中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于连续小波变换的斜坡动力响应特征分析

金刚, 王运生, 何先龙, 史丙新, 周宇航. 基于连续小波变换的斜坡动力响应特征分析——以四川长宁Ms6.0级地震为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.01
引用本文: 金刚, 王运生, 何先龙, 史丙新, 周宇航. 基于连续小波变换的斜坡动力响应特征分析——以四川长宁Ms6.0级地震为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.01
JIN Gang, WANG Yunsheng, HE Xianlong, SHI Bingxin, ZHOU Yuhang. Time-Frequency characteristics and seismic response analyses of the 6.0-magnitude earthquake, Changning County of Yibin in Southwest China’s Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.01
Citation: JIN Gang, WANG Yunsheng, HE Xianlong, SHI Bingxin, ZHOU Yuhang. Time-Frequency characteristics and seismic response analyses of the 6.0-magnitude earthquake, Changning County of Yibin in Southwest China’s Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 1-8. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.01

基于连续小波变换的斜坡动力响应特征分析

  • 基金项目: 国家创新研究群体科学基金(41521002);国家自然科学基金(41877235)
详细信息
    作者简介: 金 刚(1996-),男,河南郑州人,硕士研究生,从事地质工程与区域稳定性研究。Email:825200169@qq.com
    通讯作者: 王运生(1960-),男,博士,博士生导师,主要从事工程地质方面的教学工作。Email:wangys60@163.com
  • 中图分类号: P694

Time-Frequency characteristics and seismic response analyses of the 6.0-magnitude earthquake, Changning County of Yibin in Southwest China’s Sichuan Province

More Information
  • 川西北地区深切峡谷发育,地震扰动频繁。峡谷内高陡岩质斜坡在强震扰动下,通常会发生震裂松弛,进而导致失稳,因此研究其强震响应意义重大。2019年四川长宁Ms6.0级地震触发了布置在石棉县城南桠河两岸的3台强震监测仪器,通过对捕捉到的强震数据进行连续小波变换之后,获取了其时频信息。分析结果表明:(1)S波在频域上分为两种成分,其主频值分别为3.5 Hz和1.1 Hz附近;(2)山脊处的地震动放大效应主要体现为S波相对高频成分上能量的增加而低频部分则无显著变化;(3)覆盖层场地自振频率与S波低频成分主频相近,二者产生共振,导致S波低频放大与高频衰减效应;(4)地震动响应具有极强的方向性,水平向地震动放大效应比垂直向更为显著。

  • 加载中
  • 图 1  南桠河两岸监测仪器分布图(方位角118°)

    Figure 1. 

    图 2  南桠河两岸红线地质剖面图

    Figure 2. 

    图 3  2#监测点附近山脊部位的落石以及斜坡变形

    Figure 3. 

    表 1  各监测点所在位置场地属性

    Table 1.  Properties of monitoring sites

    监测点编号绝对高程/m震中距/km监测点所在部位场地类型
    1#1150265山体平坡处基岩(花岗岩)
    2#1060265山脊处基岩(花岗岩)
    3#1102267山脊处厚覆盖层
    参照点(石棉先锋)×××薄覆盖层
    下载: 导出CSV

    表 2  各监测点地震动响应参数

    Table 2.  Ground motion response parameters at each monitoring site

    监测点编号峰值加速度/gal阿里亚斯强度/(cm·s−1)
    EWSNUDEWSNUD
    1#1.222.942.230.361.220.89
    2#2.133.642.350.551.800.81
    3#7.4210.182.9415.0913.262.75
    *参照点1.743.361.880.882.700.87
      注:1 gal=1 cm/s2
    下载: 导出CSV

    表 3  监测点3分量连续小波分解图

    Table 3.  Three-component continuous wavelet decomposition

    东西方向南北方向垂直方向
    下载: 导出CSV

    表 4  监测点波峰成分统计表

    Table 4.  Statistical table of signal peak at each site

    方向S波高频波峰S波低频波峰
    1#2#3#参照点1#2#3#参照点
    东西27.23 s37.67 s×32.02 s27.00 s37.76 s36.03 s31.70 s
    2.8 Hz3.9 Hz×3.2 Hz1.4 Hz1.4 Hz1.3 Hz1.1 Hz
    0.0450.078×0.0760.0630.0720.6300.068
    南北26.50 s36.52 s×32.00 s27.09 s36.41 s35.09 s32.27 s
    2.8 Hz3.5 Hz×2.5 Hz1.1 Hz1.1 Hz1.1 Hz1.1 Hz
    0.1200.183×0.1880.1100.1150.6560.138
    垂直26.77 s37.73 s34.85 s32.88 s27.19 s38.13 s35.28 s32.36 s
    3.5 Hz3.5 Hz2.8 Hz3.2 Hz1.1 Hz1.1 Hz1.1 Hz1.1 Hz
    0.0860.1070.1500.0760.0900.0680.0890.068
    下载: 导出CSV

