应分析[J]. 干旱区资源与环境,2012,26(3):57 − 61. [LIN Wenjing,WU Qinghua,WANG Guiling. Shallow geothermal energy resource potential evaluation and environmental effect in China[J]. Journal of Arid Land Resources and Environment,2012,26(3):57 − 61. (in Chinese with English abstract)]

    LIN Wenjing, WU Qinghua, WANG Guiling. Shallow geothermal energy resource potential evaluation and environmental effect in China[J]. Journal of Arid Land Resources and Environment, 2012, 26(3): 57 − 61. (in Chinese with English abstract)

    [8]

    王婉丽,王贵玲,朱喜,等. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质,2017,44(6):1062 − 1073. [WANG Wanli,WANG Guiling,ZHU Xi,et al. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China,2017,44(6):1062 − 1073. (in Chinese with English abstract)] doi: 10.12029/gc20170602

    WANG Wanli, WANG Guiling, ZHU Xi, et al. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China, 2017, 44(6): 1062 − 1073. (in Chinese with English abstract) doi: 10.12029/gc20170602

    [9]

    宋小庆,段启杉. 贵阳市土壤源浅层地温能适宜性分区及资源量评价[J]. 长江科学院院报,2015,32(12):14 − 17. [SONG Xiaoqing,DUAN Qishan. Suitability classification and resource evaluation of shallow geothermal energy from soils in Guiyang[J]. Journal of Yangtze River Scientific Research Institute,2015,32(12):14 − 17. (in Chinese with English abstract)]

    SONG Xiaoqing, DUAN Qishan. Suitability classification and resource evaluation of shallow geothermal energy from soils in Guiyang[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(12): 14 − 17. (in Chinese with English abstract)

    [10]

    鄂建,陈明珠,杨露梅,等. 南京浅层地温能开发利用现状研究[J]. 地质学刊,2015,39(2):339 − 342. [E Jian,CHEN Mingzhu,YANG Lumei,et al. Exploitation and utilization of shallow geothermal energy in Nanjing[J]. Journal of Geology,2015,39(2):339 − 342. (in Chinese with English abstract)] doi: 10.3969/j.issn.1674-3636.2015.02.339

    E Jian, CHEN Mingzhu, YANG Lumei, et al. Exploitation and utilization of shallow geothermal energy in Nanjing[J]. Journal of Geology, 2015, 39(2): 339 − 342. (in Chinese with English abstract) doi: 10.3969/j.issn.1674-3636.2015.02.339

    [11]

    张杰,王兴春,赵敬洗,等. 河北沽源、饶阳地区浅层地温场特征[J]. 物探与化探,2013,37(2):237-241. [ZHANG Jie,WANG Xingchun,ZHAO JingXi,et al. An analysis of the characteristics of shallow geothermal fields in Guyuan and Raoyang,Hebei Province[J]. Geophysical & Geochemical exploration,2013,37(2):237-241. (in Chinese with English abstract)]

    ZHANG Jie, WANG Xingchun, ZHAO JingXi, et al. An analysis of the characteristics of shallow geothermal fields in Guyuan and Raoyang, Hebei Province[J]. Geophysical & Geochemical exploration, 2013, 37(2): 237-241. (in Chinese with English abstract)

    [12]

    杨露梅,鄂建,朱明君,等. 典型地埋管系统模拟工况地温场特征研究[J]. 水文地质工程地质,2017,44(2):178 − 183. [YANG Lumei,E Jian,ZHU Mingjun,et al. Characteristics of the ground temperature of the typical ground-source heat pumps system in Nanjing[J]. Hydrogeology & Engineering Geology,2017,44(2):178 − 183. (in Chinese with English abstract)]

    YANG Lumei, E Jian, ZHU Mingjun, et al. Characteristics of the ground temperature of the typical ground-source heat pumps system in Nanjing[J]. Hydrogeology & Engineering Geology, 2017, 44(2): 178 − 183. (in Chinese with English abstract)

    [13]

    刘爱华,佟红兵,冉伟彦. 北京某垂直地埋管区地温场变化规律研究[J]. 水文地质工程地质,2016,43(4):165 − 170. [LIU Aihua,TONG Hongbing,RAN Weiyan. A study of ground temperature changes in a vertical heat exchanger area of Beijing[J]. Hydrogeology & Engineering Geology,2016,43(4):165 − 170. (in Chinese with English abstract)]

    LIU Aihua, TONG Hongbing, RAN Weiyan. A study of ground temperature changes in a vertical heat exchanger area of Beijing[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 165 − 170. (in Chinese with English abstract)

