中国地质环境监测院
中国地质灾害防治工程行业协会
主办

基于增量加载法的泥石流拦挡坝抗冲击力数值模拟

刘兴荣, 魏新平, 陈豫津, 王翔宇. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟——以甘肃舟曲三眼峪沟泥石流拦挡坝为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 78-83. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.11
引用本文: 刘兴荣, 魏新平, 陈豫津, 王翔宇. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟——以甘肃舟曲三眼峪沟泥石流拦挡坝为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 78-83. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.11
LIU Xingrong, WEI Xinping, CHEN Yujin, WANG Xiangyu. Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 78-83. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.11
Citation: LIU Xingrong, WEI Xinping, CHEN Yujin, WANG Xiangyu. Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 78-83. doi: 10.16031/j.cnki.issn.1003-8035.2021.02.11

基于增量加载法的泥石流拦挡坝抗冲击力数值模拟

  • 基金项目: 甘肃省科技计划项目(自然科学基金:18JR3RA251);甘肃科学院与中科院合作项目(2017HZ-03);甘肃科学院科技产业化项目(CY08)
详细信息
    作者简介: 刘兴荣(1979-),男,甘肃靖远人,硕士,副研究员,主要从事地质灾害防治研究。E-mail:402794885@qq.com
    通讯作者: 魏新平(1976-),男,甘肃秦安人,学士,高级工程师,主要从事水工环地质等相关专业技术工作的调查评价与勘查设计。E-mail:361819735@qq.com
  • 中图分类号: P642.23

Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province

More Information
  • 为提高泥石流重力式拦挡坝的设计安全和避免资金投入过大而造成浪费,选择合理的泥石流冲击力作为设计依据尤为重要。文章结合舟曲县三眼峪沟灾后重建防治工程相关数据,利用有限元软件ABAQUS进行计算分析,采用增量加载的数值计算方法,分别求得2种工况下重力式拦挡坝的抗冲击力。根据三眼峪沟治理工程运行至今的反馈情况,证明在泥石流治理工程设计中,冲击力选择工况1和2的平均值较合理,同时说明该方法与经验公式结合使用,其结果更加精确可靠,在泥石流工程设计和研究中具有良好的应用前景。

  • 加载中
  • 图 1  简化力学模型示意图

    Figure 1. 

    图 2  模型边界和网格划分

    Figure 2. 

    图 3  冲击力与坝体最大位移曲线(h=H/2)

    Figure 3. 

    图 4  不同泥石流冲击力下拦挡坝的损伤情况(h=H/2)

    Figure 4. 

    图 5  冲击力与坝体最大位移曲线(h=H

    Figure 5. 

    图 6  不同泥石流冲击力下拦挡坝的损伤情况(h=H

    Figure 6. 

    表 1  泥石流冲击力计算参数及结果

    Table 1.  Debris flow impact calculation parameters and results

    编号/(t·m−3/(m·s−1/m/t/(m·s−1/(t·m−2/m4/(t·m−2/(t·m−2
    大1号坝2.096.565.516210.550.9462.8274.6322.497.14
    大2号坝2.096.602.8817.530.9462.8274.6322.767.34
    大3号坝2.036.618.6259.213.200.9462.8216.0022.1719.95
    大4号坝2.038.674.394.59.330.9462.8421.8838.1519.62
    小2号坝2.036.563.183.77.920.9462.8421.8821.844.28
    小3号坝2.139.865.8129.610.840.9462.8274.6351.778.98
    小4号坝2.135.492.875.67.530.9462.8421.8816.0514.17
    小6号坝2.138.124.7121.59.761.0002.8512.0035.1137.01
    主1号坝2.136.5311.2361.815.060.9462.8421.8822.7144.35
    主2号坝2.136.167.5234.912.320.9462.8343.0020.2112.44
    下载: 导出CSV

    表 2  混凝土坝和地基碎石土参数

    Table 2.  Concrete dam and gravel soil parameter

    名称坝体沟床碎石土
    弹性模量/GPa泊松比损伤阈值拉压强度比弹性模量/MPa泊松比黏聚力/kPa内摩擦角/(°)剪胀角/(°)
    取值24.00.22×10−40.152400.25.04040
    下载: 导出CSV

    表 3  重力坝冲击力数值模拟验算结果对比表(单位:t/m2

    Table 3.  Comparison of results of numerical simulation of impact of gravity dam (unit: t/m2)

    编号经验公式
    计算冲击力
    h=H/2
    最大冲击力
    h=H
    最大冲击力
    计算平均值
    大1号坝22.4927.0017.5522.28
    大2号坝22.7627.3617.7822.57
    大3号坝22.1726.6417.3221.98
    大4号坝38.1545.8429.8037.82
    小2号坝21.8426.2817.0821.68
    小3号坝51.7762.1640.4051.28
    小4号坝16.0519.3212.5615.94
    小6号坝37.0144.5228.9436.73
    主1号坝44.3553.2834.6343.96
    主2号坝20.2124.3615.8320.10
    下载: 导出CSV
  • [1]

    魏新平, 胡向德, 李瑞冬, 等. 甘肃省舟曲县三眼峪沟泥石流灾害设计报告[R]. 兰州: 甘肃省地质环境监测院, 2011.

