Time-Frequency characteristics and seismic response analyses of the 6.0-magnitude earthquake, Changning County of Yibin in Southwest China’s Sichuan Province
-
摘要:
川西北地区深切峡谷发育,地震扰动频繁。峡谷内高陡岩质斜坡在强震扰动下,通常会发生震裂松弛,进而导致失稳,因此研究其强震响应意义重大。2019年四川长宁Ms6.0级地震触发了布置在石棉县城南桠河两岸的3台强震监测仪器,通过对捕捉到的强震数据进行连续小波变换之后,获取了其时频信息。分析结果表明:(1)S波在频域上分为两种成分,其主频值分别为3.5 Hz和1.1 Hz附近;(2)山脊处的地震动放大效应主要体现为S波相对高频成分上能量的增加而低频部分则无显著变化;(3)覆盖层场地自振频率与S波低频成分主频相近,二者产生共振,导致S波低频放大与高频衰减效应;(4)地震动响应具有极强的方向性,水平向地震动放大效应比垂直向更为显著。
Abstract:In northwest Sichuan Province, due to the frequent earthquakes, the rocky hill slopes in the valley area usually get loosen and lead to the failure. For geohazard prevention and mitigation, it is important to determine the site amplification effects and seismic responses of hillslopes. For example, the 2019 Changning Ms6.0 earthquake that occurred in Changing County of Yibin, Sichuan Province, China, was well recorded in three earthquake monitoring stations located on both bank sides of Nanya River in Shimian County, Sichuan Province, China. In this study, detailed analyses of the recorded seismic data had been conducted with the method of Continuous Wavelet Transform and confirmed the following observations: (1) For S-wave, two sorts of components in the frequency domain were found, whose main frequency values were around 3.5 Hz and 1.1 Hz respectively. (2) The seismic amplification effect at the ridge was mainly reflected by the energy increase in the high frequency component of the S-wave, no clear changes in the low frequency component of the S-wave was found. (3) In soil site, the natural frequency of vibration was close to the main frequency of the low frequency component of the S-wave, resonance between the two components was generated, resulting in low-frequency amplification and high-frequency attenuation effect. (4) The seismic response to mountain hill slopes had a strong directivity, and the amplification effect in the horizontal directions was much stronger than that of the vertical directions.
-
表 1 各监测点所在位置场地属性
Table 1. Properties of monitoring sites
监测点编号 绝对高程/m 震中距/km 监测点所在部位 场地类型 1# 1150 265 山体平坡处 基岩(花岗岩) 2# 1060 265 山脊处 基岩(花岗岩) 3# 1102 267 山脊处 厚覆盖层 参照点(石棉先锋) × × × 薄覆盖层 表 2 各监测点地震动响应参数
Table 2. Ground motion response parameters at each monitoring site
监测点编号 峰值加速度/gal 阿里亚斯强度/(cm·s−1) EW SN UD EW SN UD 1# 1.22 2.94 2.23 0.36 1.22 0.89 2# 2.13 3.64 2.35 0.55 1.80 0.81 3# 7.42 10.18 2.94 15.09 13.26 2.75 *参照点 1.74 3.36 1.88 0.88 2.70 0.87 注:1 gal=1 cm/s2 表 3 监测点3分量连续小波分解图
Table 3. Three-component continuous wavelet decomposition
东西方向 南北方向 垂直方向 表 4 监测点波峰成分统计表
Table 4. Statistical table of signal peak at each site
方向 S波高频波峰 S波低频波峰 1# 2# 3# 参照点 1# 2# 3# 参照点 东西 27.23 s 37.67 s × 32.02 s 27.00 s 37.76 s 36.03 s 31.70 s 2.8 Hz 3.9 Hz × 3.2 Hz 1.4 Hz 1.4 Hz 1.3 Hz 1.1 Hz 0.045 0.078 × 0.076 0.063 0.072 0.630 0.068 南北 26.50 s 36.52 s × 32.00 s 27.09 s 36.41 s 35.09 s 32.27 s 2.8 Hz 3.5 Hz × 2.5 Hz 1.1 Hz 1.1 Hz 1.1 Hz 1.1 Hz 0.120 0.183 × 0.188 0.110 0.115 0.656 0.138 垂直 26.77 s 37.73 s 34.85 s 32.88 s 27.19 s 38.13 s 35.28 s 32.36 s 3.5 Hz 3.5 Hz 2.8 Hz 3.2 Hz 1.1 Hz 1.1 Hz 1.1 Hz 1.1 Hz 0.086 0.107 0.150 0.076 0.090 0.068 0.089 0.068 表 5 3#监测点场地3分量反应图谱
