Application of geographic detector in identifying influencing factors of landslide stability: A case study of the Jiangda County, Tibet
-
摘要:
高山峡谷区是滑坡灾害频发地区,随着气候变化和人类活动加剧,滑坡呈多发、频发态势。本文选择坐落于横断山高山峡谷区的西藏江达县作为研究区,利用野外调查获取的85个滑坡数据,选取坡度、河流密度、地貌类型、降水量、距断层距离、道路密度、地震动峰值加速度、岩性等8个稳定性影响因素,运用地理探测器对滑坡稳定性的影响因素进行了探测。结果表明:(1)按滑坡体体积划分等级,江达县滑坡主要以中、小型滑坡为主;按其稳定性划分,50%以上的滑坡处于稳定状态;按危险等级划分,以Ⅲ级、Ⅳ级为主;江达县滑坡主要沿河流与道路分布,全县地面调查发现85处滑坡全部分布于河流附近,其中71.76%的滑坡分布于道路两侧。(2)江达县滑坡稳定性的主要影响因子为地貌类型、河流密度、道路密度和距断层距离,其贡献率分别为0.501,0.477,0.465,0.332;当影响因子两两相互作用时,因子解释力总是大于单个因子对滑坡稳定性的解释力,即当两种影响因子相互作用时,对于滑坡的失稳具有促进作用。
Abstract:The high mountain and gorge area is an typically area, where geological disasters happen frequently. Especially landslide is one of the most serious geological disasters. Recently relative researches on geological disasters showed that landslides had an increasing trends due to the impacts of both climate change and human activities. In this study, Jiangda County in Tibet Autonomous region was selected as our study area, which located in the high mountain and gorge area of the Hengduan Mountain Region. In addition, using the landslide data for 85 sites based on field survey, choosing Slope, River density, Geomorphic type, Precipitation, the distance from the fault, Road density, the ground motion peak acceleration and Lithology as 8 influencing factors on landslide, and then employing the Geodetector model to analyze the impact of various variables on landslide stability. The results showed that 1) according to the volume of landslide, medium and small landslides are main types in Jiangda County; According to its stability, more than 50% of the landslide is in a stable state; according to the danger level, they are mainly divided into Ⅲ, Ⅳ. In space, it is mainly along rivers and roads in Jiangda County, which caused by the limitations of the field survey besides physical factors. Because all 85 landslide survey sites located near rivers, and more than 71% sites are distributed on both sides of the road. 2) The geomorphic type, River density, Road density and the distance from the fault are major factors to affect the stability of the landslide in Jiangda County, its contribution rate are 0.501, 0.477, 0.465 and 0.332, respectively. When the influence factors interact in pairs, the explanatory power of factors is always greater than that of a single factor to the stability of landslides. In other words, when the two influencing factors interact, they always promote the instability of landslides.
-
Key words:
- landslide stability /
- geographic detector /
- alpine canyon /
- influence factors
-
表 1 地层岩性硬度划分表