    WEI Xingping, HU Xiangde, LI Ruidong, et al. Design report of the Sanyanyu Gully debris flow hazards in Zhouqu County, Gansu Province[R]. Lanzhou: Gansu Institute of Geological Environmental Monitoring, 2011. (in Chinese)

    [2]

    吴宏, 董金义, 李瑞冬, 等. 三维可视化技术在舟曲县城区灾后重建泥石流防治工程中的应用[J]. 冰川冻土,2013,35(2):383 − 388. [WU Hong, DONG Jinyi, LI Ruidong, et al. Application of 3D visualization technology to debris flow control engineering of post-disaster reconstruction in Zhouqu County[J]. Journal of Glaciology and Geocryology,2013,35(2):383 − 388. (in Chinese with English abstract)

    [3]

    周龙茂, 龚育龄, 杨普济, 等. 武宁县花香林泥石流灾害成因及防治对策[J]. 东华理工大学学报(自然科学版),2008,31(2):136 − 139. [ZHOU Longmao, GONG Yuling, YANG Puji, et al. Analysis on causes of debris flow disasterin Wuning County and the countermeasures[J]. Journal of East China Institute of Technology (Natural Science Edition),2008,31(2):136 − 139. (in Chinese with English abstract)

    [4]

    王念秦, 韩波, 庞琦, 等. 泥石流防治工程效果后评价初探[J]. 工程地质学报,2015(2):219 − 226. [WANG Nianqin, HAN Bo, PANG Qi, et al. Post-evaluation model on effectiveness of debris flow control[J]. Journal of Engineering Geology,2015(2):219 − 226. (in Chinese with English abstract)

    [5]

    中华人民共和国国土资源部. 泥石流灾害防治工程设计规范: DZ/T 0239—2004[S]. 北京: 中华人民共和国国土资源部, 2006.

    Ministry of Land and Resources of the People's Republic of China. Specification of design for debris flow prevention: DZ/T 0239—2004[S]. Beijing: Ministry of Land and Resources of the People’s Republic of China, 2006. (in Chinese)

    [6]

    CUI P, CHEN X Q, ZHU Y Y, et al. The Wenchuan Earth-quake(12 May 2008), Sichuan Province, China, and Resulting Geo-hazards[J]. Nature Hazards,2011,56:19 − 36. doi: 10.1007/s11069-009-9392-1

    [7]

    邓楚键, 孔位学, 郑颖人. 极限分析有限元法讲座Ⅲ—增量加载有限元法求解地基极限承载力[J]. 岩土力学,2005,26(3):500 − 504. [DENG Chujian, KONG Weixue, ZHENG Yingren. Analysis of ultimate bearing capacity of foundations by elastoplastic FEM through step loading[J]. Rock and Soil Mechanics,2005,26(3):500 − 504. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-7598.2005.03.033

    [8]

    杨东旭, 王伟国, 陈晓清, 等. 用于狭陡沟谷泥石流防治的坝基钢管桩初探—以小岗剑沟泥石流治理工程为例[J]. 山地学报,2014,32(1):74 − 80. [YANG Dongxu, WANG Weiguo, CHEN Xiaoqing, et al. Steel pipe piles used for countermeasures in narrow-steep debris flow gullies: A case study of Xiaogangjian debris flow control[J]. Journal of Mountain Science,2014,32(1):74 − 80. (in Chinese with English abstract) doi: 10.3969/j.issn.1008-2786.2014.01.010

    [9]

    许海亮, 孙金斗, 覃吉宁, 等. 考虑弹性核作用下的冲击地压形成机理模型试验[J]. 中国地质灾害与防治学报,2020,31(1):120 − 126. [XU Hailiang, SUN Jindou, QIN Jining, et al. Experimental study on development mechanism of coal bump considering the elastic core effect[J]. The Chinese Journal of Geological Hazard and Control,2020,31(1):120 − 126. (in Chinese with English abstract)

    [10]

    张睿骁, 樊晓一, 姜元俊, 等. 滑坡—碎屑流冲击导引结构的离散元模拟[J]. 水文地质工程地质,2019,46(5):161 − 168. [ZHANG Ruixiao, FAN Xiaoyi, JIANG Yuanjun, et al. Discrete element simulation of the landslide-debris flow impact guiding structure[J]. Hydrogeology & Engineering Geology,2019,46(5):161 − 168. (in Chinese with English abstract)

    [11]

    冯帅, 吴红刚, 陈小云. 长达坂沟泥石流桩板墙拦挡结构极限抗冲压数值分析[J]. 科学技术与工程,2017,17(31):322 − 327. [FENG Shuai, WU Honggang, CHEN Xiaoyun. A numerical analysis of long daban ditch debris flow sheet pile wall blocking structure ultimate punching[J]. Science Technology and Engineering,2017,17(31):322 − 327. (in Chinese with English abstract) doi: 10.3969/j.issn.1671-1815.2017.31.053

    [12]

    周勇, 刘贞良, 王秀丽, 等. 泥石流冲击荷载下拦挡坝的动力响应分析[J]. 振动与冲击,2015(8):117 − 120. [ZHOU Yong, LIU Zhenliang, WANG Xiuli, et al. Dynamic response analysis for a dam against impact load of debris flow[J]. Journal of Vibration and Shock,2015(8):117 − 120. (in Chinese with English abstract)

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1088
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2020-03-03
修回日期:  2020-04-20
刊出日期:  2021-04-25

目录