Table 5. Three-component response spectrum of monitoring site No.3
东西向 南北向 垂直向 表 6 3#监测点三分量特征周期/频率表
Table 6. Dominant period / frequency of site 3#
东西向 南北向 垂直向 特征周期/s 0.74 0.88 0.36 特征频率/Hz 1.35 1.13 2.77 表 7 1#与2#监测点三分量特征周期
Table 7. Dominant period of site 1# and 2#
监测点编号 特征周期/s 东西向 南北向 垂直向 1# 0.26 0.26 0.25 2# 0.26 0.26 0.28 -
[1] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.02.001
[2] 王飞, 吴红刚, 郭春香. 碎石土路堑高边坡地震动力响应过程分析[J]. 中国地质灾害与防治学报,2020,31(1):18 − 24. [WANG Fei, WU Honggang, GUO Chunxiang. Dynamic response of high cut based a numerical simulation slope to earthquake[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):18 − 24. (in Chinese with English abstract)
[3] 温铭生, 刘传正, 刘艳辉, 等. 汶川地震高烈度区崩滑流灾害区域预警[J]. 中国地质灾害与防治学报,2019,30(1):10 − 19. [WEN Mingsheng, LIU Chuanzheng, LIU Yanhui, et al. Regional warning of geological hazards in high seismic intensity area of Wenchuan Earthquake[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):10 − 19. (in Chinese with English abstract)
[4] 陈宗良, 叶振南, 王志宏, 等. 白龙江流域中上游第四纪沉积物的发育特征及其灾害效应[J]. 水文地质工程地质,2019,46(2):29 − 36. [CHEN Zongliang, YE Zhennan, WANG Zhihong, et al. Development characteristics and disaster effect of the Quaternary sediments in the middle and upper reaches of the Bailongiang River Basin[J]. Hydrogeology & Engineering Geology,2019,46(2):29 − 36. (in Chinese with English abstract)
[5] 付智勇, 龙晶晶, 常鸣. 汶川地震前后四川都江堰龙池镇地区泥石流物源分布特征及其演化规律[J]. 中国地质灾害与防治学报,2019,30(6):10 − 19. [FU Zhiyong, LONG Jingjing, CHANG Ming. Distribution characteristics and evolution rules of sediment supply for debris flow occurrence around Longchi Town of Dujiangyan City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):10 − 19. (in Chinese with English abstract)
[6] 王运生, 罗永红, 吉峰, 等. 汶川大地震山地灾害发育的控制因素分析[J]. 工程地质学报,2008,16(06):759 − 763. [WANG Yunsheng, LUO Yonghong, JI Feng, et al. Analysis of the controlling factors on mountainous epicenter zones of the Wenchuan earthquake[J]. Journal of Engineering Geology,2008,16(06):759 − 763. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.06.005
[7] 罗永红, 王运生. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报,2013,31(2):200 − 210. [LUO Yonghong, WANG Yunsheng. Mountain slope ground motion topography amplification effect induced by Wenchuan earthquake[J]. Journal of Mountain Science,2013,31(2):200 − 210. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2013.02.009
[8] 范刚. 含软弱夹层层状岩质边坡地震响应及稳定性判识时频方法研究[D]. 成都: 西南交通大学, 2016.
FAN Gang. The dynamic response and time- frequency method for seismic stability evaluation of layered rock slope with weak intercalated layer[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese with English abstract)
[9] VALAGUSSA A, MARA P. Seismic and geological controls on earthquake-induced landslide size[J]. Earth and Planetary Science Letters,2019,506:268 − 281. doi: 10.1016/j.jpgl.2018.11.005
[10] CROISSANT T, STEER P. Seismic cycles, earthquakes, landslides and sediment fluxes: Linking tectonics to surface processes using a reduced-complexity model[J]. Geomorphology,2018,339:87 − 103.