    表 5  3#监测点场地3分量反应图谱

    Table 5.  Three-component response spectrum of monitoring site No.3

    东西向南北向垂直向
    下载: 导出CSV

    表 6  3#监测点三分量特征周期/频率表

    Table 6.  Dominant period / frequency of site 3#

    东西向南北向垂直向
    特征周期/s0.740.880.36
    特征频率/Hz1.351.132.77
    下载: 导出CSV

    表 7  1#与2#监测点三分量特征周期

    Table 7.  Dominant period of site 1# and 2#

    监测点编号特征周期/s
    东西向南北向垂直向
    1#0.260.260.25
    2#0.260.260.28
    下载: 导出CSV
  • [1]

    黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报,2011,19(2):145 − 151. [HUANG Runqiu. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology,2011,19(2):145 − 151. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2011.02.001

    [2]

    王飞, 吴红刚, 郭春香. 碎石土路堑高边坡地震动力响应过程分析[J]. 中国地质灾害与防治学报,2020,31(1):18 − 24. [WANG Fei, WU Honggang, GUO Chunxiang. Dynamic response of high cut based a numerical simulation slope to earthquake[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):18 − 24. (in Chinese with English abstract)

    [3]

    温铭生, 刘传正, 刘艳辉, 等. 汶川地震高烈度区崩滑流灾害区域预警[J]. 中国地质灾害与防治学报,2019,30(1):10 − 19. [WEN Mingsheng, LIU Chuanzheng, LIU Yanhui, et al. Regional warning of geological hazards in high seismic intensity area of Wenchuan Earthquake[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):10 − 19. (in Chinese with English abstract)

    [4]

    陈宗良, 叶振南, 王志宏, 等. 白龙江流域中上游第四纪沉积物的发育特征及其灾害效应[J]. 水文地质工程地质,2019,46(2):29 − 36. [CHEN Zongliang, YE Zhennan, WANG Zhihong, et al. Development characteristics and disaster effect of the Quaternary sediments in the middle and upper reaches of the Bailongiang River Basin[J]. Hydrogeology & Engineering Geology,2019,46(2):29 − 36. (in Chinese with English abstract)

    [5]

    付智勇, 龙晶晶, 常鸣. 汶川地震前后四川都江堰龙池镇地区泥石流物源分布特征及其演化规律[J]. 中国地质灾害与防治学报,2019,30(6):10 − 19. [FU Zhiyong, LONG Jingjing, CHANG Ming. Distribution characteristics and evolution rules of sediment supply for debris flow occurrence around Longchi Town of Dujiangyan City, Sichuan Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(6):10 − 19. (in Chinese with English abstract)

    [6]

    王运生, 罗永红, 吉峰, 等. 汶川大地震山地灾害发育的控制因素分析[J]. 工程地质学报,2008,16(06):759 − 763. [WANG Yunsheng, LUO Yonghong, JI Feng, et al. Analysis of the controlling factors on mountainous epicenter zones of the Wenchuan earthquake[J]. Journal of Engineering Geology,2008,16(06):759 − 763. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2008.06.005

    [7]

    罗永红, 王运生. 汶川地震诱发山地斜坡震动的地形放大效应[J]. 山地学报,2013,31(2):200 − 210. [LUO Yonghong, WANG Yunsheng. Mountain slope ground motion topography amplification effect induced by Wenchuan earthquake[J]. Journal of Mountain Science,2013,31(2):200 − 210. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2013.02.009

    [8]

    范刚. 含软弱夹层层状岩质边坡地震响应及稳定性判识时频方法研究[D]. 成都: 西南交通大学, 2016.

    FAN Gang. The dynamic response and time- frequency method for seismic stability evaluation of layered rock slope with weak intercalated layer[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese with English abstract)

    [9]

    VALAGUSSA A, MARA P. Seismic and geological controls on earthquake-induced landslide size[J]. Earth and Planetary Science Letters,2019,506:268 − 281. doi: 10.1016/j.jpgl.2018.11.005

    [10]

    CROISSANT T, STEER P. Seismic cycles, earthquakes, landslides and sediment fluxes: Linking tectonics to surface processes using a reduced-complexity model[J]. Geomorphology,2018,339:87 − 103.