    [14]

    李新国,陈志豪,赵军,等. 桩埋管与井埋管实验与数值模拟[J]. 天津大学学报,2005,38(8):679 − 683. [LI Xinguo,CHEN Zhihao,ZHAO Jun,et al. Experiment and numerical simulation on U-vertical ground coupled heat exchanger with sandstone and cement backfills[J]. Journal of Tianjin University,2005,38(8):679 − 683. (in Chinese with English abstract)]

    LI Xinguo, CHEN Zhihao, ZHAO Jun, et al. Experiment and numerical simulation on U-vertical ground coupled heat exchanger with sandstone and cement backfills[J]. Journal of Tianjin University, 2005, 38(8): 679 − 683. (in Chinese with English abstract)

    [15]

    李嘉舒,戴传山,雷海燕,等. 地埋管换热器动态热负荷下地层温度场的解析解[J]. 水文地质工程地质,2023,50(2):198 − 206. [LI Jiashu,DAI Chuanshan,LEI Haiyan,et al. Analytical solution of formation temperature distribution under dynamic heat load of borehole heat exchangers[J]. Hydrogeology & Engineering Geology,2023,50(2):198 − 206. (in Chinese with English abstract)]

    LI Jiashu, DAI Chuanshan, LEI Haiyan, et al. Analytical solution of formation temperature distribution under dynamic heat load of borehole heat exchangers[J]. Hydrogeology & Engineering Geology, 2023, 50(2): 198 − 206. (in Chinese with English abstract)

    [16]

    李济琛,陈明珠,汤强,等. 南京市浅层地温场研究——基于分布式光纤测温技术[J]. 中国地质,2021,48(3):939 − 947. [LI Jichen,CHEN Mingzhu,TANG Qiang,et al. Study on shallow geothermal field in Nanjing:Based on distributed optical fiber temperature measurement system[J]. Geology in China,2021,48(3):939 − 947. (in Chinese with English abstract)]

    LI Jichen, CHEN Mingzhu, TANG Qiang, et al. Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system[J]. Geology in China, 2021, 48(3): 939 − 947. (in Chinese with English abstract)

    [17]

    张庆,李云峰,龚绪龙,等. 基于浅层地温及原位热物性参数地温场预测[J]. 地质通报,2021,40(10):1713 − 1719. [ZHANG Qing,LI Yunfeng,GONG Xulong,et al. Ground temperature prediction based on shallow-surface ground temperature and in-situ thermophysical parameters[J]. Geological Bulletin of China,2021,40(10):1713 − 1719. (in Chinese with English abstract)]

    ZHANG Qing, LI Yunfeng, GONG Xulong, et al. Ground temperature prediction based on shallow-surface ground temperature and in-situ thermophysical parameters[J]. Geological Bulletin of China, 2021, 40(10): 1713 − 1719. (in Chinese with English abstract)

    [18]

    李继涛. 华东地质局机械修造中心办公综合楼项目岩土工程勘察报告[R]. 南京:南京勘察工程有限公司,2004:3 − 9. [LI Jitao. Geotechnical investigation report on the office complex building project of the machinery repair center of east China geological bureau[R]. Nanjing:Nanjing Survey Engineering Co. Ltd.,2004:3 − 9. (in Chinese)]

    LI Jitao. Geotechnical investigation report on the office complex building project of the machinery repair center of east China geological bureau[R]. Nanjing: Nanjing Survey Engineering Co. Ltd., 2004: 3 − 9. (in Chinese)

    [19]

    朱娜. 地源热泵地埋管换热系统热堆积分析[D]. 武汉:华中科技大学,2007. [ZHU Na. Analysing heat accumulate in the groud heat exchanger system of ground source heat pump[D]. Wuhan:Huazhong University of Science and Technology,2007. (in Chinese with English abstract)]

    ZHU Na. Analysing heat accumulate in the groud heat exchanger system of ground source heat pump[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese with English abstract)

    [20]

    曾宪斌. 地源热泵垂直U型埋管换热器周围土壤温度场的数值模型[D]. 重庆:重庆大学,2007. [ZENG Xianbin. Numerical simulation on soil temperature field around vertical U-tube heat exchange used in ground source heat pump[D]. Chongqing:Chongqing University,2007. (in Chinese with English abstract)]

    ZENG Xianbin. Numerical simulation on soil temperature field around vertical U-tube heat exchange used in ground source heat pump[D]. Chongqing: Chongqing University, 2007. (in Chinese with English abstract)

