中国地质环境监测院
中国地质灾害防治工程行业协会
主办

地理探测器在判别滑坡稳定性影响因素中的应用

支泽民, 陈琼, 张强, 周强, 刘峰贵, 赵富昌, 陈永萍. 地理探测器在判别滑坡稳定性影响因素中的应用——以西藏江达县为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 19-26. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.03
引用本文: 支泽民, 陈琼, 张强, 周强, 刘峰贵, 赵富昌, 陈永萍. 地理探测器在判别滑坡稳定性影响因素中的应用——以西藏江达县为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 19-26. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.03
ZHI Zemin, CHEN Qiong, ZHANG Qiang, ZHOU Qiang, LIU Fenggui, ZHAO Fuchang, CHEN Yongping. Application of geographic detector in identifying influencing factors of landslide stability: A case study of the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 19-26. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.03
Citation: ZHI Zemin, CHEN Qiong, ZHANG Qiang, ZHOU Qiang, LIU Fenggui, ZHAO Fuchang, CHEN Yongping. Application of geographic detector in identifying influencing factors of landslide stability: A case study of the Jiangda County, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 19-26. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.03

地理探测器在判别滑坡稳定性影响因素中的应用

  • 基金项目: 第二次青藏高原综合科学考察研究(2019QZKK0906);国家重点研发计划(2019YFA0606902)
详细信息
    作者简介: 支泽民(1994-),男,山西朔州人,硕士研究生,主要从事土地利用与灾害风险研究。E-mail:zhizemin@126.com
    通讯作者: 陈 琼(1975-),女,浙江诸暨人,博士,副教授,硕士生导师,主要从事土地科学研究。E-mail:qhchenqiong@163.com
  • 中图分类号: P642

Application of geographic detector in identifying influencing factors of landslide stability: A case study of the Jiangda County, Tibet

More Information
  • 高山峡谷区是滑坡灾害频发地区,随着气候变化和人类活动加剧,滑坡呈多发、频发态势。本文选择坐落于横断山高山峡谷区的西藏江达县作为研究区,利用野外调查获取的85个滑坡数据,选取坡度、河流密度、地貌类型、降水量、距断层距离、道路密度、地震动峰值加速度、岩性等8个稳定性影响因素,运用地理探测器对滑坡稳定性的影响因素进行了探测。结果表明:(1)按滑坡体体积划分等级,江达县滑坡主要以中、小型滑坡为主;按其稳定性划分,50%以上的滑坡处于稳定状态;按危险等级划分,以Ⅲ级、Ⅳ级为主;江达县滑坡主要沿河流与道路分布,全县地面调查发现85处滑坡全部分布于河流附近,其中71.76%的滑坡分布于道路两侧。(2)江达县滑坡稳定性的主要影响因子为地貌类型、河流密度、道路密度和距断层距离,其贡献率分别为0.501,0.477,0.465,0.332;当影响因子两两相互作用时,因子解释力总是大于单个因子对滑坡稳定性的解释力,即当两种影响因子相互作用时,对于滑坡的失稳具有促进作用。

  • 加载中
  • 图 1  研究区概况图

    Figure 1. 

    图 2  最优离散分类流程图

    Figure 2. 

    图 3  影响因子最优离散分类

    Figure 3. 

    表 1  地层岩性硬度划分表

    Table 1.  Stratum lithology hardness division table

    类别代表岩石稳定性赋值
    极硬岩花岗岩、二长花岗岩、闪长岩、
    辉长岩、石英闪长岩、玄武玢岩、
    硅质岩、超镁铁质岩类
    4
    次硬岩碳酸盐岩、碎屑岩、大理岩、白云岩、
    石灰岩、中酸性基性火山岩、
    赤铁矿、夹灰岩、地层并层等
    3
    次软岩千枚岩、板岩、灰岩、石膏等2
    极软岩页岩、黏土岩、泥岩、
    砂岩、砾岩及各种土体等
    1
    下载: 导出CSV