Table 1. Stratum lithology hardness division table
类别 代表岩石 稳定性赋值 极硬岩 花岗岩、二长花岗岩、闪长岩、
辉长岩、石英闪长岩、玄武玢岩、
硅质岩、超镁铁质岩类4 次硬岩 碳酸盐岩、碎屑岩、大理岩、白云岩、
石灰岩、中酸性基性火山岩、
赤铁矿、夹灰岩、地层并层等3 次软岩 千枚岩、板岩、灰岩、石膏等 2 极软岩 页岩、黏土岩、泥岩、
砂岩、砾岩及各种土体等1 表 2 按滑坡体体积划分的滑坡等级
Table 2. Landslide grade divided by volume
规模 标准/(104 m3) 数量/个 占比/% 小型 V<10 45 52.94 中型 10≤V<100 26 30.59 大型 100≤V<1000 11 12.94 特大型 1000≤V 3 3.53 总计 85 100.00 表 3 按稳定性划分的滑坡等级
Table 3. Landslide grade divided by stability
稳定性评价 数量/个 占比/% 稳定 14 16.47 较稳定 29 34.12 稳定性较差 4 4.71 不稳定 33 38.82 易发 5 5.88 总计 85 100.00 表 4 按危险性划分的滑坡等级
Table 4. Landslide grade divided by danger
险情等级 数量/个 占比/% Ⅰ级 0 0.00 Ⅱ级 2 2.35 Ⅲ级 17 20.00 Ⅳ级 66 77.65 总计 85 100.00 表 5 因子探测结果
Table 5. Factor detection results
坡度 X1 距断层距离 X2 岩性 X3 河流密度 X4 地貌类型 X5 道路密度 X6 降水量 X7 地震动峰值加速度 X8 q值 0.168 0.332 0.101 0.477 0.501 0.465 0.122 0.129 表 6 交互作用探测结果
Table 6. Interaction detection results
交互因素 交互值 交互值比较 交互结果 坡度∩距断层距离 0.728 >q(坡度)+q(距断层距离) 非线性增强 坡度∩岩性 0.418 >q(坡度),q(岩性) 非线性增强 坡度∩河流密度 0.677 >q(坡度)+q(河流密度) 非线性增强 坡度∩地貌 0.827 >q(坡度),q(地貌) 非线性增强 坡度∩道路密度 0.748 >q(坡度),q(道路密度) 非线性增强 坡度∩降水量 0.424 >q(坡度)+q(降水量) 非线性增强 坡度∩地震动峰值加速度 0.404 >q(坡度)+q(地震动峰值加速度) 非线性增强 距断层距离∩岩性 0.433 >q(距断层距离)+q(岩性) 非线性增强 距断层距离∩河流密度 0.739 >Max(q(距断层距离),q(河流密度)) 双因子增强 距断层距离∩地貌 0.938 >q(距断层距离),q(地貌) 非线性增强 距断层距离∩道路密度 0.783 >Max(q(距断层距离),q(道路密度)) 双因子增强 距断层距离∩降水量 0.413 >Max(q(距断层距离),q(降水量)) 双因子增强 距断层距离∩地震动峰值加速度 0.445 >Max(q(距断层距离),q(地震动峰值加速度)) 双因子增强 岩性∩河流密度 0.557 >q(岩性)+q(河流密度) 非线性增强 岩性∩地貌 0.781 >q(岩性)+q(地貌) 非线性增强 岩性∩道路密度 0.547 >Max(q(岩性),q(道路密度)) 双因子增强 岩性∩降水量 0.221 >Max(q(岩性),q(降水量)) 双因子增强 岩性∩地震动峰值加速度 0.339 >q(岩性)+q(地震动峰值加速度) 非线性增强 河流密度∩地貌 0.831 >Max(q(河流密度),q(地貌)) 双因子增强 河流密度∩道路密度 0.700 >Max(q(河流密度),q(道路密度)) 双因子增强 河流密度∩降水量 0.540 >Max(q(河流密度),q(降水量)) 双因子增强 河流密度∩地震动峰值加速度 0.559 >q(河流密度)+q(地震动峰值加速度) 非线性增强 地貌∩道路密度 0.815 >Max(q(地貌),q(道路密度)) 双因子增强 地貌∩降水量 0.735 >q(地貌)+q(降水量) 非线性增强 地貌∩地震动峰值加速度 0.544 >Max(q(地貌),q(地震动峰值加速度)) 双因子增强 道路密度∩降水量 0.617 >q(道路密度)+q(降水量) 非线性增强 道路密度∩地震动峰值加速度 0.521 >Max(q(道路密度),q(地震动峰值加速度)) 双因子增强 降水量∩地震动峰值加速度 0.267 >Max(q(降水量),q(地震动峰值加速度)) 双因子增强 表 7 生态探测结果
Table 7. Ecological detection results
坡度X1 距断层距离X2 岩性X3 河流密度X4 地貌X5 道路密度X6 降水量X7 地震动峰加速度X8 坡度 距断层距离 N 岩性 N Y 河流密度 Y N Y 地貌 Y N Y N 道路密度 Y N Y N N 降水量 N Y N Y Y Y 地震动峰加速度 N N N Y Y Y N -
[1] 陈冠, 孟兴民, 郭鹏, 等. 白龙江流域基于GIS与信息量模型的滑坡危险性等级区划[J]. 兰州大学学报(自然科学版),2011,47(6):1 − 6. [CHEN Guan, MENG Xingmin, GUO Peng, et al. Landslide susceptibility mapping based on GIS and information value model in Bailong river basin[J]. Journal of Lanzhou University (Natural Sciences),2011,47(6):1 − 6. (in Chinese with English abstract)
[2] 张永双, 郭长宝, 杨志华, 等. 青藏高原东缘地形急变带滑坡灾害特征与危险性研究[M]. 武汉: 中国地质大学出版社, 2018.