    [21]

    纪世昌. 土壤源热泵U型垂直埋管温度场数值模拟研究[D]. 武汉:华中科技大学,2006. [JI Shichang. The study of numeric simulation of temperature field of U-vertical buried pipe of GSHP[D]. Wuhan:Huazhong University of Science and Technology,2006. (in Chinese with English abstract)]

    JI Shichang. The study of numeric simulation of temperature field of U-vertical buried pipe of GSHP[D]. Wuhan: Huazhong University of Science and Technology, 2006. (in Chinese with English abstract)

    [22]

    郎林智,段新胜,陈鹏宇,等. U型管传热数值模拟及恒热流模型分析[J]. 山东建筑大学学报,2010,25(5):539 − 542. [LANG Linzhi,DUAN Xinsheng,CHEN Pengyu,et al. Numerical simulation of U-tube and analysis of constant flux models[J]. Journal of Shandong Jianzhu University,2010,25(5):539 − 542. (in Chinese with English abstract)]

    LANG Linzhi, DUAN Xinsheng, CHEN Pengyu, et al. Numerical simulation of U-tube and analysis of constant flux models[J]. Journal of Shandong Jianzhu University, 2010, 25(5): 539 − 542. (in Chinese with English abstract)

    [23]

    张鑫. 垂直式地埋管换热理论及岩土热物性参数试验方法[D]. 西安:长安大学,2012. [ZHANG Xin. The theory on heat transfer of vertical ground heat exchanger and the test method for parameter of the rock-soil thermal properties[D]. Xi’an:Chang’an University,2012. (in Chinese with English abstract)]

    ZHANG Xin. The theory on heat transfer of vertical ground heat exchanger and the test method for parameter of the rock-soil thermal properties[D]. Xi’an: Chang’an University, 2012. (in Chinese with English abstract)

    [24]

    马子涵,邢会林,靳国栋,等. 基于微地震数据的增强型地热储层参数及采热的数值模拟研究[J]. 水文地质工程地质,2022,49(6):190 − 199. [MA Zihan,XING Huilin,JIN Guodong,et al. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology,2022,49(6):190 − 199. (in Chinese with English abstract)]

    MA Zihan, XING Huilin, JIN Guodong, et al. A study of numerical simulations for enhanced geothermal reservoir parameters and thermal extraction based on microseismic data[J]. Hydrogeology & Engineering Geology, 2022, 49(6): 190 − 199. (in Chinese with English abstract)

    [25]

    王华军,赵军,沈亮. 地源热泵系统长期运行特性的实验研究[J]. 华北电力大学学报,2007,34(2):52 − 54. [WANG Huajun,ZHAO Jun,SHEN Liang. Experimental investigation on long term performance of ground source heat pump system[J]. Journal of North China Electric Power University,2007,34(2):52 − 54,(in Chinese with English abstract)]

    WANG Huajun, ZHAO Jun, SHEN Liang. Experimental investigation on long term performance of ground source heat pump system[J]. Journal of North China Electric Power University, 2007, 34(2): 52 − 54, (in Chinese with English abstract)

    [26]

    郭炳跃,金鹏,祁超,等. 江苏高邮地埋管热响应试验及浅层地热能资源评价[J]. 地质学刊,2022,46(1):96 − 102. [GUO Bingyue,JIN Peng,QI Chao,et al. Thermal response test of buried tubes and evaluation of shallow geothermal energy resources in Gaoyou,Jiangsu Province[J]. Journal of Geology,2022,46(1):96 − 102. (in Chinese with English abstract)]

    GUO Bingyue, JIN Peng, QI Chao, et al. Thermal response test of buried tubes and evaluation of shallow geothermal energy resources in Gaoyou, Jiangsu Province[J]. Journal of Geology, 2022, 46(1): 96 − 102. (in Chinese with English abstract)

    [27]

    张春雷. U型管地源热泵系统性能及地下温度场的研究[D]. 天津:天津大学,2005. [ZHANG Chunlei. Study on the system performance of U-type ground source heat pump and ground temperature field[D]. Tianjin:Tianjin University,2005. (in Chinese with English abstract)]

    ZHANG Chunlei. Study on the system performance of U-type ground source heat pump and ground temperature field[D]. Tianjin: Tianjin University, 2005. (in Chinese with English abstract)

    [28]