    表 2  按滑坡体体积划分的滑坡等级

    Table 2.  Landslide grade divided by volume

    规模标准/(104 m3)数量/个占比/%
    小型V<104552.94
    中型10≤V<1002630.59
    大型100≤V<10001112.94
    特大型1000≤V33.53
    总计85100.00
    下载: 导出CSV

    表 3  按稳定性划分的滑坡等级

    Table 3.  Landslide grade divided by stability

    稳定性评价数量/个占比/%
    稳定1416.47
    较稳定2934.12
    稳定性较差44.71
    不稳定3338.82
    易发55.88
    总计85100.00
    下载: 导出CSV

    表 4  按危险性划分的滑坡等级

    Table 4.  Landslide grade divided by danger

    险情等级数量/个占比/%
    Ⅰ级00.00
    Ⅱ级22.35
    Ⅲ级1720.00
    Ⅳ级6677.65
    总计85100.00
    下载: 导出CSV

    表 5  因子探测结果

    Table 5.  Factor detection results

    坡度 X1距断层距离 X2岩性 X3河流密度 X4地貌类型 X5道路密度 X6降水量 X7地震动峰值加速度 X8
    q0.1680.3320.1010.4770.5010.4650.1220.129
    下载: 导出CSV

    表 6  交互作用探测结果

    Table 6.  Interaction detection results

    交互因素交互值交互值比较交互结果
    坡度∩距断层距离0.728>q(坡度)+q(距断层距离)非线性增强
    坡度∩岩性0.418>q(坡度),q(岩性)非线性增强
    坡度∩河流密度0.677>q(坡度)+q(河流密度)非线性增强
    坡度∩地貌0.827>q(坡度),q(地貌)非线性增强
    坡度∩道路密度0.748>q(坡度),q(道路密度)非线性增强
    坡度∩降水量0.424>q(坡度)+q(降水量)非线性增强
    坡度∩地震动峰值加速度0.404>q(坡度)+q(地震动峰值加速度)非线性增强
    距断层距离∩岩性0.433>q(距断层距离)+q(岩性)非线性增强
    距断层距离∩河流密度0.739>Max(q(距断层距离),q(河流密度))双因子增强
    距断层距离∩地貌0.938>q(距断层距离),q(地貌)非线性增强
    距断层距离∩道路密度0.783>Max(q(距断层距离),q(道路密度))双因子增强
    距断层距离∩降水量0.413>Max(q(距断层距离),q(降水量))双因子增强
    距断层距离∩地震动峰值加速度0.445>Max(q(距断层距离),q(地震动峰值加速度))双因子增强
    岩性∩河流密度0.557>q(岩性)+q(河流密度)非线性增强
    岩性∩地貌0.781>q(岩性)+q(地貌)非线性增强
    岩性∩道路密度0.547>Max(q(岩性),q(道路密度))双因子增强
    岩性∩降水量0.221>Max(q(岩性),q(降水量))双因子增强
    岩性∩地震动峰值加速度0.339>q(岩性)+q(地震动峰值加速度)非线性增强
    河流密度∩地貌0.831>Max(q(河流密度),q(地貌))双因子增强
    河流密度∩道路密度0.700>Max(q(河流密度),q(道路密度))双因子增强
    河流密度∩降水量0.540>Max(q(河流密度),q(降水量))双因子增强
    河流密度∩地震动峰值加速度0.559>q(河流密度)+q(地震动峰值加速度)非线性增强
    地貌∩道路密度0.815>Max(q(地貌),q(道路密度))双因子增强
    地貌∩降水量0.735>q(地貌)+q(降水量)非线性增强
    地貌∩地震动峰值加速度0.544>Max(q(地貌),q(地震动峰值加速度))双因子增强
    道路密度∩降水量0.617>q(道路密度)+q(降水量)非线性增强
    道路密度∩地震动峰值加速度0.521>Max(q(道路密度),q(地震动峰值加速度))双因子增强
    降水量∩地震动峰值加速度0.267>Max(q(降水量),q(地震动峰值加速度))双因子增强
    下载: 导出CSV