[11] GUAN Z C, ZHOU Y. The seismic responses and seismic properties of large section mountain tunnel based on shaking table tests[J]. Tunnelling and Underground Space Technology,2019,90:283 − 293.
[12] HARTZELL S H, CARVER D L, KING K W. Initial investigation of site and topography effects at Robinwood ridge, California[J]. Bull. Seis. Soc. Am.,1984,84:1366 − 1349.
[13] CELEBI M. Topography and geologic amplification determined from strong-motion and after shock records of 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological of America,1987,77:1147 − 1107.
[14] SU W C, HUANG S C. Identification of Structural Stiffness Parameters via Wavelet Packet from Seismic Response[J]. Procedia Engineering,2017,199:1032 − 1037. doi: 10.1016/j.proeng.2017.09.278
[15] 王运生, 贺建先, 罗永红, 等. 康定Ms5.8级地震冷竹关坡体内地震动响应特征[J]. 西南交通大学学报,2015,50(5):838 − 844. [WANG Yunsheng, HE Jianxian, LUO Yonghong, et al. Seismic responses of Lengzhuguan slope during Kangding Ms5.8 earthquake[J]. Journal of Southwest Jiaotong University,2015,50(5):838 − 844. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2015.05.011
[16] 刘峡, 张学民. 小波变换与地震信号特征分析[J]. 地震,2002,22(3):51 − 57. [LIU Xia, ZHANG Xuemin. Wavelet transform and seismic signal analysis[J]. Earthquake,2002,22(3):51 − 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3274.2002.03.009
[17] 罗永红. 地震作用下复杂斜坡响应规律研究[D]. 成都: 成都理工大学, 2011: 190-192.
LUO Yonghong. Study on Response Law of complex slope under earthquake action[D]. Chengdu: Chengdu University of Technology, 2011: 190-192. (in Chinese with English abstract)
[18] 贺建先, 王运生, 罗永红, 等. 康定Ms 6.3级地震斜坡地震动响应监测分析[J]. 工程地质学报,2015,23(3):383 − 393. [HE Jianxian, WANG Yunsheng, LUO Yonghong, et al. Monitoring result analysis of slope seismic response during the Kangding ms6[J]. Journal of Engineering Geology,2015,23(3):383 − 393. (in Chinese with English abstract)
[19] 祁生文, 许强, 刘春玲, 等. 汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J]. 工程地质学报,2009,17(1):39 − 49. [QI Shengwen, XU Qiang, LIU Chunling, et al. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):39 − 49. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.01.005
[20] 张维辰, 朱凯光, 池成全, 等. 基于小波变换的2013年芦山MS7.0地震前姑咱台钻孔应变异常时频分析[J]. 地震学报,2019,41(2):230 − 238. [ZHANG Weichen, ZHU Kaiguang, CHI Chengquan, et al. Time-frequency analyses for borehole strain anomaly at Guzan station before 2013 Lushan MS7.0 earthquake based on wavelet transform[J]. Acta Seismologica Sinica,2019,41(2):230 − 238. (in Chinese with English abstract) doi: 10.11939/jass.20170193
[21] 刘峥, 石树中, 沈建文. 用美国西部强震记录讨论厚覆盖土层峰值加速度的放大效应[J]. 西北地震学报,2008(3):245 − 248+254. [LIU Zheng, SHI Shuzhong, SHENG Jianwen. Amplification of PGA on deep soft sites based on the digital records of strong motion obtained in the western U.S.A[J]. Northwestern Seismological Journal,2008(3):245 − 248+254. (in Chinese with English abstract)
[22] 杨健, 万志清. 覆盖土层对地震剪切波的放大与吸收作用[J]. 岩土工程学报,1995,17(1):96 − 100. [YANG Jian, WAN Zhiqing. Wamplification and absorption effect of deep soil to S wave[J]. Chinese Journal of Geotechnical Engineering,1995,17(1):96 − 100. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1995.01.015