    刘红卫,徐贵来,张睛,等. 回归分析在地源热泵系统地温场研究中的应用[J]. 工程地球物理学报,2009,6(4):512 − 515. [LIU Hongwei,XU Guilai,ZHANG Qing,et al. The application of multiple regression analysis in the geothermal field[J]. Chinese Journal of Engineering Geophysics,2009,6(4):512 − 515. (in Chinese with English abstract)]

    LIU Hongwei, XU Guilai, ZHANG Qing, et al. The application of multiple regression analysis in the geothermal field[J]. Chinese Journal of Engineering Geophysics, 2009, 6(4): 512 − 515. (in Chinese with English abstract)

    [29]

    赵海丰,唐荣彬,桂树强,等. 双U型埋管能源桩桩周岩土体温度场分布特征试验研究[J]. 土木建筑与环境工程,2016,38(5):157 − 163. [ZHAO Haifeng,TANG Rongbin,GUI Shuqiang,et al. Experiment analysis of ground temperature distribution of double-U type energy piles[J]. Journal of Civil and Environmental Engineering,2016,38(5):157 − 163. (in Chinese with English abstract)]

    ZHAO Haifeng, TANG Rongbin, GUI Shuqiang, et al. Experiment analysis of ground temperature distribution of double-U type energy piles[J]. Journal of Civil and Environmental Engineering, 2016, 38(5): 157 − 163. (in Chinese with English abstract)

    [30]

    刘春雷,王贵玲,王婉丽,等. 基于现场热响应测试方法的地下岩土热物性分析[J]. 吉林大学学报(地球科学版),2014,44(5):1602 − 1608. [LIU Chunlei,WANG Guiling,WANG Wanli,et al. Analysis of soil thermal properties with In-Situ Thermal Response test method[J]. Journal of Jilin University(Earth Science Edition),2014,44(5):1602 − 1608. (in Chinese with English abstract)]

    LIU Chunlei, WANG Guiling, WANG Wanli, et al. Analysis of soil thermal properties with In-Situ Thermal Response test method[J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1602 − 1608. (in Chinese with English abstract)

    [31]

    赵军,陈雁,李新国. 基于跨季节地下蓄热系统的模拟对热储利用模式的优化[J]. 华北电力大学学报,2007,34(2):74 − 77. [ZHAO Jun,CHEN Yan,LI Xinguo. Optimization for heat storage operating modes based on simulation of seasonal underground storage of solar-GSHP system[J]. Journal of North China Electric Power University,2007,34(2):74 − 77. (in Chinese with English abstract)]

    ZHAO Jun, CHEN Yan, LI Xinguo. Optimization for heat storage operating modes based on simulation of seasonal underground storage of solar-GSHP system[J]. Journal of North China Electric Power University, 2007, 34(2): 74 − 77. (in Chinese with English abstract)

    [32]

    刘炳成,刘伟,李庆领. 温度效应对非饱和土壤中湿分迁移影响的实验[J]. 华中理工大学学报,2006,34(4):106 − 108. [LIU Bingcheng,LIU Wei,LI Qingling. Experimental Studies on the influences of temperature on moisture transport in unsaturated porous soil[J]. Huazhong University of Science and Technology (Nature Science Edition ),2006,34(4):106 − 108. (in Chinese with English abstract)]

    LIU Bingcheng, LIU Wei, LI Qingling. Experimental Studies on the influences of temperature on moisture transport in unsaturated porous soil[J]. Huazhong University of Science and Technology (Nature Science Edition ), 2006, 34(4): 106 − 108. (in Chinese with English abstract)

    [33]

    陈宝义,岳韬,曹品鲁,等. 挤密条件下U型地埋管换热器换热效率的理论分析及数值模拟[J]. 吉林大学学报(地球科学版),2016,46(6):1808 − 1814. [CHEN Baoyi,YUE Tao,CAO Pinlu,et al. Theoretical analysis and numerical simulation of heat exchange efficiency of U-tube ground heat exchanger under the condition of soil compaction[J]. Journal of Jilin University (Earth Science Edition),2016,46(6):1808 − 1814. (in Chinese with English abstract)]

    CHEN Baoyi, YUE Tao, CAO Pinlu, et al. Theoretical analysis and numerical simulation of heat exchange efficiency of U-tube ground heat exchanger under the condition of soil compaction[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6): 1808 − 1814. (in Chinese with English abstract)

  • 加载中

(10)

(2)

计量
  • 文章访问数:  471
  • PDF下载数:  71
  • 施引文献:  0
出版历程
收稿日期:  2023-11-15
修回日期:  2024-02-05
刊出日期:  2024-07-15

目录