    [11]

    GUAN Z C, ZHOU Y. The seismic responses and seismic properties of large section mountain tunnel based on shaking table tests[J]. Tunnelling and Underground Space Technology,2019,90:283 − 293.

    [12]

    HARTZELL S H, CARVER D L, KING K W. Initial investigation of site and topography effects at Robinwood ridge, California[J]. Bull. Seis. Soc. Am.,1984,84:1366 − 1349.

    [13]

    CELEBI M. Topography and geologic amplification determined from strong-motion and after shock records of 3 March 1985 Chile earthquake[J]. Bulletin of the Seismological of America,1987,77:1147 − 1107.

    [14]

    SU W C, HUANG S C. Identification of Structural Stiffness Parameters via Wavelet Packet from Seismic Response[J]. Procedia Engineering,2017,199:1032 − 1037. doi: 10.1016/j.proeng.2017.09.278

    [15]

    王运生, 贺建先, 罗永红, 等. 康定Ms5.8级地震冷竹关坡体内地震动响应特征[J]. 西南交通大学学报,2015,50(5):838 − 844. [WANG Yunsheng, HE Jianxian, LUO Yonghong, et al. Seismic responses of Lengzhuguan slope during Kangding Ms5.8 earthquake[J]. Journal of Southwest Jiaotong University,2015,50(5):838 − 844. (in Chinese with English abstract) doi: 10.3969/j.issn.0258-2724.2015.05.011

    [16]

    刘峡, 张学民. 小波变换与地震信号特征分析[J]. 地震,2002,22(3):51 − 57. [LIU Xia, ZHANG Xuemin. Wavelet transform and seismic signal analysis[J]. Earthquake,2002,22(3):51 − 57. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3274.2002.03.009

    [17]

    罗永红. 地震作用下复杂斜坡响应规律研究[D]. 成都: 成都理工大学, 2011: 190-192.

    LUO Yonghong. Study on Response Law of complex slope under earthquake action[D]. Chengdu: Chengdu University of Technology, 2011: 190-192. (in Chinese with English abstract)

    [18]

    贺建先, 王运生, 罗永红, 等. 康定Ms 6.3级地震斜坡地震动响应监测分析[J]. 工程地质学报,2015,23(3):383 − 393. [HE Jianxian, WANG Yunsheng, LUO Yonghong, et al. Monitoring result analysis of slope seismic response during the Kangding ms6[J]. Journal of Engineering Geology,2015,23(3):383 − 393. (in Chinese with English abstract)

    [19]

    祁生文, 许强, 刘春玲, 等. 汶川地震极重灾区地质背景及次生斜坡灾害空间发育规律[J]. 工程地质学报,2009,17(1):39 − 49. [QI Shengwen, XU Qiang, LIU Chunling, et al. Slope instabilities in the severest disaster areas of 5·12 Wenchuan earthquake[J]. Journal of Engineering Geology,2009,17(1):39 − 49. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2009.01.005

    [20]

    张维辰, 朱凯光, 池成全, 等. 基于小波变换的2013年芦山MS7.0地震前姑咱台钻孔应变异常时频分析[J]. 地震学报,2019,41(2):230 − 238. [ZHANG Weichen, ZHU Kaiguang, CHI Chengquan, et al. Time-frequency analyses for borehole strain anomaly at Guzan station before 2013 Lushan MS7.0 earthquake based on wavelet transform[J]. Acta Seismologica Sinica,2019,41(2):230 − 238. (in Chinese with English abstract) doi: 10.11939/jass.20170193

    [21]

    刘峥, 石树中, 沈建文. 用美国西部强震记录讨论厚覆盖土层峰值加速度的放大效应[J]. 西北地震学报,2008(3):245 − 248+254. [LIU Zheng, SHI Shuzhong, SHENG Jianwen. Amplification of PGA on deep soft sites based on the digital records of strong motion obtained in the western U.S.A[J]. Northwestern Seismological Journal,2008(3):245 − 248+254. (in Chinese with English abstract)

    [22]

    杨健, 万志清. 覆盖土层对地震剪切波的放大与吸收作用[J]. 岩土工程学报,1995,17(1):96 − 100. [YANG Jian, WAN Zhiqing. Wamplification and absorption effect of deep soil to S wave[J]. Chinese Journal of Geotechnical Engineering,1995,17(1):96 − 100. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-4548.1995.01.015

  • 加载中

(3)

(7)

计量
  • 文章访问数:  1424
  • PDF下载数:  23
  • 施引文献:  0
出版历程
收稿日期:  2020-03-28
修回日期:  2020-05-13
刊出日期:  2021-04-25

目录