ZHANG Yongshuang, GUO Changbao, YANG Zhihua, et al. Study on the characteristics and risks of landslide disasters in the sudden Change Zone of the Eastern Tibetan Plateau[M]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)
[3] 柳丙善, 李世海, 赵卿. 清江隔河岩水库茅坪滑坡的主要影响因素分析[J]. 中国地质灾害与防治学报,2008,19(2):36 − 43. [LIU Bingshan, LI Shihai, ZHAO Qin. Research on the main factors causing Maoping Landslide based upon the insitu investigation[J]. The Chinese Journal of Geological Hazard and Control,2008,19(2):36 − 43. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2008.02.008
[4] 陈剑, 李晓, 杨志法. 三峡库区滑坡的时空分布特征与成因探讨[J]. 工程地质学报,2005,13(3):305 − 309. [CHEN Jian, LI Xiao, YANG Zhifa. On the distribution and mechanism of landslides in the Three Gorges reservoir area[J]. Journal of Engineering Geology,2005,13(3):305 − 309. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2005.03.004
[5] 尹小涛, 王水林. 基于可靠度理论的滑坡稳定性及其影响因素分析[J]. 岩土力学,2008,29(6):1551 − 1556. [YIN Xiaotao, WANG Shuilin. Stability and its influential factors analysis of landslides based on reliability theory[J]. Rock and Soil Mechanics,2008,29(6):1551 − 1556. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.06.022
[6] TURKAN B A, ERGIN G. Landslide-Triggering Factors in Korucak Subbasin, North Anatolian, Turkey[J]. Procedia Earth and Planetary Science,2015,15:566 − 572. doi: 10.1016/j.proeps.2015.08.104
[7] 杨华阳, 许向宁, 杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang, XU Xiangning, YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract)
[8] 张向营, 张春山, 孟华君, 等. 基于Random Forest和AHP的贵德县北部山区滑坡危险性评价[J]. 水文地质工程地质,2018,45(4):142 − 149. [ZHANG Xiangying, ZHANG Chunshan, MENG Huajun, et al. Landslide hazard evaluation in the northern mountainous area of Guide County based on Random Forest and AHP[J]. Hydrogeology & Engineering Geology,2018,45(4):142 − 149. (in Chinese with English abstract)
[9] 杨可明, 郭海会, 钱小丽, 等. 结合信息熵改进的证据权法与滑坡危险度区划[J]. 地理与地理信息科学,2013,29(3):104 − 108. [YANG Keming, GUO Haihui, QIAN Xiaoli, et al. Improving weights of evidence method based on entropy and zoning the landslide hazard[J]. Geography and Geo-Information Science,2013,29(3):104 − 108. (in Chinese with English abstract)
[10] 张倬元. 滑坡防治工程的现状与发展展望[J]. 地质灾害与环境保护,2000,11(2):89 − 97. [ZHANG Zhouyuan. The present status, technical advance and development trends of landslide reme dial measures[J]. Journal of Geological Hazrds and Environment Preservation,2000,11(2):89 − 97. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4362.2000.02.001
[11] 王恭先. 滑坡防治中的关键技术及其处理方法[J]. 岩石力学与工程学报,2005,24(21):3818 − 3827. [WANG Gongxian. Key technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(21):3818 − 3827. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.21.003
[12] 罗丽娟, 赵法锁. 滑坡防治工程措施研究现状与应用综述[J]. 自然灾害学报,2009,18(4):158 − 164. [LUO Lijuan, ZHAO Fasuo. Status of research and application of engineering measures for preventing and controlling landslide[J]. Journal of Natural Disasters,2009,18(4):158 − 164. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4574.2009.04.027
[13] NIE Z B, ZHANG Z H, ZHENG H, et al. Stability analysis of landslides using BEM and variational inequality based contact model[J]. Computers and Geotechnics,2020,123:1 − 7.