    表 7  生态探测结果

    Table 7.  Ecological detection results

    坡度X1距断层距离X2岩性X3河流密度X4地貌X5道路密度X6降水量X7地震动峰加速度X8
    坡度
    距断层距离N
    岩性NY
    河流密度YNY
    地貌YNYN
    道路密度YNYNN
    降水量NYNYYY
    地震动峰加速度NNNYYYN
    下载: 导出CSV
  • [1]

    陈冠, 孟兴民, 郭鹏, 等. 白龙江流域基于GIS与信息量模型的滑坡危险性等级区划[J]. 兰州大学学报(自然科学版),2011,47(6):1 − 6. [CHEN Guan, MENG Xingmin, GUO Peng, et al. Landslide susceptibility mapping based on GIS and information value model in Bailong river basin[J]. Journal of Lanzhou University (Natural Sciences),2011,47(6):1 − 6. (in Chinese with English abstract)

    [2]

    张永双, 郭长宝, 杨志华, 等. 青藏高原东缘地形急变带滑坡灾害特征与危险性研究[M]. 武汉: 中国地质大学出版社, 2018.

    ZHANG Yongshuang, GUO Changbao, YANG Zhihua, et al. Study on the characteristics and risks of landslide disasters in the sudden Change Zone of the Eastern Tibetan Plateau[M]. Wuhan: China University of Geosciences Press, 2018.(in Chinese)

    [3]

    柳丙善, 李世海, 赵卿. 清江隔河岩水库茅坪滑坡的主要影响因素分析[J]. 中国地质灾害与防治学报,2008,19(2):36 − 43. [LIU Bingshan, LI Shihai, ZHAO Qin. Research on the main factors causing Maoping Landslide based upon the insitu investigation[J]. The Chinese Journal of Geological Hazard and Control,2008,19(2):36 − 43. (in Chinese with English abstract) doi: 10.3969/j.issn.1003-8035.2008.02.008

    [4]

    陈剑, 李晓, 杨志法. 三峡库区滑坡的时空分布特征与成因探讨[J]. 工程地质学报,2005,13(3):305 − 309. [CHEN Jian, LI Xiao, YANG Zhifa. On the distribution and mechanism of landslides in the Three Gorges reservoir area[J]. Journal of Engineering Geology,2005,13(3):305 − 309. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-9665.2005.03.004

    [5]

    尹小涛, 王水林. 基于可靠度理论的滑坡稳定性及其影响因素分析[J]. 岩土力学,2008,29(6):1551 − 1556. [YIN Xiaotao, WANG Shuilin. Stability and its influential factors analysis of landslides based on reliability theory[J]. Rock and Soil Mechanics,2008,29(6):1551 − 1556. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2008.06.022

    [6]

    TURKAN B A, ERGIN G. Landslide-Triggering Factors in Korucak Subbasin, North Anatolian, Turkey[J]. Procedia Earth and Planetary Science,2015,15:566 − 572. doi: 10.1016/j.proeps.2015.08.104

    [7]

    杨华阳, 许向宁, 杨鸿发. 基于证据权法的九寨沟地震滑坡危险性评价[J]. 中国地质灾害与防治学报,2020,31(3):20 − 29. [YANG Huayang, XU Xiangning, YANG Hongfa. The Jiuzhaigou co-seismic landslide hazard assessment based on weight of evidence method[J]. The Chinese Journal of Geological Hazard and Control,2020,31(3):20 − 29. (in Chinese with English abstract)

    [8]

    张向营, 张春山, 孟华君, 等. 基于Random Forest和AHP的贵德县北部山区滑坡危险性评价[J]. 水文地质工程地质,2018,45(4):142 − 149. [ZHANG Xiangying, ZHANG Chunshan, MENG Huajun, et al. Landslide hazard evaluation in the northern mountainous area of Guide County based on Random Forest and AHP[J]. Hydrogeology & Engineering Geology,2018,45(4):142 − 149. (in Chinese with English abstract)