[14] 闫玉平, 肖世国. 考虑滑带强度参数分区取值的堆积层滑坡稳定性分析方法[J]. 中国地质灾害与防治学报,2020,31(2):44 − 49. [YAN Yuping, XIAO Shiguo. Stability analysis method for bedrock-talus landslides considering strength parameter partition of slip shear band[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):44 − 49. (in Chinese with English abstract)
[15] 刘磊, 徐勇, 李远耀, 等. 湘西陈溪峪滑坡变形机理及稳定性评价[J]. 水文地质工程地质,2019,46(2):21 − 28. [LIU Lei, XU Yong, LI Yuanyao, et al. A study of deformation mechanism and stability evaluation of the Chenxiyu landslide in western Hunan[J]. Hydrogeology & Engineering Geology,2019,46(2):21 − 28. (in Chinese with English abstract)
[16] 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116 − 134. (in Chinese with English abstract) doi: 10.11821/dlxb201701010
[17] 李涛, 廖和平, 褚远恒, 等. 重庆市农地非农化空间非均衡及形成机理[J]. 自然资源学报,2016,31(11):1844 − 1857. [LI Tao, LIAO Heping, CHU Yuanheng, et al. Spatial disequilibrium and its formation mechanism of farmland conversion in Chongqing[J]. Journal of Natural Resources,2016,31(11):1844 − 1857. (in Chinese with English abstract) doi: 10.11849/zrzyxb.20151371
[18] 闫举生, 谭建民. 基于不同因子分级法的滑坡易发性评价: 以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods—A case study in Yuan'an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract)
[19] 张铎, 吴中海, 李家存, 等. 滇西北永胜-宾川地区滑坡发育的影响因子分析及其动力成因与意义探讨[J]. 自然灾害学报,2016,25(1):176 − 190. [ZHANG Duo, WU Zhonghai, LI Jiacun, et al. Analysis of the influential factor of landslide in Yongsheng-Binchuan region of northwest Yunnan and the exploration of its dynamic cause and significance[J]. Journal of Natural Disasters,2016,25(1):176 − 190. (in Chinese with English abstract)
[20] 谢帅, 刘士彬, 段建波, 等. OSDS注册用户空间分布特征及影响因素分析[J]. 地球信息科学学报,2016,18(10):1332 − 1340. [XIE Shuai, LIU Shibin, DUAN Jianbo, et al. Spatial distribution characteristics of OSDS registered users and its influencing factors[J]. Journal of Geo-Information Science,2016,18(10):1332 − 1340. (in Chinese with English abstract)
[21] 田丰, 张军, 冉有华, 等. 甘肃陇南市泥石流灾害危险性及影响因子评价[J]. 灾害学,2017,32(3):197 − 203. [TIAN Feng, ZHANG Jun, RAN Youhua, et al. Assessment of debris flow disaster hazard and influence factors in Longnan district[J]. Journal of Catastrophology,2017,32(3):197 − 203. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2017.03.033
[22] 方然可, 刘艳辉, 苏永超, 等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)
[23] 郭伟, 王晨辉, 李鹏, 等. 基于LoRa的地质灾害分布式实时监测系统设计[J]. 水文地质工程地质,2020,47(4):107 − 113. [GUO Wei, WANG Chenhui, LI Peng, et al. Design of the distributed real -time monitoring system for geological hazards based on LoRa[J]. Hydrogeology & Engineering Geology,2020,47(4):107 − 113. (in Chinese with English abstract)
[24] 张茂省.发挥新型举国体制优势提高地质灾害防治能力[J]. 西北地质, 2019, 52(2): Ⅰ-Ⅱ.
ZHANG Maosheng. Maximising the advantages of the new national system for improving the ability to prevent and mitigate geological disasters[J]. Northwestern Geology, 2019, 52(2): Ⅰ-Ⅱ. (in Chinese with English abstract)
[25] 张茂省, 薛强, 贾俊, 等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质,2019,52(2):125 − 135. [ZHANG Maosheng, XUE Qiang, JIA Jun, et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology,2019,52(2):125 − 135. (in Chinese with English abstract)
[26] 李滨, 张青, 王文沛, 等. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报,2020,26(4):556 − 564. [LI Bin, ZHANG Qing, WANG Wenpei, et al. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics,2020,26(4):556 − 564. (in Chinese with English abstract)