    [9]

    杨可明, 郭海会, 钱小丽, 等. 结合信息熵改进的证据权法与滑坡危险度区划[J]. 地理与地理信息科学,2013,29(3):104 − 108. [YANG Keming, GUO Haihui, QIAN Xiaoli, et al. Improving weights of evidence method based on entropy and zoning the landslide hazard[J]. Geography and Geo-Information Science,2013,29(3):104 − 108. (in Chinese with English abstract)

    [10]

    张倬元. 滑坡防治工程的现状与发展展望[J]. 地质灾害与环境保护,2000,11(2):89 − 97. [ZHANG Zhouyuan. The present status, technical advance and development trends of landslide reme dial measures[J]. Journal of Geological Hazrds and Environment Preservation,2000,11(2):89 − 97. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-4362.2000.02.001

    [11]

    王恭先. 滑坡防治中的关键技术及其处理方法[J]. 岩石力学与工程学报,2005,24(21):3818 − 3827. [WANG Gongxian. Key technique in landslide control and its handling measures[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(21):3818 − 3827. (in Chinese with English abstract) doi: 10.3321/j.issn:1000-6915.2005.21.003

    [12]

    罗丽娟, 赵法锁. 滑坡防治工程措施研究现状与应用综述[J]. 自然灾害学报,2009,18(4):158 − 164. [LUO Lijuan, ZHAO Fasuo. Status of research and application of engineering measures for preventing and controlling landslide[J]. Journal of Natural Disasters,2009,18(4):158 − 164. (in Chinese with English abstract) doi: 10.3969/j.issn.1004-4574.2009.04.027

    [13]

    NIE Z B, ZHANG Z H, ZHENG H, et al. Stability analysis of landslides using BEM and variational inequality based contact model[J]. Computers and Geotechnics,2020,123:1 − 7.

    [14]

    闫玉平, 肖世国. 考虑滑带强度参数分区取值的堆积层滑坡稳定性分析方法[J]. 中国地质灾害与防治学报,2020,31(2):44 − 49. [YAN Yuping, XIAO Shiguo. Stability analysis method for bedrock-talus landslides considering strength parameter partition of slip shear band[J]. The Chinese Journal of Geological Hazard and Control,2020,31(2):44 − 49. (in Chinese with English abstract)

    [15]

    刘磊, 徐勇, 李远耀, 等. 湘西陈溪峪滑坡变形机理及稳定性评价[J]. 水文地质工程地质,2019,46(2):21 − 28. [LIU Lei, XU Yong, LI Yuanyao, et al. A study of deformation mechanism and stability evaluation of the Chenxiyu landslide in western Hunan[J]. Hydrogeology & Engineering Geology,2019,46(2):21 − 28. (in Chinese with English abstract)

    [16]

    王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报,2017,72(1):116 − 134. [WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica,2017,72(1):116 − 134. (in Chinese with English abstract) doi: 10.11821/dlxb201701010

    [17]

    李涛, 廖和平, 褚远恒, 等. 重庆市农地非农化空间非均衡及形成机理[J]. 自然资源学报,2016,31(11):1844 − 1857. [LI Tao, LIAO Heping, CHU Yuanheng, et al. Spatial disequilibrium and its formation mechanism of farmland conversion in Chongqing[J]. Journal of Natural Resources,2016,31(11):1844 − 1857. (in Chinese with English abstract) doi: 10.11849/zrzyxb.20151371

    [18]

    闫举生, 谭建民. 基于不同因子分级法的滑坡易发性评价: 以湖北远安县为例[J]. 中国地质灾害与防治学报,2019,30(1):52 − 60. [YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods—A case study in Yuan'an County of Hubei Province[J]. The Chinese Journal of Geological Hazard and Control,2019,30(1):52 − 60. (in Chinese with English abstract)

    [19]

    张铎, 吴中海, 李家存, 等. 滇西北永胜-宾川地区滑坡发育的影响因子分析及其动力成因与意义探讨[J]. 自然灾害学报,2016,25(1):176 − 190. [ZHANG Duo, WU Zhonghai, LI Jiacun, et al. Analysis of the influential factor of landslide in Yongsheng-Binchuan region of northwest Yunnan and the exploration of its dynamic cause and significance[J]. Journal of Natural Disasters,2016,25(1):176 − 190. (in Chinese with English abstract)

    [20]

    谢帅, 刘士彬, 段建波, 等. OSDS注册用户空间分布特征及影响因素分析[J]. 地球信息科学学报,2016,18(10):1332 − 1340. [XIE Shuai, LIU Shibin, DUAN Jianbo, et al. Spatial distribution characteristics of OSDS registered users and its influencing factors[J]. Journal of Geo-Information Science,2016,18(10):1332 − 1340. (in Chinese with English abstract)

    [21]

    田丰, 张军, 冉有华, 等. 甘肃陇南市泥石流灾害危险性及影响因子评价[J]. 灾害学,2017,32(3):197 − 203. [TIAN Feng, ZHANG Jun, RAN Youhua, et al. Assessment of debris flow disaster hazard and influence factors in Longnan district[J]. Journal of Catastrophology,2017,32(3):197 − 203. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-811X.2017.03.033

    [22]

    方然可, 刘艳辉, 苏永超, 等. 基于逻辑回归的四川青川县区域滑坡灾害预警模型[J]. 水文地质工程地质,2021,48(1):181 − 187. [FANG Ranke, LIU Yanhui, SU Yongchao, et al. A early warning model of regional landslide in Qingchuan County,Sichuan Province based on logistic regression[J]. Hydrogeology & Engineering Geology,2021,48(1):181 − 187. (in Chinese with English abstract)

    [23]

    郭伟, 王晨辉, 李鹏, 等. 基于LoRa的地质灾害分布式实时监测系统设计[J]. 水文地质工程地质,2020,47(4):107 − 113. [GUO Wei, WANG Chenhui, LI Peng, et al. Design of the distributed real -time monitoring system for geological hazards based on LoRa[J]. Hydrogeology & Engineering Geology,2020,47(4):107 − 113. (in Chinese with English abstract)

    [24]

    张茂省.发挥新型举国体制优势提高地质灾害防治能力[J]. 西北地质, 2019, 52(2): Ⅰ-Ⅱ.

    ZHANG Maosheng. Maximising the advantages of the new national system for improving the ability to prevent and mitigate geological disasters[J]. Northwestern Geology, 2019, 52(2): Ⅰ-Ⅱ. (in Chinese with English abstract)

    [25]

    张茂省, 薛强, 贾俊, 等. 山区城镇地质灾害调查与风险评价方法及实践[J]. 西北地质,2019,52(2):125 − 135. [ZHANG Maosheng, XUE Qiang, JIA Jun, et al. Methods and practices for the investigation and risk assessment of geo-hazards in mountainous towns[J]. Northwestern Geology,2019,52(2):125 − 135. (in Chinese with English abstract)

    [26]

    李滨, 张青, 王文沛, 等. 金沙江乌东德水电站坝区高陡边坡地质灾害监测预警研究[J]. 地质力学学报,2020,26(4):556 − 564. [LI Bin, ZHANG Qing, WANG Wenpei, et al. Geohazard monitoring and risk management of high-steep slope in the Wudongde dam area[J]. Journal of Geomechanics,2020,26(4):556 − 564. (in Chinese with English abstract)

  • 加载中

(3)

(7)

计量
  • 文章访问数:  1952
  • PDF下载数:  54
  • 施引文献:  0
出版历程
收稿日期:  2020-06-15
修回日期:  2020-12-17
刊出日期:  2021-04-25

目录